Introduction to Cryptography

Slide 1

1

Definition

- process data into unintelligible form, reversibly, without data loss intro typically digitally
- usually one-to-one in size \leftrightarrow compression
- analog cryptography: voice changers, shredder
- other services:
 - integrity checking: no tampering
 - authentication: not an impostor

plaintext encryption ciphertext decryption plaintext

Cryptography Caveats

- Cannot *prove* that code is secure assume until otherwise but: can prove (some) systems/protocols secure (assuming secure code)
- Difficult to explain algorithm securely Cryptographic system = algorithm (published or secret) + secret value (key)
- Assume Trudy has algorithm

Slide 3

Computational Difficulty

- algorithm needs to be efficient im may use inefficient for short key
- brute-force cryptanalysis: try all keys until "looks like" plaintext
- any scheme can be broken \blacksquare depends on \$ = f(t)
- longer key more secure:
 - encryption: O(N + 1)
 - brute-force cryptanalysis: $O(2^{N+1}) \implies$ twice as hard
- cryptanalysis tools:
 - special-purpose hardware
 - parallel machines
 - Internet coarse-grain parallelism

- ...

Secret Key vs. Secret Algorithm

- secret algorithm madditional hurdle
- hard to keep secret if widely used: reverse engineering, social engineering
- commercial: published **w** wide review, trust
- military: avoid giving enemy good ideas (not just messages)

Slide 5

Trivial Codes

Caesar cipher: substitution cipher: $A \rightarrow D, B \rightarrow E$

- **Captain Midnight secret Decoder ring:** shift by variable *n*: IBM ••• HAL ••• only 26 possibilities
- **monoalphabetic cipher:** generalization \clubsuit arbitrary mapping letter to letter \clubsuit $26! = 4 \cdot 10^{26}$ possibilities \clubsuit statistical analysis of letter frequencies \clubsuit larger codebook

Cryptanalysis

- **Ciphertext only:** we exhaustive search until "recognizable plaintext" (unless limited base set) we need enough ciphertext
- **Known plaintext:** secret may be revealed (by spy, time) ****** pair (ciphertext, plaintext) ******* great for monoalphabetic ciphers
- **Chosen plaintext:** choose text, get encrypted **w** useful if limited set of messages or initial strings

Slide 7

Some Large Numbers

Time to next ice age	14,000 yrs
DES 56 bits	$7\cdot 10^{16}$ keys
probability of MD5 collision	$1/3 \cdot 10^{38}$
Age of planet	10^9 yrs
Time until sun goes nova	10^{14} yrs
Age of universe	10^{10} yrs
Number of atoms in universe	10^{77}

Brute Force Attacks

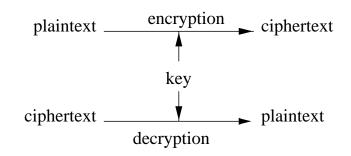
- Number of encryptions/sec: 1 million to 1 billion bits/sec
- 1999: 56-bit key broken in 22.5 h with 1,800 chips (\$250,000) (245 $\cdot 10^9$ keys/s, see eff.org); helped by distributed.net
- 1995: 56-bit key broken in 1 week with 120,000 processors (\$6.7M)
- 56-bit key broken in 1 month with 28,000 processors (\$1.6M)
- 64-bit key broken in 1 week with $3.1 \cdot 10^7$ processors (\$1.7B)
- 128-bit key broken in 1 week with $5.6 \cdot 10^{26}$ processors
- Chinese Lottery: With machines that test at the rate of a million keys every second, take 64 seconds to break DES with a billion such machines running in parallel.

Slide 9

• DES'osaur:

With suitable advances in biotechnology, a 10^{14} celled DES' osaur can break DES in 0.2 secs.

Types of Cryptography

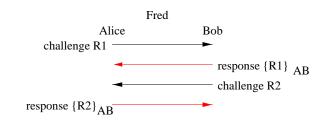

hash functions: no key

secret key cryptography: one key

public key cryptography: two keys - public, private

Slide 11

Secret Key Cryptography

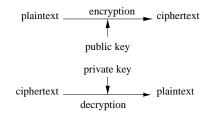


- ciphertext \approx same length as plaintext
- symmetric cryptography
- substitution codes, DES, IDEA

Message transmission: agree on key (how?), communicate over insecure channel **Secure storage:** crypt adagerous, no indication of trouble, no redundancy

Strong Authentication

= prove knowledge of key without revealing it


- Fred: obtain chosen plaintext, ciphertext pairs
- not completely secure!

Integrity check = fixed-length checksum for message CRC not sufficient measy to pick new message with same CRC encrypt MIC (*message integrity check*)

Slide 13

Public Key Cryptography

- asymmetric cryptography
- publicly invented in 1975
- two keys: private (d), public (e)
- much slower than secret key cryptography

Public Key Cryptography

Data transmission:

Alice		Bob
encrypt m_A using e_B	\longrightarrow	decrypt to m_A using d_B
decrypt to m_B using d_A	$\leftarrow -$	encrypt m_B using e_A

Storage: safety copy: use public key of trusted person

- Authentication: secret keys: need secret key for every person to communicate with
 - secret key: Alice could share key with enemies of Bob
 - need to store no secrets:

 $\begin{array}{ccc} \text{Alice} & \text{Bob} \\ \text{encrypt } r \text{ using } e_B & \longrightarrow & \text{decrypt to } r \text{ using } d_B \\ & \longleftarrow & r \end{array}$

Digital Signatures

encrypt hash h(m) with private key

- doesn't reveal text me semi-trusted party
- authorship
- integrity
- non-repudiation: can't do with secret-key cryptography

Hash Algorithms

- = message digest, one-way transformation h(m)
- $\operatorname{length}(h(m)) \ll \operatorname{length}(m)$
- usually fixed lengths: 48 128 bits
- easy to compute h(m)
- given h(m) but not m, no easy way to find m
- computationally infeasible to find m_1, m_2 with $h(m_1) = h(m_2)$
- example: $(m + c)^2$, take middle digits

Slide 17

Password Hashing

- don't need to know password to verify it
- \blacksquare store h(p+s), s, with salt s
- salt makes dictionary attack more difficult
- compare entry with h(p+s)
- password file could be world-readable
- Unix: non-standard DES, 4096 salt values

Message Integrity using Hash

- agree on password
- compute h(m|p), send m
- doesn't require encryption algorithm exportable!
- virus protection, downline load, Java applets: h(program) with *secure* program on write-once storage