Network Security: Secret Key Cryptography

Henning Schulzrinne Columbia University, New York schulzrinne@cs.columbia.edu

1

Columbia University, Fall 2000

©1999-2000, Henning Schulzrinne Last modified September 28, 2000

Secret Key Cryptography

- fixed-size block, fixed-size key \rightarrow block
- DES, IDEA
- message into blocks?

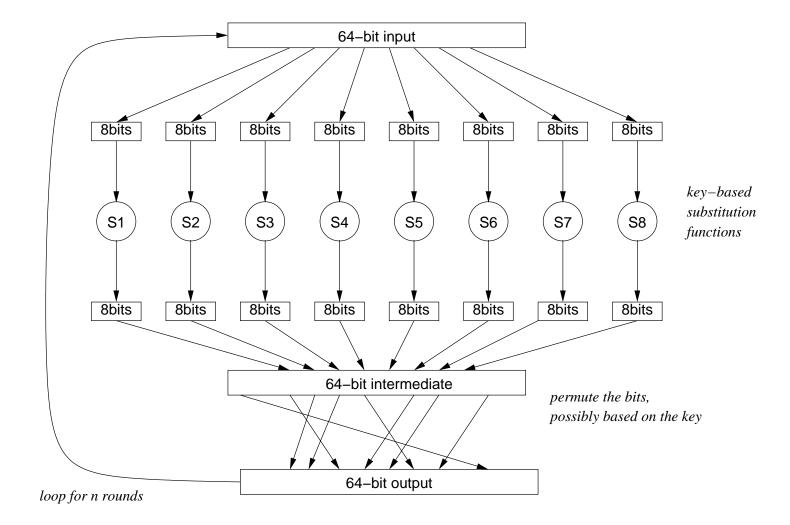
- convert block into another, *one-to-one*
- long enough to avoid known-plaintext attack
- 64 bit typical (nice for RISC!) $\implies 18 \cdot 10^{18}$ (peta)
- naive: 2^{64} input values, 64 bits each $\rightarrow 2^{70}$ bits
- output should look random
- plain, ciphertext: no correlation (half the same, half different)
- **bit** spreading

substitution: $2^k, k \ll 64$ values mapped $\implies k \cdot 2^k$ bits

permutation: change bit position of each bit $\implies k \log_2 k$ bits to specify

round: combination of substitution of chunks and permutation do often enough so that a bit can affect every output bit – but no more

Block Encryption



Data Encryption Standard (DES)

- published in 1977 by National Bureau of Standards
- developed at IBM ("Lucifer")
- 56-bit key, with parity bits
- 64-bit blocks
- easy in hardware, slow in software
- 50 MIPS: 300 kB/s
- 10.7 Mb/s on a 90 MHz Pentium in 32-bit protected mode
- grow 1 bit every 2 years

Breaking DES

- brute force: check all keys ****** 500,000 MIPS years
- easy if you have known plaintext
- have to know something about plaintext (ASCII, GIF, ...)
- commercial DES chips not helpful: key loading time > decryption time
- easy to do with FPGA, without arousing suspicion
- easily defeated with repeated encryption

DES Overview

- initial permutation
- 56-bit key \rightarrow 16 48-bit per-round keys (different subset)
- 16 rounds: 64 bit input + 48-bit key \rightarrow 64-bit output
- final permutation (inverse of initial)
- decryption: run backwards mereverse key order

Permutation

- just slow down software
- *i*th byte $\rightarrow (9 i)$ th bits
- even-numbered bits into byte 1-4
- odd-numbered bits into byte 5-8
- no security value: if we can decrypt innards, we could decrypt DES

DES: Generating Per-Round Keys

56-bit key \rightarrow 16 48-bit keys $K_1, \ldots K_{16}$:

- bits 8, 16, ..., 64 are parity
- permutation
- split into 28-bit pieces $C_0, D_0: 57, 49, ...$
- again, no security value
- rounds 1, 2, 9, 16: single-bit rotate left
- otherwise: two-bit rotate left
- permutation for left/right half of K_i
- discard a few bits 🍽 48-bit key in each round

XOR Arithmetic

- $x \oplus x = 0$
- $x \oplus 0 = x$
- $x \oplus 1 = \bar{x}$

DES Round

• mangler function can be non-reversible

$$-L_{n+1} = R_n$$

- $R_{n+1} = m(R_n, K_n) \oplus L_n$
- decryption

$$- R_n = L_{n+1}$$
$$- L_n = m(R_n, K_n) \oplus R_{n+1}$$

because $(\oplus L_n, R_{n+1})$: $R_{n+1} \oplus R_{n+1} \oplus L_n = m() \oplus L_n \oplus L_n \oplus R_{n+1}$

DES Mangler Function

- $R(32), K(48) \oplus L_n \to R_{n+1}$
- expand from 32 to 48 bits: 4-bit chunks, borrow bits from neighbors
- 6-bit chunks: expanded $R \oplus K$
- 8 different S-boxes for each 6 bits of data
- **S box**: 6 bit (64 entries) into 4 bit (16) table: 4 each
- four separate 4x4 S-boxes, selected by outer 2 bits of 6-bit chunk
- afterwards, random permutation: P-box

DES: Weak Keys

- 16 keys to avoid: $C_0, D_0, 0..., 0, 1..., 1, 0101..., 1010...$
- sequential key search me avoid low-numbered keys
- 4 weak keys = $C_0, D_0 = 0 \dots 0$ or $1 \dots 1$ is own inverses: $E_k(m) = D_k(m)$
- semi-weak keys: $E_{k_1}(m) = D_{k_2}(m)$

- International Data Encryption Algorithm
- ETH Zurich, 1991
- similar to DES: 64 bit blocks
- but 128-bit keys

Primitive Operations

2 16-bit \rightarrow 1 16-bit:

- ⊕
- + mod 2^{16}
- $\otimes \mod 2^{16} + 1$:
 - reversible \blacksquare inverse y of $x, \forall x \in [1, 2^{16}]a \otimes x \otimes y = a$
 - or $x \otimes y = 1$
 - example: x = 2, y = 32769 \blacksquare Euclid's algorithm
 - reason: $2^{16} + 1$ is prime
 - treat 0 as encoding for 2^{16}

IDEA Key Expansion

- 128-bit key \rightarrow 52 16-bit keys K_1, \ldots, K_{52}
- encryption, decryption: different keys
- key generation:
 - first chop off 16 bit chunks from 128 bit key is eight 16-bit keys
 - start at bit 25, chop again is eight 16-bit keys
 - shift 25 bits and repeat

IDEA: One Round

- 17 rounds, even and odd
- 64 bit input \rightarrow 4 16-bit inputs: X_a, X_b, X_c, X_d
- operations \rightarrow output X'_a, X'_b, X'_c, X'_d
- odd rounds use $4K_i : K_a, K_b, K_c, K_d$
- even rounds use $2K_i : K_e, K_f$

IDEA: Odd Round

- $X'_a = X_a \otimes K_a$
- $X'_d = X_d \otimes K_d$
- $X'_c = X_b + K_b$
- $X'_b = X_c + K_c$

reverse with inverses of K_i : $X'_a \otimes K'_a = X_a \otimes K_a \otimes K'_a$

IDEA: Even Round

1.

2.

3.

mangler:
$$Y_{\text{out}}, Z_{\text{out}} = f(Y_{\text{in}}, Z_{\text{in}}, K_e, K_f)$$

$$Y_{\rm in} = X_a \oplus X_b$$

 $Z_{\rm in} = X_c \oplus X_d$

$$Y_{\text{out}} = ((K_e \otimes Y_{\text{in}} + Z_{\text{in}}) \otimes K_f$$
$$Z_{\text{out}} = K_e \otimes Y_{\text{in}} + Y_{\text{out}}$$

$$X'_{a} = X_{a} \oplus Y_{out}$$
$$X'_{b} = X_{b} \oplus Y_{out}$$
$$X'_{c} = X_{c} \oplus Z_{out}$$
$$X'_{d} = X_{d} \oplus Z_{out}$$

IDEA Even Round: Inverse

$$X'_a = X_a \oplus Y_{\text{out}}$$

Feed X'_a to input:

$$= X'_a \oplus Y_{out}$$
$$= (X_a \oplus Y_{out}) \oplus Y_{out}$$
$$= X_a$$

round is its own inverse! same keys

Encrypting a Large Message

- Electronic Code Book (ECB)
- Cipher Block Chaining (CBC)
- *k*-bit Cipher Feedback Mode (CFB)
- *k*-bit Output Feedback Mode (OFB)

Electronic Code Book (ECB)

- break into 64-bit blocks
- encrypt each block independently
- some plaintext 🗰 same ciphertext
- easy to change message by copying blocks
- bit errors do not propagate
- mrarely used

Cipher Block Chaining (CBC)

simple fix: \oplus blocks with 64-bit random number

- must keep random number secret
- repeats in plaintext $\not\rightarrow$ = ciphertext
- can still remove selected blocks

Cipher Block Chaining (CBC)

- random number $r_{i+1} = c_i$: previous block of ciphertext
- random (but public) initialization vector (IV): avoid equal initial text
- Trudy can't detect changes in plaintext
- can't feed chosen plaintext to encryption
- but: can twiddle some bits (while modifying others):
 modify c_n to change desired m_{n+1} (and m_n)
- • combine with MICs

Output Feedback Mode (OFB)

64-bit OFB:

- IV: $b_0 \xrightarrow{\text{encrypt}} b_1 \xrightarrow{\text{encrypt}} b_2 \dots$
- $c_i = m_i \oplus b_i$, transmit with IV
- ciphertext damage im limited plaintext damage
- can be transmitted byte-by-byte
- but: known plaintext me modify plaintext into anything
- extra/missing characters garble whole rest

variation: k-bit OFB

Cipher Feedback Mode (CFB)

- similar to OFB: generate k bits, \oplus with plaintext
- use k bits of *ciphertext* instead of IV-generated
- m can't generate ahead of time
- 8-bit CFB will resynchronize after byte loss/insertion
- requires encryption for each k bits

Generating MICs

- only send last block of CBC III *CBC residue*
- any modification in plaintext modifies CBC residue
- replicating last CBC block doesn't work
- P+I: use separate (but maybe related) secret keys for encryption and MIC III two encryption passes
- CBC(message | hash)

Multiple Encryption DES

- applicable to any encryption, important for DES
- encrypt-decrypt-encrypt (EDE): just reversible *functions*
- two keys K_1, K_2

• decryption in just reverse:

• standard CBC

- security \leftrightarrow efficiency
- $K_1 = K_2$: twice the work for encryption, cryptanalyst
- plaintext $m_i \xrightarrow{A:E(K_1)} r \xrightarrow{B:E(K_2)} c_i$ (ciphertext)
- *not* quite equivalent to 112 bit key:
 - assume given $(m_1, c_1), (m_2, c_2), (m_3, c_3)$
 - Table A: 2^{56} (10⁴ TB) entries: $r = K\{m_1\} \forall K$, sort by r
 - Table B: 2^{56} entries: $r = c_1$ decrypted with K, sorted
 - find matching $r \twoheadrightarrow K_A, K_B$
 - if multiple K_A, K_B pairs, test against m_2, c_2 , etc.
 - 2^{64} values, 2^{56} entries $\rightarrow 1/256$ chance to appear in table $\rightarrow 2^{48}$ matches

Triple DES: Why 3?

Table A:

$r = E(m_1, K)$ (64 bits)	K (56 bits)
1234567890abcd00	ab485095845922
1234567890abcd03	12834893573257
1234567890abcd04	43892ab8348a85
1234567890abcd08	185ab80184092c

. . .

Table B:

 $r = D(c_1, K)$ (64 bits) K (56 bits)

1234567890abcd00 38acd043858ac0 1234567890abcd03 91870ab8a8d8a0 1234567890abcd07 058a0fa858abcd 1234567890abcd09 fd884a90407821

. . .

• • •

computation: $2 \cdot 2^{56} + 2^{48}$

Triple DES

- EDE: can run as single DES with $K_1 = K_2$
- can be used with any chaining method
- CBC on the outside in properties
- CBC on the inside metavoid plaintext manipulation
- but want *self-synchronizing*: wrong bit x in block $n 1 \implies n 1$ garbled, n_x changed, others unaffected
- CBC inside: parallelization