
The Loss-Delay Based Adjustment Algorithm: A
TCP-Friendly Adaptation Scheme�

Dorgham Sisalem
GMD-Fokus, Berlin

sisalem@fokus.gmd.de

Henning Schulzrinne
Columbia University, New York
schulzrinne@cs.columbia.edu

Abstract

Many distributed multimedia applications have the ability to adapt to fluctuations in the
network conditions. By adjusting temporal and spatial quality to available bandwidth, or ma-
nipulating the playout time of continuous media in response to variations in delay, multimedia
flows can keep an acceptable QoS level at the end systems. In this paper, we present a new
scheme called the loss-delay based adjustment algorithm (LDA) for adapting the transmission
rate of multimedia applications to the congestion level of the network. The LDA algorithm was
designed to reduce losses and improve utilization in a TCP-friendly way that avoids starving
competing TCP connections. It relies on the end-to-end Real Time Transport Protocol (RTP) for
feedback information. In addition, we enhanced RTP with functionalities for determining the
bottleneck bandwidth of a connection. The bottleneck bandwidth is then used for dynamically
determining the adaptation parameters. Simulations and measurements of the LDA algorithm
suggest the efficiency of the scheme in utilizing network resources, decreasing loss ratios and
its fairness towards competing TCP traffic. Our investigations also suggest that the report inter-
vals and feedback information of RTP require some enhancements to accommodate the needs
of adaptive QoS control schemes.

1 Introduction

A large part of the multimedia conferencing applications used currently in the Internet, such as

VIC [16] and VAT [13] are based on the UDP transport protocol. However, UDP offers no qual-

ity of service control mechanisms and can therefore not guarantee any level of QoS. Fluctuations

of network conditions combined with the inability of those protocols to support QoS control often

render multimedia applications useless.

In addition, deploying non-congestion-controlled UDP traffic results in extreme unfairness to-

wards competing TCP traffic. Sending best-effort traffic without any consideration of the network

congestion state can easily result in packet losses. In response to that, TCP connections which con-

stitute around 95% of the Internet traffic today [23] would reduce their transmission rates. How-

�This work was funded in part by the BMBF (German Ministry of Education and Research) and the DFN (German
Research Network).

1

ever, without any rate reduction on behalf of the non-congestion-controlled traffic, the TCP connec-

tions would starve and receive much less than their fair bandwidth shares. Therefore, UDP sources

need to be enhanced with congestion control schemes that not only aim at reducing loss ratios and

improve bandwidth utilization but also are fair towards competing TCP connections, i.e, be TCP-

friendly.

Currently, different approaches are being discussed for solving the QoS and congestion control

problems such as: resource reservation [4], priority mechanisms [1] and application control [7], i.e.,

to instruct the applications at the end systems to adapt the bandwidth share they are utilizing to the

network congestion state.

Reserving enough resources for supporting a certain QoS level in advance guarantees this qual-

ity level and would be the most straightforward approach for handling the problem. However, as

it is usually impossible to know the exact characteristics of a stream in advance, one would tend to

over-allocate resources to guarantee the requested QoS level, leading to network underutilization.

In addition to the complexity and scalability problems of reservation based QoS control schemes,

these schemes do not easily allow the use of extra bandwidth for improved quality during network

underload states for example.

With priority mechanisms, different data packets or streams are labeled with different priorities

and thereby treated differently at the network routers. Such an approach is simpler than the reser-

vation approach as it requires no signaling and less complicated control mechanisms at the routers.

However, the exact mechanisms for setting the priority levels, the router mechanisms for control-

ling these levels and the actual gain achieved with such an approach are still under discussion [1].

In this paper, we propose to use QoS control mechanisms based on adapting the sender trans-

mission rate in accordance with the network congestion state. That is, based on feedback informa-

tion from the receivers, the sender would increase its transmission rate during underload situations

and reduce it otherwise. This is especially beneficial when the bandwidth availability may change

during a session, particularly during long-lived sessions typical for multimedia communications.

Note, that with such an approach no QoS guarantees can be made, but the user perceived quality is

improved through loss reduction.

Ergonomic studies and the experience gained from the Internet demonstrate that people can use

audio and video data as long as the information content is above a minimum level [26]. This level

depends on media content and the task at hand. For instance, a foreign language is more difficult to

understand than a native language when audio quality is reduced. So, at the expense of slight degra-

dation in user satisfaction, it is possible to adjust the transmission rates of end systems in accordance

with the network congestion state. Hence, deploying application control results in a better overall

bandwidth utilization, as it avoids network congestion. A major advantage of application control

schemes is that they require no support from intermediate routers and are, thus, easy to deploy.

Applications control works best for live transmission for unicast and small multicast groups;

2

in large multicast groups in a heterogeneous environment, a “race to the bottom” can occur so that

one poorly connected receiver determines the quality for the much larger number of well-connected

receivers. To avoid these problems, various proposals have been made for hierarchical data dis-

tribution [25, 17, 27]. Those proposals are based on partitioning a data stream into a base layer,

comprising the information needed to achieve the lowest quality representation and a number of

enhancement layers. The different layers are then sent to different multicast sessions and the re-

ceivers determine how many sessions to join and thereby adjust their QoS in respect to their own

requirements and capacities.

While layered data transmission solves the heterogeneity problems, it might cause additional

delays at the receivers. As the different layers might use different paths and hence have different

round trip times, the receivers need to resynchronize the arriving data. Additionally, data partition-

ing might lead to a drift problem caused by motion compensated coding if only the lower bit rate

layer is received [10]. Finally, it increases the complexity of the end systems considerably.

In this paper, we propose a new end-to-end rate adaptation scheme called the loss-delay based

adjustment algorithm (LDA) for adjusting the transmission rate of multimedia applications to the

congestion level of the network. The LDA algorithm resembles other adaptation approaches pro-

posed in the literature [3, 5] that increase the transmission rate during network underload periods

by an additive increase rate (AIR) and reduce the rate multiplicatively during congestion periods.

However, these schemes show a rather aggressive adaptation behavior, often leading to the starva-

tion of competing TCP traffic [21]. The LDA algorithm is on the contrary designed in a TCP similar

fashion that prevents the starvation of TCP connections but sill allows for a stable transmission be-

havior.

Another issue that none of the adaptation schemes we encountered addresses is how to choose

AIR. The appropriate value of AIR depends on the bandwidth share of a connection. As this share

might change dynamically during the lifetime of a connection using a constant AIR value is rather

inappropriate. The LDA algorithm adjusts its adaptation parameters dynamically in response to the

losses, delays and capacity observed on the path traversed by the adaptive connection. The capacity

of the network is estimated by enhancing RTP with the packet pair approach presented in [12].

In Sec. 2 of this paper we present some related work on the issue of TCP-friendly adaptation.

The loss-delay based adjustment algorithm (LDA) is then presented in Sec. 3. Finally, the perfor-

mance of the algorithm in terms of bandwidth utilization, scalability and fairness towards compet-

ing TCP connection is investigated using simulations and measurements in Sec. 4.

2 TCP-Friendly Adaptation Algorithms

As deploying non-congestion controlled UDP traffic in the Internet might result in starving compet-

ing TCP connections [9] different approaches have been suggested that aim at adjusting the trans-

3

mission behavior of UDP senders in a TCP similar fashion. In the following we present a brief

summary of some of those approaches:

� Jacobs [11] presents a scheme that uses the congestion control mechanisms of TCP, how-

ever, without retransmitting lost packets. In his scheme, the sender maintains a transmission

window that is advanced based on the acknowledgments of the receiver. Based on the size

of the window the sender can estimate the appropriate transmission rate. Thereby, the adap-

tive connection is guaranteed to acquire the same bandwidth a TCP connection would be get-

ting under the same conditions of losses and delays. However, the need to acknowledge each

packet limits the benefits of such an approach to unicast communication. Also, the acknowl-

edgment packets increase the overall network traffic significantly diminishing the benefit of

adaptation, particularly for short voice packets.

� Floyd et al. [9] and Ott et al. [18] propose a model that estimates the throughput of a TCP

connection (rTCP) under known delay and loss conditions.

rTCP =
1:22�M

� �
p
l

(1)

with M as the maximum packet length, � as the round trip time of the connection and l as the

average loss measured during the lifetime of the connection.

Based on this estimation, Mahdavi et al. [14] and Turletti et al. [24] propose end-to-end, TCP-

friendly congestion control schemes in which the end systems measure losses and delays in

the network and restrict their transmission rates to the value estimated by Eq. 1. Floyd et

al. [9] describe a mechanism in which routers identify connections that use more bandwidth

than allowed by Eq. 1 and then throttle these connections.

The TCP-throughput model is based on a TCP sender interpreting packet drops as an indica-

tion of congestion and responding by reducing the congestion window and thereby the effec-

tive sending rate by half. Further, this sender should only increase its transmission window

by at most one packet each round trip time.

While this model is rather simple, it is only partially correct. It does not consider timeout

cases or delayed acknowledgments. However, even under those restrictions different stud-

ies [9, 15] have shown this model to be accurate enough for losses of less than 16%.

Note, however, that the TCP-throughput model is based on the average loss and delay ob-

served during the lifetime of a connection. However, adaptation decisions need to be taken

based on the current loss and delay values. As the observed losses and round trip delays

change dynamically, using the TCP-throughput model as the sole basis for adaptation results

in a rather oscillatory adaptation behavior which might lead to an annoying perceived QoS

by the users due to the rapid changes in the quality of the received data stream. In addition,

4

the TCP-model does not state the rate increase method during no loss periods. Testing a sim-

ple adaptation mechanism based on setting the bandwidth to the rate estimated by the TCP

model using the loss and delay values reported in the RTCP packets and increasing the rate

additively during no loss periods the scheme showed a very oscillatory behavior and on the

average a rather low throughput [21]. Also, the authors in [18] state that if the round trip time

is caused by queuing delays, or if the bottleneck router is shared among competing connec-

tions, this model is only of limited value.

3 The Loss-Delay Based Adjustment Algorithm (LDA)

The LDA algorithm is a sender based adaptation scheme. It relies on the Real Time Transport Pro-

tocol (RTP) [19] for feedback information about the losses at the receivers and round trip time. We

additionally enhanced RTP to estimate the bottleneck bandwidth of a connection. Based on these

information, the sender increases or decreases its transmission rate. During periods without losses

the sender increases its transmission rate by an additive increase rate (AIR) which is estimated using

the loss, delay and bottleneck bandwidth values reported in the feedback reports.

We divide the algorithm description into three parts handling the feedback information, upon

which the adaptation decisions are taken, the mechanisms for setting the adaptation parameters and

the actual adaptation mechanisms.

3.1 Feedback Information

The loss-delay based adjustment algorithm is based upon the Real Time Transport Protocol (RTP) [19]

designed within the Internet Engineering Task Force (IETF). RTP enhances other transport proto-

cols such as UDP with features needed by continuous media applications, such as the capability of

distinguishing between different media streams and keeping track of various statistics describing

the quality of the transmission as seen by other members of the session.

RTP sessions consist of two lower-layer data streams, namely a data stream for, say, audio or

video and a stream of control packets (using the sub-protocol called RTCP). Each session member

periodically sends RTCP control reports to all other session members. Senders transmit reports

describing the amount of data they have sent and a timestamp indicating the time the report was

generated. For each incoming stream the receivers send a report indicating the fraction of lost data,

the timestamp of the last received sender report (tLSR) for that stream and the time elapsed in between

receiving the last sender report and sending the receiver report (tDLSR). Knowing the arrival time (t)

of the RTCP packet the sender can calculate the round trip time (�) as follows:

� = t� tDLSR � tLSR (2)

This calculation requires no synchronization between the clocks of the sender and receiver and is

5

therefore rather accurate. With the LDA algorithm, we estimate the propagation delay as the small-

est measured � .

In addition, we enhanced RTP with the ability to estimate the bottleneck bandwidth of a con-

nection based on the packet pair approach described by Bolot [2]. The essential idea behind this

approach is: If two packets can be caused to travel together such that they are queued as a pair

at the bottleneck, with no packets intervening between them, then the inter-packet spacing will be

proportional to the time required for the bottleneck router to process the second packet of the pair.

We added to the RTCP packets an application defined part including the source sequence num-

ber, the sequence number (SEQ) of a data packet that will start a stream of probe packets and the

number (n) of probe packets that will be sent. Then, n data packets starting with packet numbered

SEQ are sent at the access speed of the end system. At the receiver site, the bottleneck bandwidth

(b) is calculated as:

b =
probe packet size

gap between 2 probe packets
Note, that we are using data packets as probe packets and therefore the additional bandwidth re-

quired for the bottleneck probing is restricted to the increased size of the RTCP packets. Sending

data packets as probe packets is appropriate when transmitting video streams as one can send a few

packets belonging to the same video frame together without considerably altering the traffic char-

acteristics. Also video packets tend to be large which increases their possibility of being buffered

at the routers. For the case of audio streams with small packets and stringent timing requirements

another solution might need to be considered.

To estimate the average bottleneck bandwidth we need to further filter out incorrect estimates.

We rely on an approach similar to that used in the BPROBE tool [6], namely clustering similar esti-

mates into intervals, and choosing the average of the interval with the highest number of estimates.

The estimated value is then sent back to the sender with the next receiver report.

Obviously, this approach has lots of drawbacks. We do not include the time between the trans-

mission of two probe packets. But, as we send the packets at the sender’s network access speed

which in our case was 10 Mb/s we can usually ignore this time. Also, we do not consider packet

drops or competing traffic. However, testing this approach on different Internet connections we

achieved results comparable to those estimated by a more complicated tool such as the PATHCHAR1

tool by LBL. Still, we need to further refine the estimates filtering method and do more measure-

ments.

3.2 Dynamical Determination of the Additive Increase Rate (AIR)

The appropriate value to use for AIR depends largely on the bandwidth share a connection could uti-

lize. For example, consider the case of a 1 Mb/s link shared between 2 connections. An ideal shar-
1A tool for estimating the loss, delay and bandwidth characteristics of an Internet path. The tool is freely available

from ftp://ftp.ee.lbl.gov/pathchar/

6

ing would be if each connection received 500 kb/s. For this case, measurements [5] have shown that

an appropriate AIR value that allows small convergence periods and only small oscillations would

be 50 kb/s. This value would, however, be inappropriate if the link was being shared among 100

connections for example. With the LDA algorithm the additive increase rate (AIR) is set dynami-

cally based on the congestion state of the network. That is, AIR is set initially to a small value, and

is then increased during periods without losses. If losses are reported by the receivers, the senders

set the AIR back to the initial value. We have chosen an initial value of 10 kb/s, which is small

enough to be used even in narrowband ISDN connections.

If the received RTCP messages from receiver (i) indicate no losses the sender calculates an AIRi

for this receiver as follows:

AIRi = AIR �Bf

with Bf = 1� r

b

with AIR as the additive increase value calculated for the entire session, r the current transmission

rate, b the bottleneck bandwidth and Bf as a bandwidth factor that allows connections with a low

bandwidth share to use larger AIR values and thereby converge faster to their fair bandwidth share.

Further, AIRi is limited to the average rate increase (rincr) a TCP connection would utilize during

periods without losses in a time interval equivalent to the interval between the reception of two

RTCP messages (T). So for a round trip delay of � and a packet size of M , a TCP connection

would increase its transmission window each � by one packet size. Translated into transmission

rate increase, rincr would be

rincr =
M � (T

�
+ 1)

2
:

3.3 Congestion Control Mechanism

With each received RTCP packet from a member i the sender calculates a transmission rate (ri) it

would use if member i was the only member of the multicast session. ri is then saved into a data

base

If no losses were indicated the sender can recalculate AIRi as was described in 3.2 and ri is then

set to

ri = r + AIRi

with r as the transmission rate the sender is using for the entire session.

Otherwise, the sender reduces ri in a rather TCP similar fashion, i.e., proportional to the indi-

cated losses (l)

ri = r � (1� (l �Rf))

with Rf as the reduction factor. This factor determines the degree of the reaction of the sender to

losses. Higher values result in a faster reduction of the transmission rate but a more oscillatory be-

7

havior. Lower values, on the other hand, lead to more stable rate values but result in longer conver-

gence periods. The different simulations that we ran suggest that we get the best tradeoff between

convergence time and stability for a reduction factor between 2 and 5. Throughout this study we

use a factor of 3.

Additionally, to favor connections with a low bandwidth share, we define a lower loss threshold

below which a connections with lower transmission rate than an equivalent TCP connection can

increase its transmission rate. Equivalent TCP connection indicates here a TCP connection with the

same packet size, round trip delay as can be calculated using the timing information of the RTCP

packets and having the same losses.

Instead of reacting to each RTCP packet as some adaptation schemes suggest [5], the LDA al-

gorithm is based on so called adaptation points. At each adaptation point, the sender searches the

transmission rates data base for the minimum value (rmin). A rmin smaller than the current transmis-

sion rate (r) indicates that at least one member has reported losses. In this case, AIR is reinitialized

to the initial value of 10 kb/s. If rmin was higher than the current transmission rate (r), then r is set

to rmin and AIR is set to AIRi calculated for the member for which rmin was determined for.

We have used a period of 5 seconds between two adaptation points which is also the average

value between generating two RTCP packets at the same source. As the time between two RTCP

packets might actually be larger than 5 seconds, choosing this fixed value has the disadvantage that

the adaptation decision might be taken based on the reports of only a subset of the session members

and not all of them. However, the other alternative would be to wait for the reports from all members

before adapting. While this might work for small groups, for larger groups the interval between two

sent RTCP packets increases and thereby the adaptation decision will be taken less frequently and,

thus, be less effective.

4 Performance of the Loss-Delay Based Adjustment Algorithm

When designing an adaptive control scheme, following goals need to be considered:

� the scheme should result in a low packet loss ratio,

� achieve high overall bandwidth utilization,

� fairly distribute bandwidth between competing connections,

� and scale for large multicast groups.

In this section, we investigate the performance of the LDA algorithm with regards to those different

requirements using both simulations as well as measurements on a real network.

8

RouterRouter

Receiver 1
Sender 1

Sender 2

Sender 3

Sender 4

Receiver 2

Receiver 3

Receiver 4

 b

τ

Figure 1: LDA performance testing topology

4.1 Fairness and Convergence of the LDA Algorithm

As a first performance test of the LDA algorithm, we simulated the topology depicted in Fig. 1.

The model consists of 4 connections sharing a bottleneck router. All connections deploy the LDA

algorithm and are persistent sources. That is, they always have data to send with the maximum al-

lowed rate. They all have the same round trip time (�) and are similar in their requirements and

characteristics. The router is a random early drop (RED) gateway as was proposed by Floyd and

Jacobson [8]. A RED gateway detects incipient congestion by computing the average queue size.

When the average queue size exceeds a preset minimum threshold the router drops each incoming

packet with some probability. Exceeding a second maximum threshold leads to dropping all arriv-

ing packets. This approach not only keeps the average queue length low but ensures fairness and

avoids synchronization effects. Based on results achieved in [9] the minimum drop threshold was

set to 0.5 of the routers buffer and the maximum one to 0.95 of the routers buffer. In our simulations

we set the maximum queuing delay to 0.1 seconds and the bandwidth (b) of the bottleneck router

to 1 and 10 Mb/s. The packet size is set to 1 kbyte which, is a typical video packet size.

In the first set of simulations, we looked at the utilization, losses and fairness of the LDA algo-

rithm with all connections having the same round trip time and different starting times. The band-

width distribution and loss figures shown in Fig. 2 and 3 reveal that after a convergence period the

four connections received equal bandwidth shares with average losses between 2% and 10%. The

utilization was around 95% in all measurements. Note that the convergence period for the simula-

tions with bottleneck rate of 10 Mb/s, see Figs. 2(a) and 2(b), might extend over more than 300 sec-

onds. This, however, depends on the value of the chosen reduction factor (Rf). We have used anRf

of 3. We could have achieved shorter convergence periods using higher values of Rf . This would,

however, have lead to a more oscillatory adaptation behavior which is inappropriate for adaptive

video as it would result in a lower perceived quality due to the rapidly changing video quality.

9

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000
R

at
e

(k
b/

s)
Time (sec)

Sender1
Sender2
Sender3
Sender4

(a) � = 1 ms, b=10 Mb/s

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time (sec)

Sender1
Sender2
Sender3
Sender4

(b) � = 100 ms, b=10 Mb/s

0

200

400

600

800

1000

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time (sec)

Sender1
Sender2
Sender3
Sender4

(c) � = 1 ms, b=1 Mb/s

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000

R
at

e
(k

b/
s)

Time (sec)

Sender1
Sender2
Sender3
Sender4

(d) � = 100 ms, b=1 Mb/s

Figure 2: Rate of LDA connections with round trip time (�) and link bandwidth (b)

4.2 Interaction of TCP and LDA Traffic

The simulations run in Sec. 4.1 showed that the LDA algorithm achieves a rather fair bandwidth

distribution among similar connections. In this section, we investigate the fairness of the LDA al-

gorithm towards other adaptive traffic such as TCP. As a simulation topology, we use the topology

depicted in Fig. 1 but with one of the senders replaced by a TCP sender. We investigate the band-

width distribution achieved for the case of a bottleneck rate of 10 Mb/s and different round trip

times.

The bandwidth distribution results depicted in Fig. 4 show that for the case of (� = 1ms) the

TCP connection receives the same bandwidth share as the LDA connections. For (� = 100ms)

the TCP connection receives nearly 1.4 Mb/s which is around half of its fair share which we would

expect in this case to be 2.5 Mb/s. For the TCP connection with a packet size of 1 kbyte, a round trip

time of 0.1 seconds to reach a bandwidth share of 2.5 Mb/s we would need to maintain an average

loss rate of less than 0.16%. Actually, as we should also consider the queuing delay the loss value is

even smaller. However, the RTCP packets only include a field of 8 bits for the loss value. That is, the

minimum loss value that can be reported is around 0.4%. With such a loss value a TCP connection

would utilize for the delay and packet size at hand a bandwidth share of around 1.6 Mb/s which is

only slightly more than the value depicted in Fig. 4. To achieve optimal fair bandwidth distribution

with the TCP connection getting exactly the same share as the LDA connections we would need to

10

0.01

0.1

1

10

100

100 200 300 400 500 600 700 800 900 1000
L

os
s

(%
)

Time (sec)

Sender1
Sender2
Sender3
Sender4

(a) � = 1 ms, b=10 Mb/s

0.01

0.1

1

10

100

200 300 400 500 600 700 800 900 1000

L
os

s
(%

)

Time (sec)

Sender1
Sender2
Sender3
Sender4

(b) � = 100 ms, b=10 Mb/s

0.01

0.1

1

10

100

100 200 300 400 500 600 700 800 900 1000

L
os

s
(%

)

Time (sec)

Sender1
Sender2
Sender3
Sender4

(c) � = 1 ms, b=1 Mb/s

0.01

0.1

1

10

100

100 200 300 400 500 600 700 800 900 1000

L
os

s
(%

)

Time (sec)

Sender1
Sender2
Sender3
Sender4

(d) � = 100 ms, b=1 Mb/s

Figure 3: Loss of LDA connections with round trip time (�) and link bandwidth (b)

enhance RTCP to carry finer granulated loss values. Another approach would be to use the value

of the cumulative number of lost packets (lcum) included in the RTCP packets instead of the loss

fraction. This value indicates the number of packets lost since the beginning of reception. While

this leads to more accurate loss indications it also increases the complexity of the scheme as the

sender needs to maintain more state information to actually benefit from lcum.

4.3 Scalability of the LDA Algorithm

To investigate the behavior of the LDA algorithm when used in multicast groups of different sizes

we tested a simple case of a sender transmitting data to n receivers with n set to 4, 20 and 320. As

Fig. 5 shows the bottleneck router is shared between the sender and an on-off connection that was

added to the test topology in order to introduce losses at the router.

We can notice, that with a session of 320 members the reactions to the sudden loss peaks are

larger than those for smaller groups. The reason for this is related to the RTCP scaling algorithm.

To avoid the increase in control traffic with the increase in group size the RTCP traffic is restricted

to 5% of the bandwidth utilized by the session. With 320 members in the session the interval be-

tween two successive RTCP messages is larger than the adaptation interval of 5 seconds that we

are using. As the reported losses in an RTCP message is calculated over the entire time between

the sending of two RTCP packets the effects of a loss peak will be noticed over several adaptation

11

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000
R

at
e

(k
b/

s)
Time (sec)

Sender1
Sender2
Sender3

TCP Sender

(a) � = 1 ms, b=10 Mb/s

0

2000

4000

6000

8000

10000

0 500 1000 1500 2000

R
at

e
(k

b/
s)

Time (sec)

Sender1
Sender2
Sender3

TCP Sender

(b) � = 100 ms, b=10 Mb/s

Figure 4: Bandwidth of LDA connections with round trip time (�) and link bandwidth (b)

Router Router

Receiver 1

Receiver n

Adaptive Sender

Bursty Sender

10 msec

 1 Mb/s

(a) Test Topology 0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 9001000

R
at

e
(K

b/
s)

Time (sec)

4 Senders
20 Senders

340 Senders

(b) Transmission rate

Figure 5: Testing the scalability of the LDA algorithm

points even though the congestion has actually cleared. As an example, consider the case depicted

in Fig. 6. Between the first two adaptation points we measure a loss rate of 10% over a time pe-

riod of say 2 seconds. Assume, that the RTCP intervals of two members are 10 seconds long and

are overlapping with one RTCP message arriving before the second adaptation point and the RTCP

message of the other member arriving only before the third adaptation point. As the loss is aver-

aged over the entire 10 seconds the first member would report a loss of 2%. Thereupon, the sender

would decrease its transmission rate and we would get a loss rate of 0% again. However, the sec-

ond member will still report a loss of 2% even though no losses can be measured anymore. One

approach that avoids this problem would be for the receivers to inform the senders about the losses

seen in the last 5 seconds or so and not the average loss measured between the sending of two RTCP

packets. This problem is being discussed in the IETF for a future version of RTP

4.4 Measurement Based Testing

To verify the performance of the LDA algorithm we ran a simple experiment over our local net-

work. We connected two workstations over a router with a limited capacity of 1 Mb/s. From the

12

Loss

Adaptation Points

0% 10% 0%

RTCP 1

RTCP 2

Time 0 5 10

Figure 6: Timeline of adaptation points and RTCP report intervals

first station we sent two JPEG video streams using the NEVIT video tool [22] which we enhanced

with the LDA algorithm. In addition, we started an FTP transfer from the first station to the second

in parallel to the video streams.

0

200

400

600

800

1000

1200

1400

0 200 400 600 800100012001400160018002000

R
at

e
(K

b/
s)

Time (sec)

Receiver1
Receiver2

TCP_Receiver

(a) Bandwidth Distribution

0

20

40

60

80

100

0 200 400 600 800100012001400160018002000

L
os

s
(%

)

Time (sec)

Receiver1
Receiver2

(b) Losses

Figure 7: Measurement of bandwidth distribution and losses for the interaction of TCP and the LDA
algorithm

The first 300 seconds of our measurements resemble to some extent a typical situation we might

encounter in the Internet. Both video streams were sent during this period without using the adap-

tation scheme. This results in the starvation of competing TCP connections and the UDP connec-

tions suffering high losses (around 50%). In the next 900 seconds both UDP connections adapt their

transmission rate to the loss level. This results in a rather fair bandwidth distribution of around 300 kb/s

for both the adaptive connections as well as the TCP connection. Additionally, the losses of the

UDP connections drop to around 7%. In the final part of the measurement, one UDP connection

stops sending data. We notice that both the other UDP connection and the TCP connection increase

their bandwidth share up to around 500 kb/s.

5 Summary and Future Work

In this paper, we presented a new approach (LDA) for dynamically adjusting the sending rate of

applications to the congestion level observed in the network. The various simulations and mea-

surements we made suggest the efficiency of the LDA algorithm in utilizing network resources and

13

reducing losses. Also, the scheme is shown to be fair towards TCP traffic and flexible in its estima-

tion of the appropriate adaptation parameters to use.

To address the problem of adaptation in heterogeneous environments, we are currently investi-

gating a method for integrating sender based adaptation schemes such as the LDA algorithm with

layered transmission methods. With such an approach, the sender determines the number of layers

to use and the transmission rate to use for each layer dynamically based on the feedback information

sent by the receivers [20].

Additionally, we are currently testing the efficiency of the bottleneck probing method we intro-

duced in the LDA algorithm as well as the acceptability of adaptive video traffic from the users’

point of view.

A major point that we did not address in this paper is how to enforce end systems to use adaptive

QoS control schemes. In an environment in which most of the users behave in a rather social way

and adapt their transmission rates to the congestion state of the network, employing non-adaptive

transmission behavior would actually result in a better bandwidth share for the offending sender.As

a solution to this problem we could imagine a scenario in which the end systems deploy the LDA

algorithm and the routers identify non-congestion controlled connections [9] and throttle them.

6 Acknowledgments

The RTP/RTCP simulation models were mainly implemented by Timur Friedman and improved by

Frank Emanuel. The comments of Adam Wolisz are gratefully acknowledged and were the basis

for various aspects of this work.

References

[1] S. Blake. Some issues and applications of packet marking for differentiated services. Internet Draft,
Internet Engineering Task Force, Dec. 1997. Work in progress.

[2] J.-C. Bolot. End-to-end packet delay and loss behavior in the Internet. In D. P. Sidhu, editor, SIG-
COMM Symposium on Communications Architectures and Protocols, pages 289–298, San Francisco,
California, Sept. 1993. ACM. also in Computer Communication Review 23 (4), Oct. 1992.

[3] J.-C. Bolot, T. Turletti, and I. Wakeman. Scalable feedback control for multicast video distribution in
the internet. In SIGCOMM Symposium on Communications Architectures and Protocols, pages 58–67,
London, England, Aug. 1994. ACM.

[4] R. Braden, L. Zhang, and S. Berson. Resource reservation protocol (RSVP) – version 1 functional
specification. Internet Draft, Internet Engineering Task Force, Nov. 1995. Work in progress.

[5] I. Busse, B. Deffner, and H. Schulzrinne. Dynamic QoS control of multimedia applications based on
RTP. Computer Communications, 19(1):49–58, Jan. 1996.

[6] R. L. Carter and M. E. Crovella. Measuring bottleneck link speed in packet-switched networks. Tech-
nical Report BU-CS-96006, Computer Science Departement, Boston University, Mar. 1996.

[7] C. Diot, C. Huitema, and T. Turletti. Multimedia application should be adaptive. In HPCS, Mystic,
Connecticut, aug 1995.

14

[8] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, Aug. 1993.

[9] S. Floyd and F. Kevin. Router mechanisms to support end-to-end congestion control. Technical report,
Feb. 1997.

[10] U. Horn and B. Girod. Scalable video coding for the internet,. In 8th Joint European Networking
Conference, Edinburgh, England, May 1997.

[11] S. Jacobs and A. Eleftheriadis. Providing video services over networks without quality of service guar-
antees. In RTMW’96, Sophia Antipolis, France, Oct. 1996.

[12] V. Jacobson. Congestion avoidance and control. ACM Computer Communication Review, 18(4):314–
329, Aug. 1988. Proceedings of the Sigcomm ’88 Symposium in Stanford, CA, August, 1988.

[13] I. Kouvelas, V. Hardman, and A. Watson. Lip synchronization for use over the internet: Analysis and
implementation. In GLOBECOM’96, London, UK, Nov. 1996.

[14] J. Mahdavi and S. Floyd. TCP-friendly unicast rate-based flow control, June 1997. Technical note,
available from http://ftp.ee.lbl.gov/floyd/papers.html.

[15] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior of the TCP congestion avoid-
ance algorithm. IEEE Network, 11(6), November/December 1997.

[16] S. McCanne and V. Jacobson. vic: A flexible framework for packet video. In Proc. of ACM Multimedia
’95, Nov. 1995.

[17] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven layered multicast. In SIGCOMM Sympo-
sium on Communications Architectures and Protocols, Palo Alto, California, Aug. 1996.

[18] T. Ott, J. Kemperman, and M. Mathis. Window size behavior in TCP/IP with constant loss probability.
In The Fourth IEEE Workshop on the Architecture and Implementation of Hi gh Performance Commu-
nication Systems (HPCS’97), Chalkidiki, Greece, June 1997.

[19] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: a transport protocol for real-time ap-
plications. Technical Report RFC 1889, Internet Engineering Task Force, Jan. 1996.

[20] D. Sisalem and F. Emanuel. QoS control using adaptive layered data transmission. Technical report,
June 1998. To Appear in IEEE Multimedia Systems’98, Austin, Texas, USA.

[21] D. Sisalem, H. Schulzrinne, and F. Emanuel. The direct adjustment algorithm: A TCP-
friendly adaptation scheme. Technical report, GMD-FOKUS, Aug. 1997. Available from
http://www.fokus.gmd.de/usr/sisalem.

[22] D. Sisalem, H. Schulzrinne, and C. Sieckmeyer. The network video terminal. In HPDC Focus Work-
shop on Multimedia and Collaborative Environments (Fifth IEEE International Symposium on High
Performance Distributed Computing), Syracuse, New York, Aug. 1996. IEEE Computer Society.

[23] K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet traffic patterns and characteristics. IEEE
Network, 11(6):–, November/December 1997.

[24] T. Turletti, S. F. Prisis, and J.-C. Bolot. Experiments with a layered transmission scheme over the
Internet. Rapport de recherche 3296, INRIA, Nov. 1997.

[25] L. Vicisano, L. Rizzo, and J. Crowcroft. TCP-like congestion control for layered multicast data transfer.
In INFOCOM’98, San Francisco, USA, Mar. 1998.

[26] F. Wilson, I. Wakeman, and W. Smith. Quality of service parameters for commercial application of
video telephony. In Human Factors in Telecommunication Symposium, Darmstadt, Germany, Mar.
1993.

[27] L. Wu, R. Sharma, and B. Smith. Thin streams: An architecture for multicating layered video. In The
7th International Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV 97), St. Louis, USA, May 1997.

15

