INFOCOM 2000 1

Integrating Packet FEC into Adaptive Voice Playout
Buffer Algorithms on the Internet

Jonathan Rosenberg, Lili Qiu, Henning Schulzrinne
dynamicsoft, Cornell University, Columbia University
jdrosen@dynamicsoft.com, Igiu@cs.cornell.edu, hgs@cs.columbia.edu

Abstract—Transport of real-time voice traffic on the Internet is difficult ~ mation along with the media stream, the purpose of which is to
due to packet loss and jitter. Packet loss is handled primarily through a gid in packet recovery.
variety of different forward error correction (FEC) algorithms and local
repair at the receiver. Jitter is compensated for by means of adaptive play-
out buffer algorithms at the receiver. Traditionally, these two mechanisms Compensating for jitter imccomplished primarily tlmugh

have been investigated in isolation. In this paper, we show the interactions ; ;
between adaptive playout buffer algorithms and FEC, and demonstrate the adaptive playout buffer algorithms [16] [17] [18] [19]. (also

need for coupling. We propose a number of novel playout buffer algorithms KNOWn as adaptive playout delay algorithms). These algorithms
which provide this coupling, and demonstrate their effectiveness through generally work by taking some measurements on the delays ex-

simulations based on both network models and real network traces. perienced by packets and updating the playout delay on a talk-
Keywords—Packetvoice, IP telephony, packet FEC, playout buffer adap- spurt by talkspurt basis
tation ’

The study of FEC for loss recovery, and playout buffer adap-
tation for jitter compensation, have meeded independently.

Transport of real-time voice on the Internet is an increasingijowever, we have observed that there is a coupling between the
important application. Internet telephony (the provision of teléwo. All of the FEC mechanisms send some redundant infor-
phony services using the Internet) has emerged as an importaation which is based on previously transmitted packets. Wait-
service, poised to replace circuit-switched telephony serviceiitg for the redundant information results in a delay penalty, and
the future. However, the currently available, best effort Inteconsequently an increase in size of the playout buffers. When
net service model was never engineered to handle voice traffiefwork loss rates are high, accepting the delay penalty for in-
since it provides variable loss rates and delays. A numberafased recovery capabilities is appropriate. However, when
studies have attempted to measure these parameters [1], [2],iBfwork loss rates are low, the FEC may not provide useful in-
The results indicate substantial variability (depending a lot darmation, and increasing the playout buffer sizing to wait for it
the locations of the senders and receivers), with typical packenhot appropriate. The result is that playout buffer adaptation
loss rates of 0 to 20 percent and one way delays from 5 msstwuld depend oboth FEC and network loss conditiorasd
500 ms. Unfortunately, when packet loss rates exceed 10% aetwork jitter. However, existing tools that utilize FEC (such as
one way delays exceed 150 ms, speecHitpuzan be quite poor. rat from UCL andfreephondrom INRIA) usedecoupledadap-

Efforts are underway to address these problems at the netwi@tion algorithms. These algorithms compute some playout de-
layer, using differentiated services [4] and Integrated Servidey as if FEC were absent, compute some delay needed to make
[5], [6]. However, we anticipate that many public and privatgse of FEC, and then combine these two delays together. These
internets will continue to provide best-effort delivery for a longecoupled algorithms may insert insufficient delay when net-
time. Therefore, compensation for loss and delay end-to-ewdrk loss probabilities are substantial, and too much delay when
using adaptive applications which adjust their encoding parathey are not, resulting in poor performance. We further observe
eters, such as bitrate, in response to network feedback on 1888} existing playout buffer adaptation algorithms generally aim
delay, and jitter, is an important problem. to minimize the network losses at the expense of delay. How-

Compensating for loss using end-to-end protocols and algy€r, some modern speech codecs can tolerate loss rates as high
rithms can be done using a number of mechanisms [7][8], i&s 5% and still work well. As such, it would be beneficial to be
cluding local repair (interpolation of missing data using the suble to tune these algorithms to achieve a target loss (possibly
rounding packets) and interleaving. There has been much f§n-zero) to meet the operating range of the codecs.
terest in the use of packet-level FEC for sending redundant in-
formation ahead of time to compensate for loss, based on parkn this paper, we explore these problems in more detail. In
ity codes, [9], [10], Reed Solomon codes [11], and redundagdction Il we demonstrate, through simple analysis, the need for
speech codecs [12][13] [14] [15]. Oftentimes, the term FEC i®upling packet loss and jitter into playout buffer adaptation. In
only applied to the traditional channel coding approaches, sugéction Ill we briefly review some existing playout buffer adap-
as parity and Reed Solomon codes. For purposes of this papgfon algorithms. In section IV, we present several new algo-
we define FEC as any mechanism which sends additional infathms which achieve the desired coupling and tuneability ob-

_ _ _ _ jectives. Section V shows the improvements offered by our al-

This paper appeared in the Proceedingle#E Infocom 2000Tel Aviv, Is-
rael, March 2000. This version corrects some fatting and ypographical er- 90Tithms through simulations. Section VI summarizes our work
rors. and discusses future directions.

I. INTRODUCTION

INFOCOM 2000 2

Il. THE COUPLING EFFECT when the playout delay i® is
K-1
The main role of playout buffer adaptation algorithms is to .
=1- 1—(1—=p)P[n; A<D 2
trade loss for delay. These algorithms choose a playout delay br]1;[0((1=p)Plni +jA < D]) @)

D for each talkspurt, wher® is defined as the difference be-
tween playout time and generation time for all packets in a talk-Note the more complex dependencysfon the network loss
spurt (although some algorithms adjust the delay mid-talksp@febabilityp and the network delay distribution. The result
to compensate for errors in buffer sizing). Increasipgesults 1S that the choice o) is more complex, and will most likely
in a larger end-to-end delay, but decreases the fraction of Ig&Pend strongly op. Consider once more the basic playout
packets. The algorithms work by choosing a target “optimafdaptation target: to choose thg miniméhwhich results in the
operating point of loss and delay, and adjusting the playout dBaximum possibl@r. Whenp is zero, 1) need only be set to
lay to come as close to the optimal point as possible. If an &€ largest network delay possible. Howeverpascreases, the
gorithm chooses some deldy for a talkspurt, the probability value of D rapidly increases up to a maximum value(éf —
receiving it on time and playing it out to the application (which)A Plus the largest delay possible. Note thatow plays a
we denote the playout probabilipy;) is: crucial role in choosing? once FEC is enabled. A decoupled
algorithm might choosé to always be K — 1)A + maxn;,
which results in overly large playout delays when network losses
are low. A different decoupled algorithm might choaBeto
always be some quantile of;. This algorithm will result in
wherep is the loss probability for a packet, anglis the delay of overly small playout delays when network losses are high. As
the packet (measured as the difference between arrival time gadh, coupling loss and delay into buffer adaptation is critical
generation time), given the packet arrives. We use the expris-proper loss and delay tradeoffs over a wide range of network
sion P[X] to denote the probability of eveld. This expression conditions.
assumes that the network losses and delays are independent rafhe astute reader might observe that if loss rates are low, the
dom variables. sender should not be sending FEC in the firatpl Such sender
The dependency of the playout probability on the network adaptation might eliminate the need for coupling FEC to playout
loss probabilities and the network delay distribution is a sinfuffer adaptation at receivers. This may be true for unicast, but
ple multiplicative one. The result is that many playout adapataot for multicast. In multicast, it is likely that some receivers
tion strategies can completely ignore the loss pateln par- Will experience more loss than others. The sender may choose
ticular, any algorithm which tries to choose the minimupn to include FEC in order to improve reception tjtyafor lossy
which achieves the highest possiblg need not consides at receivers. In this case, receivers experiencing low loss will want
all. These algorithms need only find the small&sfor which to adapt in order to reduce their playout delays, since the FEC
P[n; < D] = 1. All of the algorithms described in [18], [19] IS not needed. Even in the unicast case, receiver adaptation is
fall into this category. useful when the sender is incapable or unwilling of performing

The dependency gf; on the delay distribution and loss prc)b_adaptation. Receiver adaptation is also useful when feedback is
P Y Ok y gt sent frequently.

abilities becomes more complex when FEC is introduced. TH
result is that the choice aP is more strongly influenced by. 1. EXISTING PLAYOUT BUFFER ALGORITHMS

Consider the FEC mechanisms described by Bolot and Garcia)

[14]. These algorithms use multiple low-bitrate versions of a Much_work has gone ,On in the area O.f playout b_uffers algo-
packet, each version beingggiybacked on a subsequent packe'E'.tth since the early 70’s. Recent work in addressing the prob-

: ; . lem specifically for the Internet is found in [18] and [19]; our
A pack | | h I'6M SP y
packet is played out so long as a receiver gets the orlglnaWork builds on theirs, so we review it briefly.

any one of theék’ — 1 redundant versions of the packet on time. s I ; q g laorith Each
If packets are lost independently with probabilitythe prob- Ramiee et. al. [18] propose four adaptation algorithms. Eac
algorithm computes, in some fashion, an estimate of the mean

ility of playi k i hat th iver i A
ability of playing out a packetyy), given that the receiver is network delay seen up to the arrival of thé packetd;, and a

willing to wait for [< K of the packets, i$ — p'. e o Gir &
g =5 P P variation measure in this delay, The playout delay is adjusted

This says nothing, however, about how longeagiver must 4 yhe heginning of each talkspurt.lfis the generation time of
wait for thesd packets. Computing the probability under a deé packet which is the first in a talkspurt, the playout timef

lay constraint will require us to factor in the probabilitythatthethe first packet is computed @s = {; + d; + ué;, with u1 = 4.

packets ar_rive in time. Assume that packets are generatgd atthe, subsequent packgin the same talkspurt, its playout time
sender at intervals aA. A playout delay ofD at the receiver is computed ag; = p; +t; —t;.

T sorey o0t gt i a ruing cstimtedfans

if the original ket arri i : i€ dundant kupdated forach packet. All four computé in the same fash-
ginal packet arrives on time, or if a redundant packe . .

arrives in time. To be in time, the redundant packet's netwol®n: % = a®i—1 + (1 —a) ‘di - n‘ wheren; is the network

delay, plus the amount of time between its generation and ielay of the:!” packet. The four algorithms thus differ only in

original packet generation, must be less than the playout delgeir computation of;:

More formally, if we assume network delays are independeBxp-Avg: This algorithm estimates the mean delay through an

from packet to packet, the probability of playing out a packeiponentially weighted average, much like the estimation of the

pr = (1—p)P[n; < D] 1)

INFOCOM 2000 3

variance above. In particulal; = ad;_; + (1 — o)n;, with times, and the generation time. If a packet neither arrives nor
a = 0.998002. can be recovered, the virtual delay is undefined.

Fast Exp-Avg: This algorithm is similar to the first, except it Any existing playout buffer adaptation algorithm is thén
adapts more quickly to increases in delays by using a smallealizedby using the virtual delays to drive it instead of network

weighting factor as delays increase: delays. In most cases, it is not necessary to derive an expression
. A for dy to do this. A receiver justimplements the FEC algorithm
J = { Pdi_x+ (1 =B)ni = ni >diy as it normally would. The instant it recovers a packet, the vir-
! adi1+(1—a)ny + ny <dj_q tual delay of the packet is computed as the difference in time

between transmission of the packet and the current time. If a
For the algorithm to respond quickly to increasing del#ys; packet is correctly received, the virtual delay is the network de-
. [18] useds = 0.75. lay of the packet, unless it is recovered before it is received. The
Min-Delays: This algorithm attempts to be more aggressive irtual delays are then used in the adaptation algorithm instead
minimizing delays. It uses the minimum delay of all packeigf the network delays.
received in the current talkspurt (I8} be this set of delays) as |t is important to note that implementing the virtualized ver-
the average delay, i.€; = minjes, (1) sion of the algorithms is a natural consequence of a layered im-
Spk-Delay: It has been observed [1] that network delays ofslementation of FEC and playout buffer adaptation, where the
ten exhibitspikes which are sharp increases in delay followedecovery using FEC is done before the playout buffer adapta-
by nearly simultaneous reception of a large number of padien. The playout buffer adaptation component cannot differen-
ets. Spk-Delaycontains a spike detection algorithm which findtiate recovered packets from received packets. In this case, it
these spikes. During a spike, the delay estimate tracks the delaitscompute the arrival time of a packet as either its recovery
closely, and after a spike, an exponential weighted averagdime or arrival time, whichever is lower. The result is that the
used. We avoid a detailed description here, referring the reagtayout buffer adaptation algorithm will unknowingly compute
to [18] for details. virtual delays instead of real delays, and thus become virtual.

In [19], Moon et. al. propose an algorithm similar $pk-) .

Delay, which we callWindow This algorithm also looks for A-1 Supporting Target Loss Probabilities
spikes. During spike mode, the delay of the first packet in alt is the job of the playout adaptation algorithm to trade loss
talkspurt is used as the playout delay. In normal (non-spikey delay. For the algorithms in [18], this tradeoff is controlled
mode, the playout delay is chosen by finding the delay whigly the variation multipliey:, set to a large static value (here, 4).
represents th¢” quantile among the last packets received by The result are algorithms which target near zero loss. To be able
the receiver. This determination is easily made by incrementattytarget non-zero losses, we must make this parameter adaptive.
updating a histogram of the delays among thedaptckets. In Our algorithm assumes a target vajyefor the playout prob-

their simulations, a value of 10,000 is used dar ability pr. Unfortunately, you can’t always get what you want,
and this target may be unachievable given the current network
IV. NEW PLAYOUT BUFFERALGORITHMS loss rate. Therefore, we compute a current achievable target loss

In this section, we present our new algorithms which are cé@tepc:
pable of coupling and meeting non-zero loss targets.
pc = max(pr, f(p)), 3)

where f(p) is the achievable minimum application loss rate
Our first contribution are a class of algorithms we caft given a network loss rate of For Reed-Solomon FEC,
tual delayplayout adaptation algorithms. These algorithms are

all modifications of existing algorithms to allow them to com- — (n—1 i i

pensate for FEC. They are based on the following simple ob- flo)=p |1~ Z < i >(1 —p)'p 4)
servation. Without FEC, the probability of playing out a par- 1=k

ticular packet is given in Equation 1. With FEC, we can germd for the redundant codegip) = p~.

eralize this Simple formulation. A packet is played out if it ei- We maintain a running estimate of the network loss fatét
ther arrives before its playout time, or is recovered before Hge end of each talkspurf, is used to computp via Eq. 3.
playout time. Ifpy is the probability that a packet neither arThen, the actual application loss ratgis measured. The vari-

rives nor is recovered, andy is the difference between theation multipliery: from [18] is computed for the next talkspurt
time a packet either arrives or is recovered (given it arrives §ased on the following algorithm:

is recovered) and the time it was sent, the playout probability.}s
pr = (1 — pn)Pldy < D] . This formulation is identical to " (P¢ < PL = 0) A (1 < fimax = dinc)
the one in Equation 1, but with the simple random variabjes (p ot dines
andd) replaced by the more complex ongs;(anddy-). We can Ise if pc > b+ O) A (1 2 prmin + daec)
therefore use any existing playout adaptation algorithms whicPu 1= dec;
compute the playout delap as some function of the packete S€
delays by substitutingy- for d in the computation. Formally: ~ # < #
Definition 1: The virtual delaydy of a packet is the differ- 6 is athreshold which introduces hysterisis into the algorithm.
ence in time between the earlier of the arrival and recovepy,i, andymax are the minimum and maximum allowed values

A. Virtual Delay Algorithms

INFOCOM 2000 4

for p. dine @nddgec represent the step size for the coefficiensmaller than the first packet is quantized/ic- 1 and 0, re-

In our simulations, we usetnin = 0, pmax = 8, 8 = 0.05, spectively. We maintain a probability mass function of virtual
dine = 0.4 anddg.c = 0.2. We found performance was bestelays in an array. At the end of the talkspurt, the probability
when the rate of increase jm (d;,c) Was larger than the ratedistribution function is computed by summing this array. We
of decreased(..). We believe this is because it allows the algahen perform a search over tlieentries in the distribution array
rithm to act more conservatively - rapidly increasing delays (amtd computeD,,. This search i€©)(1) (with a constant factof).
thus reducing losses) but gradually reducing them. As such,

short lived decreases in jitter or loss won’t cause the algoritfsn Model-Based “Analytical” Playout Adaptation Algorithm

to undershoot the needed delay. , The analytical algorithm works by attempting to model the
This small enhancement can be applied to all of the algpapact of network loss and delay on the application playout

rithms in [18]. When coupled with virtualization, we call theyropapility and the end to end delay. It then uses this model
resulting algorithmsidaptively virtual to choose a playout deldy.

Our model attempts to compuge, the probability of playing
) . out a packet to the application, whether it arrived in time or was
Ideally, an optimal playout delay algorithm would work asecovered in time, as a function of the network loss probability
follows. It would work offline, and know the packet delays ang the network delay distribution and the playout dely We
losses ahead of time. It would choose a playout delay whigisyme packet losses are independent. The model assumes Reed
would meet an arbitrarily chosen criteria. Unfortunately, thisolomon codes, where—k FEC packets proteétdata packets.
algorithm is non-causal. As with many non-causal filters, th}§ny k of the n packets in a block must be received to recover
algorithm can be made causal by delaying the output of the algga remaining: — k. We also assume thepackets in the block
rithm for a talkspurt. In other words, the optimal playout delayre received in order. There is not sufficient space in the paper

for the previous talkspurt can be used as a playout delay for fa&jerive this expression; details can be found in [20]. The final
next talkspurt. More generally, we can use any function of th&pression turns out to be:

optimal playout delays from previous talkspurts as the playout
delay of the current talkspurt. For reasons of simplicity, we con-
sidered exponentially weighted averages of previous talkspurts. pr = (1—p)*P[ln; < D]+

At the end of each talkspurt, we compute the optimaypla
delay D, for that talkspurt. We then choose the playout delay (1-(1-=p)P: < D]
D,, for the next talkspurt a®,, = pDy_1+ (1 — p)Dope . We .
chosep = 0.25, which allowed the algorithm to adapt quickly.
We also observed that in cases where the target loss is quite low Z (5(g = k) = 5(9)) P2 (9)]
(less than 2%), we needed to add a variation multiplier, so that
the actual playout delap,.: is Dyt = Dy + put, Wherev,, k
is computed in the same fashion as [18], except that it is driven + > 8(n—j+1)P[Xa(n)] (5)
by D,. We used the adaptive algorithm described in Section j=1
IV-A.1 to computey, but with ginmax = 6, which we found to
give slightly better results. where:

We define the optimal playout delay for a talkspurt as the min- g-1
imal playout delay that achieves a specified application loss rate. P[Xs(g)] Z <g - 1> (1—p)pr=i=r
For a particular choice of playout deldy, the fraction of pack-
ets played out are all of those that arrive with a virtual delay S(j) = P <D—jA] (6)
less than the playout delay’}, < D), divided by the total num- -
ber of data packets sent/. Interestingly, the optimal playout \what we desire, in fact, is the inverse of this function: to
delay can only be equal to one of the values/gt For any de- computeD as a function ofyz and the delay and loss. Since
lays between two adjace;, the number of packets for whichthe function cannot be inverted in closed form, we obt&in
Vp > D remains the same, but the delay increases. This megjstrying various values, computing; based on those values

B. “Previous Optimal” Algorithm

o =

g=k+1

D,, equals the minimunk’}, over j which satisfies: using Eq. 5, and comparing; against the desired value. This is
N effectively a search. In fact, since the function is monotonically
1 ; j 1 increasing withD, we perform a binary search. At the end of
— IV <VE) < (1- ' : ')
N Zz_; (Vo b)) < —pr) each talkspurt, the current target loss patds computed, using

equation 3. We start with an arbitrary value for and compute
I() is the indicator function, equal to 1 when its argument is. from above. If the result is beloy by more than some
true, O when false. threshold (we used 5%), a higher valueldfs tried, and if the

ComputingD,, isO(N). To reduce the complexity, we quan-result is above, a lower value is tried.

tize the virtual delays USing alinear quantizer V\ﬁﬂsteps The The Computation ijR from Eq 5 requires an expression
guantizer uses a step size of 5ms, and setsg—t%equantized for the network delay distributio®(n; < X) for a range of
value to the virtual delay of the first packet received for th&, and an estimate gf. We measure the loss probabiljiyby
talkspurt. Any packet with a delay more than 400 ms larger oomputing the percentage of lost packets in each talkspyrt (

INFOCOM 2000 5

and applying an exponential filter to average this value, yieldiirgthe trace = 0) to 1 (» = 1). We also ran simulations with
p=0.25p+ 0.75p. Gilbert loss, and observed similar results.

To compute the network delay distribution, we maintain the At the receiver, the plgout buffer algorithms were imple-
delays of the last 1000 packets in a queue. Each delay is firgtnted, and the FEC was used to recover lost packets when
guantized, using a linear quantizer with a step size of 5 ms gpaksible.
upper limit of 5s. The frequency afach delay is maintained
in a histogram. When a new packet arrives, the delay of tRe Coupled vs. Uncoupled
oldest packet is removed from the histogram, and the delay ofin this section, we compare uncoupled versions of the Exp-
the newest is added. The delay distribution is computed using\gy, Spk-Det and Window algorithms with our virtually adap-
cumulative sum of the frequencies, and is done only at the e versions of these algorithms. For brevity, we omit the sim-
of each talkspurt. ulation results of the fast exponential average and min-delay al-

gorithms, since according to our simulation results, these two al-
V. SIMULATIONS gorithms usually do not outperform the others. For the window
algorithm, we use a 1000 packet window instead of the 10,000

Th jective of imulations is two-fold: first, to demon . . :
€ objective of our simulations is two-fo acket widow used in [19], which we found to be too large to

strate that our new algorithms outperform the decoupled onB

second, to determine the performance of the new algorithAfiaPt adequately. , _ _
compared to each other. We use two uncoupled versions of these algorithms. The first

version is the original algorithm - no extra delay is added to
compensate for FEC. In the second version, we added 80 ms of
delay to the original output of each algorithm. This copesds
In our simulation model, the sender generates speech pagka’ — 1 packet intervals, enough teceive all the FEC for any
ets every 20ms. Each packet consists of an IP/UDP/RTP [3idcket in the absence of jitter.
header, totaling 40 bytes, in addition to 24 bytes @fesph. This The adaptively virtual versions of the algorithms operate with
is equivalent to a 9.6 kb/s speech codec. The speech is proteet@sks target of zero.
with a (5,3) Reed-Solomon code. This means that every threerigure 1 contains six graphs. The two at the top compare the
packets, two additional FEC packets are generated. As longhasformance of the uncouplé&kp-avgalgorithm with its adap-
the receiver gets any three of the five packets, the three megijaly virtual extension; the two in the middle compare the un-
packets are recovered. These two FEC packets are piggybacekgébledSpk-detilgorithm with its extension; the two at the bot-
on the first two data packets in the next block, so that the FEGdgn compare uncoupledindowalgorithm with its extension.
sent spaced apart. Recent results [22] have shown that spagiagh graph in the figure has three curves, corresponding to the
the FEC in this manner yields better performance. two uncoupled versions of the algorithm and the adaptively vir-
To model packet loss, we used both Bernoulliand Gilbert prasal extension. The left column shows the average application
cesses; studies have shown these to be reasonable models @ probability after FEC and playout buffer adaptatiba fz)
However, delay models, particularly those that capture correles. the network loss probabilify, varied by salting the &ces.
tion, are not easy to find. As a result, we based our simulatiofise right column shows the averagieacross all talkspurts vs.
on a network model which combines real measured traces the network loss probability. All plots use trace two between
the Internet with simulated losses. Our real traces are basedGmiumbia and UC Santa Cruz.
measurements taken in the September of 1997. We used thrde all three pairs of graphs, the results are the same. The orig-
traces. The first (“trace 1") is between a host at GMik#&s in inal version of the algorithm shows increasing application loss
Germany and a host at Columbia University in New York. Therobabilities with increasing network loss rate. This é&chuse
second (“trace 2") is between a host at UC Santa Cruz and the playout delay computed by the algorithmis not large enough
host at Columbia, and the third (“trace 3”) is between the hast make use of the FEC packets. The plots in the right column
in Santa Cruz and a host at the University of Massachusettsshow this as well. The original version of each algorithm has a
Amherst. To generate each trace, packets were sent betwemmstant playout delay as the network loss varies. For the origi-
the endpoints for 14 minutes, and the delay and lossamh nal versions of Exp-Avg and Spk-Det, the increase in application
packet was recorded. The trace gives us a real sample path dbas probability is linear with the network loss probability. This
end-to-end delay process. We used the algorithm describedsibecause the pyaut delay is not sufficiently large to allow the
[23] to remove clock skew from these traces. The average I¢4SC to be consistently used (80 ms is needed).
probabilities in the three &aces were @01, 0.057, and 0.026, When we add 80ms of delay to the output of the original
respectively. The average one way delays were 2ms, 6.4ahgorithms, the loss rates drop substantially. Now, there is suffi-
and 13.3 ms, respectively. The jitter was 2.64 ms, 3.46 ms, atignt delay to make full use of FEC. In fact, the loss rates track
8.18 ms, respectively, computed as the standard deviation in these of our adaptively virtual extensions. However, the decou-
delay. pled algorithm now tends to have consistently large playout de-
To support a wider range of simulations, we salted thekgys, even when network loss rates are small and the delay is not
traces with adifional losses. Of the packets which did arriveneeded.
in the actual trace, each was subject to a simulated loss wittOur adaptively virtual extensions perform much better. The
probabilityp drawn from a Bernoulli process. By varyipgwe right graphs show that in all cases, the network delays start low,
were able to adjust the network loss rates from the actual valred gradually increase as network loss rates increase. The result

A. Simulation Model

INFOCOM 2000 6

is that the end to end delay of our extension is generally low€r2 Achieving a Loss Target

than the uncoupled version which adds 80 ms, but with the sam%\II ¢ lqorith ble of achievi ified |
low application loss probabilities. This is exactly the desired ot ouralgonthms are capable of achi€ving a specified loss
behavior. target, input as a parameter to the algorithm. In Fig. 3, we con-

sider the ability of the algorithms to meet a wide range of targets

under a fixed network condition. This fixed network condition
C. Comparisons of New Algorithms corresponds to the unsalteddes 1, 2 and 3. The target loss rate

is varied from 0 to 15%. As with the other plots, the application

In this section, we compare the performance of our new @bss rate and playout delay are shown.

gorithms (adaptively virtual extensions, previous optimal, and geally, the application loss rate should equal the target, cor-
analytical) against each other. The simulation environmentr'@;ponding to a straight line with slope one on the left graphs.
identical to that described in Section V-A. Our simulations covete non-causal optimal algorithm achieves this goal, of course.
two metrics: the ability to make good use of FEC with small derhe plots on the right show that the optimal algorithm decreases
lays, and the ability to achieve a target application loss rate Wi{k end to end delay as the target increases, as expected.

the minimal delay. The results here are consistent with those in the previous sec-
tion. The adaptively virtual window algorithm is the worst per-
C.1 Using FEC with Minimal Delays former, consistently overshooting the required delay and, as a
result, undershooting the target. The previous optimal algorithm
Figure 2 depicts the application loss rate (left column) and agensistently undershoots the target loss, although it comes close
erage playout delay (right column) vs. network loss rate. Eaithall traces but the first (it's worthwhile to note that trace 1 has
graph shows the performance of the adaptively virtual Exp-Avitle jitter or loss, making it difficult to achieve a large target
algorithmExp-Avg Extthe adaptively virtual Spk-Det algorithmloss rate). Not surprisingly, it also tends to overshoot the optimal
Spk-Det Extthe adaptively virtual window algorithiwindow delay. The analytical algorithm tends to have very good delay
Ext, the previous optimaPrev-opt (Bin)algorithm and the ana- properties, coming close to the optimal delay. Its ability to meet
lytical algorithm, all targeting zero loss. We also include a pldbe loss target varies, though. It consistently undershotitin trace
of an unrealizable non-causal “optimal” algorithm. This algdk (although, in all fairness, all other algorithms undershot it in
rithm computes the playout delay for all talkspurts at the begithis trace as well), but overshot it in all the others, although not
ning of the trace (assuming knowledge of the packet delays dnitoo much. Performance is especially good in trace 2, where
losses in the entire trace), based on minimizing the average W analytical algorithm is the best performer. The adaptively
lay for the entire trace for a given application loss probabilityirtual Exp-Avg and Spk-Det have similar performance. They
This optimal algorithm is actually the lower bound described ioth came consistently close to the target with reasonably good
[19], but with the virtual delays replacing the network delays iéelays.
the computation. Overall, the simulations demonstrate that our algorithms were
The figure has three pairs of graphs; each pair is obtair@@nerally able to meet the goal of achieving a desired target loss
from a different trace. The results indicate fairly consistent bEate.
haviors across traces. The adaptively virtual window algorithm
tends to have the highest delays, and low loss rates, but not the VI. CONCLUSION AND FUTURE WORK
lowest. The analytical and previous optimal algorithms gener-

ally have lower end-to-end delays than the adaptively virtu IIn conclusion, we have demonstrated that there is a need to
X ; Il s)) I hi n lay in ive pl ffer algo-
window algorithm (with the exception of the previous optlmq?OUp ed both loss and delay into adaptive playout buffer algo

; ; . AL s ithms when FEC is used. We have presented a number of novel
algorithm in trace 1), with application loss probabilities that ar. P

enerally equal to or less than the adaptively virtual window Igorithms to perform this coupling. One such algorithm is in
gen y equalke ptvely) . 6}a]ct a class of algorithms calleadaptively virtualalgorithms
gorithm. This indicates that the analytical and prewous—optlmt

algorithms are generally preferable to the adaptively virtual win-at extend existing algorithms. Our algorithms also allow us to
d(?w algorithm 9 yp plvely control the target application loss probabilities.

, , . Our future efforts are focused on alternate definitions of opti-
The virtually adaptive Exp-Avg algorithm appears to perforr}ha”ty (instead of minima for achieving a targetz), which

quite well. Its delays are consistently closest to the optimal (0nf) have found to be too sensitive to the tail of the network delay

Spk-Det does noticeably better in trace 3), and its 10Ss probgsrinytions. We are also investigating other mechanisms for

bilities are only slightly higher than the previous optimal angyaptingy in the adaptively virtual algorithms, such as multi-
analytical algorithms. The virtually adaptive Spk-Det algorithmicative increase and linear decrease. Finally, we are exploring

also maintains low delays, but its application loss probabilitigge sensitivity of our algorithms to the various tunable parame-
are generally the highest. This would indicate that the adaptivelyg they make use of.

virtual Exp-Avg is generally preferable to the adaptively virtual
Spk-Det. This result contradicts [18], where the more sophisti-
cated Spk-Det outperforms Exp-Avg. We believe this is because
Spk-Det attempts to track the network delays too closely andThe authors would like to thank Dina Katabi, S. Keshav, Sue
loses packets whenever its delay estimate is small. The restson, Ramachandran Ramjee and Yin Zhang for their help and
by Moon et. al. in [19] agree with ours. comments.

VIl. ACKNOWLEDGMENTS

INFOCOM 2000 7

REFERENCES Conference on Computer Communications (IEEE Infocdvwev York,

.. Mar1 .
[1] Jean-Chrysostome Bolot, “End-to-end packet delay and loss behavior in ar. 1999

the Internet,” inNSIGCOMM Symposium on Communications Architectures
and Protocols Deepinder P. Sidhu, Ed., San Francisco, California, Sept.
1993, ACM, pp. 289-298, also i@omputer Communication Revi&s

(4), Oct. 1992.

[2] Vern Paxson, “End-to-end internet packet dynamics3i6COMM Sym-
posium on Communications Architectures and Protgddénes, France,
Sept. 1997.

[3] Amarnath Mukherjee, “On the dynamics and significance of low fre-
quency components of internet loadijternetworking: Research and Ex-
periencevol. 5, no. 4, pp. 163-205, Dec. 1994.

[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated service,” Request for Comments 2475, In-
ternet Engineering Task Force, Dec. 1998.

[5] J. Wroclawski, “Specification of the controlled-load network element ser-
vice,” Requestfor Comments 2211, Internet Engineering Task Force, Sept.
1997.

[6] S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed
quality of service,” Request for Commer2212, Internet Engineering
Task Force, Sept. 1997.

[7]1 C. Perkins and O. Hodson, “Options for repair of streaming media,” Re-
quest for Comments 2354, Internet Engineering Task Force, June 1998.

[8] Colin Perkins, Orion Hodson, and Vicky Hardman, “A survey of packet
loss recovery techniques for streaming audiBEE Networkvol. 12, no.

5, pp. 40-48, Sept. 1998.

[91 Nachum Shacham and Paul McKenney, “Packet recovery in high-speed
networks using coding and buffer management,’Pioceedings of the
Conference on Computer Communications (IEEE Infocddan Fran-
cisco, California, June 199CEEE, pp.124-131.

[10] J. Rosenberg and H. Schulzrinne, “An RTP payload format for generic
forward error correction,” Internet Draft, Internet Engineering Task Force,
June 1999, Work in progress.

[11] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” ACM Computer Communication Revievol. 27, no. 2, pp.
24-36, Apr. 1997.

[12] C. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J. C. Bolot,
A. Vega-Garcia, and S. Fosse-Parisis, “RTP payload for redundant audio
data,” Requestfor Comments 2198, Internet Engineering Task Force, Sept.
1997.

[13] Jean-C. Bolot and Andres Vega-Garcia, “The case for fec-based error
control for packet audio in the interne®®CM Multimedia Systempp. —,
1997.

[14] Jean-Chrysostome Bolot and Andres Vega Garcia, “Control mechanisms
for packet audio in the internet,” iRroceedings of the Conference on
Computer Communications (IEEE Infocogn®an Fransisco, California,
Mar. 1996.

[15] Vicky Hardman, Angela Sasse, Mark Handley, and Anna Watson, “Re-
liable audio for use over the internet,” Proc. of INET'95 Honolulu,
Hawaii, June 1995.

[16] Danny Cohen, “Issues in transnet packetized voice communications,” in
Proceedings of the ifth Data Communications Symposiu@nowbird,
Utah, Sept. 1977, ACMHEE, pp.6—10 — 6-13.

[17] Warren A. Montgomery, “Techniques for packet voice synchronization,”
IEEE Journal on Selected Areas in Communicatjorid. SAC-1, no. 6,
pp. 1022-1028, Dec. 1983.

[18] Ramachandran Ramjee, Jim Kurose, Don Towsley, and Henning
Schulzrinne, “Adaptive playout mechanisms for packetized audio applica-
tions in wide-area networks,” iRroceedings of the Conference on Com-
puter Communications (IEEE Infocondpronto, Canada, June 1994, pp.
680-688, IEEE Computer Society Press, Los Alamitos, California.

[19] Sue B. Moon, Jim Kurose, and Don Towsley, “Packet audio playout delay
adjustment: performance bounds and algorithrd&ZM/Springer Multi-
media Systemsol. 5, no. 1, pp. 17-28, Jan. 1998.

[20] Jonathan Rosenberg, Lili Qiu, and Henning Schulzrinne, “Integrating FEC
into adaptive voice playout buffer algorithms on the internet,” Technical
Report CUCS-00X-99, Columbia University, New York, New York, Aug.
1999.

[21] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a trans-
port protocol for real-time applications,” Request for Comments 1889,
Internet Engineering Task Force, Jan. 1996.

[22] Jean-Chrysostome Bolot, Sacha Fosse-Parisis, and Don Towsley, “Adap-
tive FEC-Based error control for interactive audio in the internet,” in
Proceedings of the Conference on Computer Communications (IEEE Info-
com) New York, Mar. 1999.

[23] Sue Moon, Paul Skelly, and Don Towsley, “Estimation and removal of
clock skew from network delay measurements,” Froceedings of the

INFOCOM 2000

Application Loss Probability

Application Loss Probability

Application Loss Probability

Exp-avg vs. Its Extension

0.2 T T T T T T T
Exp- %

0.18 r Exp- avg (add (N-1)*pkt-length) -

Exp-avg Ex Sk

0.16
0.14
012 ¢
0.1
0.08

0.06 |
0.04 - *- x ¥
o LA EELEEE
0.06 008 0.1 012 0.14 0.16 018 02 022 024 0.26
Network Loss Probability

Spk-det vs. Its Extension

0.2 T T T T . . r
Spk-det —%—
0.18 | Spk-det (add (N-1)* pkt-length) St
Spk-det R
0.16
0.14
0.12 ¢
01r
0.08
0.06
0.04

0.02
006 008 01 012 014 016 018 02 022 024 026

Network Loss Probability

Window vs. Its Extension
0.1 r . : . . . i
Window —x
0.09 | Window (add (N-1)*pkt-length) -
Window Ex C%--

0.08
0.07
0.06
0.05
0.04
0.03

0.02
006 008 01 012 014 016 018 02 022 024 0.26

Network Loss Probability

Average End to End Delay (seconds) Average End to End Delay (seconds)

Average End to End Delay (seconds)

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0.14

0.12

01

0.08

0.06

0.04

0.02

0.25

0.2

0.15

0.1

0.05

Exp-avg vs. Its Extension

++++++++++++++++¢**¥
*QK'
L * .
*¥
/

- */’ B
L Exp-av —X—]

Exp- avg (add (N-1)* pkt-length) B

. Expavg Bxt . . . LR

0
006 008 01 012 014 016 018 02 022 024 0.26

Network Loss Probability

Spk-det vs. Its Extension

+++++++++++++++++****
F K -*- * ¥ i
**/*—*’
x x X
I Spk-dlet VN
Spk-det (add (N-1)* pkt-length) A
Spk-det Ext))) - %--

0
006 008 01 012 014 016 018 02 022 024 026

Network Loss Probability

Window vs. Its Extension

B R R S e il SVRDIUEERESE. & o .

* AN VIIVERVIIVE S B

I Window % 1
Window (add (N-1)* pkt-length) -t -
Window Ext - K-

0
006 0.08 01 012 014 0.16 018 02 022 024 0.26

Network Loss Probability

Fig. 1. Performance of adaptively virtual algorithms on trace 2

INFOCOM 2000

Tracel
0.05 . ' ' '
Exp-avg Ext = T
. 0.045 [iSpk-det Ext A R
S om | Window Ext RV +,+
8 7 Prev-opt (Bin) _O-- E
2 0035 | fAnaytical = o
X Optimal O .
5 003 ,
S 0025
5
-g 0.02
5 0015
o
< 001
0.005 -]
o B0 DT 00" . .
0 0.05 0.1 0.15 0.2
Network Loss Probability
Trace 2
0.09
Exp-avg Ext < ¥
Spk-det Ext S)
2 008 | Window Ext x
8 Prev-opt (Bin) -
£ 007 [Anayti =
£ 007 Anaytica
& Optimal O
@ 0.06 |
o
-
5 005}
bS]
2
5 004 +
Q.
< e o
003 , o *
et -8
0.02 s . . . , , . . .
006 008 01 012 014 016 018 02 022 024 0.26
Network L oss Probability
Trace 3
0.07 — -
Exp-avg Ext = T
ISpk-det Ext - ¥
2 006 I Window Ext %
kel Prev-opt (Bin) - P
< 0.05 r Analytical - +‘+
& Optimal O .
A 0.04
o
.}
5 003}
®
2
s 0.02 ,
< 41-0-0-0 /O{O/O
0.01 f5.-0-0--0--0©

0
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.
Network Loss Probability

18 02 022 024

Average End to End Delay (seconds) Average End to End Delay (seconds)

Average End to End Delay (seconds)

Tracel
0.2 T T T T
L o-0- _ |
0.18 0o 000 &E,D\Dﬂﬂ_‘}g\ "
016 | 17 KK KKK KK K KKK K K LREO
/ ’*’
014 [/¥ % - |
0.12 P -n _./.‘.,Irl—l 1’! |
e e = 5 b -+
01t I"e]
008 [M+ F T Nt UTO O 0r0r]
- Exp-avg Ext v
006 g7 Spk-det Ext BN
0.04 | Window Ext - %-- |
’ Prev-opt (Bin) -0
0.02 Analytical —-- |
0)) Optimal i O
0 0.05 0.1 0.15 0.2
Network Loss Probability
Trace 2
0.25
02 ¢ KK KKK Kk Kk KRKK
‘&DD/D\‘}D—D-D‘GQ{‘\GGQE,D‘ o
0.15 == -1
)_.,l,.,J—./rt l’ i
ngnuE X
01r o 0200 0-0--0--0-0-0 |
o Exp-avg Ext —%—
Spk-det Ext -
0.05 + Window Ext %
’ Prev-opt (Bin) -
Analytical —--
0))))) Opltimal i] O
006 008 01 012 014 016 018 02 022 024 0.26

Network Loss Probability

Trace 3
0.4 -—
0.35 | J
Dﬂﬂ'mq}ai}gﬂﬂﬂﬂlﬂﬂﬂﬂﬂ{k
03r CgE
' PR
-

025 | Lunt |
02} ,.,1,,-4/r o |
- AN Ut o SV

| S 00 RQRR000 |
015 | Q%% P BT
01} Spk-det Ext A
' \Window Ext RV
Prev-opt (Bin) —-{3--
005 ¢ Analytical —m |
L L N N X .Optlnjal O

0 I
0.02 0.04 0.06 008 0.1 012 0.14 0.16 0.18 0.2
Network Loss Probability

Fig. 2. Comparison of loss and delay performance across all algorithms

0.22 0.24

INFOCOM 2000

Application Loss Probability

Application Loss Probability

Application Loss Probability

Tracel
0.16 T T T T T T
Exp-avg Ext —x— o
0.14 Spk-det Ext -t - O'/
Window Ext - K- - o
| Prev-opt (Bin) -0--
012 A nalytical . o
o1l Optimal —-O--- ’,o""
o .
- |
o o] -
0.08 /./1 o+
0.06 |
0.04 .0
ey e
0.02 O gD o o-O-O--0-00
0B TN KoK o oM K K oM oK K -k
0 002 004 006 008 01 012 014 016
Target Loss Probability
Trace 2
0.18
Exp-avg Ext —X— +
| ISpk-det Ext e .-
016 Window Ext - X - v
0.14 | [Prev-opt (Bin) -{--
’ Analytical —-- <7 m
0.12 | Optimal o o g
-0
0.1 /D,,D/’D
0.08 |
0.06
0.04 *,*4*-7*>*"*’*>*
0.02P """" . .

0 002 004 006 008 01 012 014 016
Target Loss Probability

Trace 3
0.18 . . : . . —
Exp-avg Ext —%— .
0.16 | [Spk-det Ext -+ o
Window Ext - %-- a e)
0.14 | PPrev-opt (Bin) -0 ./' %
Analytical —- I -
0.12 | loptimal O - -0
0.1 o
0.08
0.06 | %
0.04 | /e
0.02 ’/********* *

0 002 004 006 008 01 012 014 016
Target Loss Probability

Average End to End Delay (seconds)

Average End to End Delay (seconds)

Average End to End Delay (seconds)

10

Tracel
0122 - . . . : : :
n Exp-avg Ext —x—
N Spk-det Ext
01F Window Ext - K- - |1
=Ny Prev-opt (Bin) —g--
\ O Analytical — -
008+ B-q Optimal —0-— |1
T \
Yo+
0.06 .
n

\
0.04

0.02

L |
— 2

OOOO N o T o T o T & SO o SO o JN

O I I 1 1 1 1 1

0 0.02 004 006 0.08 0.1 012 014 0.16

Target Loss Probability

Trace 2
0.18
& Exp-avg Ext =
016 I Spk-det Ext - |
=N Window Ext - K- -
014 F ! sl Prev-opt (Bin) 0 |
’ \ N Analytical —&--
0.12 \ E\ Optimal O |]
) R *\ \\
o1l\ * B l
57-'\+~,+,7 . \\
0.087 @ 2 K\ g 1
NERN WKk ok ok x
oo6| Mg\ TR xR
i SRt
0.04 r A R T g A
0.02 N N N 00 =

0 002 004 006 0.08 0.1 012 014 016

Target Loss Probability

Trace 3
0.4 . : , , . . .
Exp-avg Ext v
035 Spk-det Ext]
~ \Window Ext - % -
F Prev-opt (Bin) -0 ||
0.3 \ EL\\EL Anaytica o
025 | ~0 Optimal o ||

- ¥ - % - -*,*_,*,*7* 4

0 002 004 006 008 01 012 014 016
Target Loss Probability

Fig. 3. Performance of algorithms in achieving varying target loss probability

