
1

Network Security: Secret Key Cryptography

Henning Schulzrinne
Columbia University, New York

schulzrinne@cs.columbia.edu

Columbia University, Fall 2000

c1999-2000, Henning Schulzrinne

Last modified September 28, 2000

2

Secret Key Cryptography

� fixed-size block, fixed-size key! block

� DES, IDEA

� message into blocks?

3

Generic Block Encryption

� convert block into another,one-to-one

� long enough to avoid known-plaintext attack

� 64 bit typical (nice for RISC!)➠ 18 � 1018 (peta)

� naive:264 input values, 64 bits each! 270 bits

� output should look random

� plain, ciphertext: no correlation (half the same, half different)

� ➠ bit spreading

substitution: 2k; k � 64 values mapped➠ k � 2k bits

permutation: change bit position of each bit➠ k log2 k bits to specify

round: combination of substitution of chunks and permutation
do often enough so that a bit can affect every output bit – but no more

4

Block Encryption

64−bit output

64−bit intermediate

8bits 8bits 8bits 8bits 8bits 8bits 8bits 8bits

8bits 8bits 8bits 8bits 8bits 8bits 8bits 8bits

64−bit input

loop for n rounds

permute the bits,
possibly based on the key

key−based
substitution
functions

S1 S2 S3 S4 S6 S7 S8S5

5

Data Encryption Standard (DES)

� published in 1977 by National Bureau of Standards

� developed at IBM (“Lucifer”)

� 56-bit key, with parity bits

� 64-bit blocks

� easy in hardware, slow in software

� 50 MIPS: 300 kB/s

� 10.7 Mb/s on a 90 MHz Pentium in 32-bit protected mode

� grow 1 bit every 2 years

6

Breaking DES

� brute force: check all keys➠ 500,000 MIPS years

� easy if you have known plaintext

� have to know something about plaintext (ASCII, GIF,. . .)

� commercial DES chips not helpful: key loading time> decryption time

� easy to do with FPGA, without arousing suspicion

� easily defeated with repeated encryption

7

DES Overview

� initial permutation

� 56-bit key! 16 48-bit per-round keys (different subset)

� 16 rounds: 64 bit input + 48-bit key! 64-bit output

� final permutation (inverse of initial)

� decryption: run backwards➠ reverse key order

8

Permutation

� just slow down software

� ith byte! (9� i)th bits

� even-numbered bits into byte 1-4

� odd-numbered bits into byte 5-8

� no security value: if we can decrypt innards, we could decrypt DES

9

DES: Generating Per-Round Keys

56-bit key! 16 48-bit keysK1; : : : K16:

� bits 8, 16, . . . , 64 are parity

� permutation

� split into 28-bit piecesC0;D0: 57; 49; : : :

� again, no security value

� rounds 1, 2, 9, 16: single-bit rotate left

� otherwise: two-bit rotate left

� permutation for left/right half ofKi

� discard a few bits➠ 48-bit key in each round

10

XOR Arithmetic

� x� x = 0

� x� 0 = x

� x� 1 = �x

11

DES Round

� mangler function can be non-reversible

– Ln+1 = Rn

– Rn+1 = m(Rn;Kn)� Ln

� decryption

– Rn = Ln+1

– Ln = m(Rn;Kn)�Rn+1

because (�Ln; Rn+1): Rn+1 �Rn+1 � Ln = m()� Ln � Ln �Rn+1

12

DES Mangler Function

� R(32);K(48) � Ln ! Rn+1

� expand from 32 to 48 bits: 4-bit chunks, borrow bits from neighbors

� 6-bit chunks: expandedR�K

� 8 different S-boxes for each 6 bits of data

� S box: 6 bit (64 entries) into 4 bit (16) table: 4 each

� four separate 4x4 S-boxes, selected by outer 2 bits of 6-bit chunk

� afterwards, random permutation: P-box

13

DES: Weak Keys

� 16 keys to avoid:C0;D0 0. . . 0, 1. . . 1,0101. . . ,1010. . .

� sequential key search➠ avoid low-numbered keys

� 4 weak keys= C0;D0 = 0 : : : 0 or 1 : : : 1 ➠ own inverses:Ek(m) = Dk(m)

� semi-weak keys:Ek1(m) = Dk2(m)

14

IDEA

� International Data Encryption Algorithm

� ETH Zurich, 1991

� similar to DES: 64 bit blocks

� but 128-bit keys

15

Primitive Operations

2 16-bit! 1 16-bit:

� �
� + mod 216

�
 mod 216 + 1:

– reversible➠ 9 inversey of x, 8x 2 [1; 216]a
 x
 y = a

– or x
 y = 1

– example:x = 2; y = 32769 ➠ Euclid’s algorithm

– reason:216 + 1 is prime

– treat 0 as encoding for216

16

IDEA Key Expansion

� 128-bit key! 52 16-bit keysK1; : : : ;K52

� encryption, decryption: different keys

� key generation:

– first chop off 16 bit chunks from 128 bit key➠ eight 16-bit keys

– start at bit 25, chop again➠ eight 16-bit keys

– shift 25 bits and repeat

17

IDEA: One Round

� 17 rounds, even and odd

� 64 bit input! 4 16-bit inputs:Xa;Xb;Xc;Xd

� operations! outputX 0
a;X

0
b;X

0
c;X

0
d

� odd rounds use4Ki : Ka;Kb;Kc;Kd

� even rounds use2Ki : Ke;Kf

18

IDEA: Odd Round

� X 0
a = Xa
Ka

� X 0
d = Xd
Kd

� X 0
c = Xb +Kb

� X 0
b = Xc +Kc

reverse with inverses ofKi:

X 0
a
K0
a = Xa
Ka
K0
a

19

IDEA: Even Round

mangler:Yout; Zout = f(Yin; Zin;Ke;Kf)

1.

Yin = Xa �Xb

Zin = Xc �Xd

2.

Yout = ((Ke
 Yin + Zin)
Kf

Zout = Ke
 Yin + Yout

3.

X 0
a = Xa � Yout

X 0
b = Xb � Yout

X 0
c = Xc � Zout

X 0
d = Xd � Zout

20

IDEA Even Round: Inverse

X 0
a = Xa � Yout

FeedX 0
a to input:

= X 0
a � Yout

= (Xa � Yout)� Yout

= Xa

➠ round is its own inverse!➠ same keys

21

Encrypting a Large Message

� Electronic Code Book(ECB)

� Cipher Block Chaining(CBC)

� k-bit Cipher Feedback Mode (CFB)

� k-bit Output Feedback Mode (OFB)

22

Electronic Code Book (ECB)

� break into 64-bit blocks

� encrypt each block independently

� some plaintext➠ same ciphertext

� easy to change message by copying blocks

� bit errors do not propagate

➠ rarely used

23

Cipher Block Chaining (CBC)

simple fix:� blocks with 64-bit random number

� must keep random number secret

� repeats in plaintext6! = ciphertext

� can still remove selected blocks

24

Cipher Block Chaining (CBC)

� random numberri+1 = ci: previous block of ciphertext

� random (but public)initialization vector(IV): avoid equal initial text

� Trudy can’t detect changes in plaintext

� can’t feed chosen plaintext to encryption

� but: can twiddle some bits (while modifying others):
modify cn to change desiredmn+1 (andmn)

� ➠ combine with MICs

25

Output Feedback Mode (OFB)

64-bit OFB:

� IV: b0

encrypt

�! b1

encrypt
�! b2 : : :

� ci = mi � bi, transmit with IV

� ciphertext damage➠ limited plaintext damage

� can be transmitted byte-by-byte

� but: known plaintext➠ modify plaintext into anything

� extra/missing characters garble whole rest

variation:k-bit OFB

26

Cipher Feedback Mode (CFB)

� similar to OFB: generatek bits,� with plaintext

� usek bits ofciphertextinstead of IV-generated

� ➠ can’t generate ahead of time

� 8-bitCFB will resynchronize after byte loss/insertion

� requires encryption for eachk bits

27

Generating MICs

� only send last block of CBC➠ CBC residue

� any modification in plaintext modifies CBC residue

� replicating last CBC block doesn’t work

� P+I: use separate (but maybe related) secret keys for encryption and MIC➠ two
encryption passes

� CBC(messagej hash)

28

Multiple Encryption DES

� applicable to any encryption, important for DES

� encrypt-decrypt-encrypt (EDE): just reversiblefunctions

� two keysK1, K2

K1 K2 K1

#

m ! E ! D ! E ! c

� decryption➠ just reverse:

K1 K2 K1

#

c ! D ! E ! D ! m

� standard CBC

29

Triple DES: Why 3?

� security$ efficiency

� K1 = K2: twice the work for encryption, cryptanalyst

� plaintextmi
A:E(K1)

�! r
B:E(K2)

�! ci (ciphertext)

� not quite equivalent to 112 bit key:

– assume given(m1; c1); (m2; c2); (m3; c3)

– Table A:256 (104 TB) entries:r = Kfm1g8K, sort byr

– Table B:256 entries:r = c1 decrypted withK, sorted

– find matchingr ➠ KA;KB

– if multiple KA;KB pairs, test againstm2; c2, etc.

– 264 values,256 entries➠ 1/256 chance to appear in table➠ 248 matches

30

Triple DES: Why 3?

Table A:

r = E(m1;K) (64 bits) K (56 bits)

. . .

1234567890abcd00 ab485095845922

1234567890abcd03 12834893573257

1234567890abcd04 43892ab8348a85

1234567890abcd08 185ab80184092c

. . .

Table B:

31
r = D(c1; K) (64 bits) K (56 bits)

. . .

1234567890abcd00 38acd043858ac0

1234567890abcd03 91870ab8a8d8a0

1234567890abcd07 058a0fa858abcd

1234567890abcd09 fd884a90407821

. . .

computation:2 � 256 + 248

32

Triple DES

� EDE: can run as single DES withK1 = K2

� can be used with any chaining method

� CBC on the outside➠ no change in properties

� CBC on the inside➠ avoid plaintext manipulation

� but wantself-synchronizing: wrong bitx in blockn� 1 ➠ n� 1 garbled,nx

changed, others unaffected

� CBC inside: parallelization

