
INFOCOM 2000 1

Integrating Packet FEC into Adaptive Voice Playout
Buffer Algorithms on the Internet

Jonathan Rosenberg, Lili Qiu, Henning Schulzrinne
dynamicsoft, Cornell University, Columbia University

jdrosen@dynamicsoft.com, lqiu@cs.cornell.edu, hgs@cs.columbia.edu

Abstract—Transport of real-time voice traffic on the Internet is difficult
due to packet loss and jitter. Packet loss is handled primarily through a
variety of different forward error correction (FEC) algorithms and local
repair at the receiver. Jitter is compensated for by means of adaptive play-
out buffer algorithms at the receiver. Traditionally, these two mechanisms
have been investigated in isolation. In this paper, we show the interactions
between adaptive playout buffer algorithms and FEC, and demonstrate the
need for coupling. We propose a number of novel playout buffer algorithms
which provide this coupling, and demonstrate their effectiveness through
simulations based on both network models and real network traces.

Keywords—Packetvoice, IP telephony, packet FEC, playout buffer adap-
tation

I. I NTRODUCTION

Transport of real-time voice on the Internet is an increasingly
important application. Internet telephony (the provision of tele-
phony services using the Internet) has emerged as an important
service, poised to replace circuit-switched telephony service in
the future. However, the currently available, best effort Inter-
net service model was never engineered to handle voice traffic,
since it provides variable loss rates and delays. A number of
studies have attempted to measure these parameters [1], [2], [3].
The results indicate substantial variability (depending a lot on
the locations of the senders and receivers), with typical packet
loss rates of 0 to 20 percent and one way delays from 5 ms to
500 ms. Unfortunately, when packet loss rates exceed 10% and
one way delays exceed 150 ms, speech quality can be quite poor.

Efforts are underway to address these problems at the network
layer, using differentiated services [4] and Integrated Services
[5], [6]. However, we anticipate that many public and private
internets will continue to provide best-effort delivery for a long
time. Therefore, compensation for loss and delay end-to-end
using adaptive applications which adjust their encoding param-
eters, such as bitrate, in response to network feedback on loss,
delay, and jitter, is an important problem.

Compensating for loss using end-to-end protocols and algo-
rithms can be done using a number of mechanisms [7][8], in-
cluding local repair (interpolation of missing data using the sur-
rounding packets) and interleaving. There has been much in-
terest in the use of packet-level FEC for sending redundant in-
formation ahead of time to compensate for loss, based on par-
ity codes, [9], [10], Reed Solomon codes [11], and redundant
speech codecs [12][13] [14] [15]. Oftentimes, the term FEC is
only applied to the traditional channel coding approaches, such
as parity and Reed Solomon codes. For purposes of this paper,
we define FEC as any mechanism which sends additional infor-

This paper appeared in the Proceedings ofIEEE Infocom 2000, Tel Aviv, Is-
rael, March 2000. This version corrects some formatting and typographical er-
rors.

mation along with the media stream, the purpose of which is to
aid in packet recovery.

Compensating for jitter isaccomplished primarily through
adaptive playout buffer algorithms [16] [17] [18] [19]. (also
known as adaptive playout delay algorithms). These algorithms
generally work by taking some measurements on the delays ex-
perienced by packets, and updating the playout delay on a talk-
spurt by talkspurt basis.

The study of FEC for loss recovery, and playout buffer adap-
tation for jitter compensation, have proceeded independently.
However, we have observed that there is a coupling between the
two. All of the FEC mechanisms send some redundant infor-
mation which is based on previously transmitted packets. Wait-
ing for the redundant information results in a delay penalty, and
consequently an increase in size of the playout buffers. When
network loss rates are high, accepting the delay penalty for in-
creased recovery capabilities is appropriate. However, when
network loss rates are low, the FEC may not provide useful in-
formation, and increasing the playout buffer sizing to wait for it
is not appropriate. The result is that playout buffer adaptation
should depend onboth FEC and network loss conditionsand
network jitter. However, existing tools that utilize FEC (such as
rat from UCL andfreephonefrom INRIA) usedecoupledadap-
tation algorithms. These algorithms compute some playout de-
lay as if FEC were absent, compute some delay needed to make
use of FEC, and then combine these two delays together. These
decoupled algorithms may insert insufficient delay when net-
work loss probabilities are substantial, and too much delay when
they are not, resulting in poor performance. We further observe
that existing playout buffer adaptation algorithms generally aim
to minimize the network losses at the expense of delay. How-
ever, some modern speech codecs can tolerate loss rates as high
as 5% and still work well. As such, it would be beneficial to be
able to tune these algorithms to achieve a target loss (possibly
non-zero) to meet the operating range of the codecs.

In this paper, we explore these problems in more detail. In
section II we demonstrate, through simple analysis, the need for
coupling packet loss and jitter into playout buffer adaptation. In
section III we briefly review some existing playout buffer adap-
tation algorithms. In section IV, we present several new algo-
rithms which achieve the desired coupling and tuneability ob-
jectives. Section V shows the improvements offered by our al-
gorithms through simulations. Section VI summarizes our work
and discusses future directions.



INFOCOM 2000 2

II. THE COUPLING EFFECT

The main role of playout buffer adaptation algorithms is to
trade loss for delay. These algorithms choose a playout delay
D for each talkspurt, whereD is defined as the difference be-
tween playout time and generation time for all packets in a talk-
spurt (although some algorithms adjust the delay mid-talkspurt
to compensate for errors in buffer sizing). IncreasingD results
in a larger end-to-end delay, but decreases the fraction of late
packets. The algorithms work by choosing a target “optimal”
operating point of loss and delay, and adjusting the playout de-
lay to come as close to the optimal point as possible. If an al-
gorithm chooses some delayD for a talkspurt, the probability
receiving it on time and playing it out to the application (which
we denote the playout probabilitypR) is:

pR = (1� p)P [ni < D] (1)

wherep is the loss probability for a packet, andni is the delay of
the packet (measured as the difference between arrival time and
generation time), given the packet arrives. We use the expres-
sionP [X] to denote the probability of eventX. This expression
assumes that the network losses and delays are independent ran-
dom variables.

The dependency of the playout probabilitypR on the network
loss probabilities and the network delay distribution is a sim-
ple multiplicative one. The result is that many playout adapata-
tion strategies can completely ignore the loss ratep. In par-
ticular, any algorithm which tries to choose the minimumD
which achieves the highest possiblepR need not considerp at
all. These algorithms need only find the smallestD for which
P [ni < D] = 1. All of the algorithms described in [18], [19]
fall into this category.

The dependency ofpR on the delay distributionand loss prob-
abilities becomes more complex when FEC is introduced. The
result is that the choice ofD is more strongly influenced byp.
Consider the FEC mechanisms described by Bolot and Garcia
[14]. These algorithms use multiple low-bitrate versions of a
packet, each version being piggybacked on a subsequent packet.
A packet is played out so long as a receiver gets the original or
any one of theK � 1 redundant versions of the packet on time.
If packets are lost independently with probabilityp, the prob-
ability of playing out a packet (pR), given that the receiver is
willing to wait for l � K of the packets, is1� pl.

This says nothing, however, about how long a receiver must
wait for thesel packets. Computing the probability under a de-
lay constraint will require us to factor in the probability that thel

packets arrive in time. Assume that packets are generated at the
sender at intervals of�. A playout delay ofD at the receiver
means that a packet must be presentD seconds after its gener-
ation at the sender in order to be used. A packet is played out
if the original packet arrives on time, or if a redundant packet
arrives in time. To be in time, the redundant packet’s network
delay, plus the amount of time between its generation and the
original packet generation, must be less than the playout delay.
More formally, if we assume network delays are independent
from packet to packet, the probability of playing out a packet

when the playout delay isD is

pR = 1�
K�1Y
j=0

(1� (1 � p)P [ni + j� < D]) (2)

Note the more complex dependency ofpR on the network loss
probabilityp and the network delay distributionni. The result
is that the choice ofD is more complex, and will most likely
depend strongly onp. Consider once more the basic playout
adaptation target: to choose the minimumD which results in the
maximum possiblepR. Whenp is zero,D need only be set to
the largest network delay possible. However, asp increases, the
value ofD rapidly increases up to a maximum value of(K �
1)� plus the largest delay possible. Note thatp now plays a
crucial role in choosingD once FEC is enabled. A decoupled
algorithm might chooseD to always be(K � 1)� + maxni,
which results in overly large playout delays when network losses
are low. A different decoupled algorithm might chooseD to
always be some quantile ofni. This algorithm will result in
overly small playout delays when network losses are high. As
such, coupling loss and delay into buffer adaptation is critical
for proper loss and delay tradeoffs over a wide range of network
conditions.

The astute reader might observe that if loss rates are low, the
sender should not be sending FEC in the first place. Such sender
adaptation might eliminate the need for coupling FEC to playout
buffer adaptation at receivers. This may be true for unicast, but
not for multicast. In multicast, it is likely that some receivers
will experience more loss than others. The sender may choose
to include FEC in order to improve reception quality for lossy
receivers. In this case, receivers experiencing low loss will want
to adapt in order to reduce their playout delays, since the FEC
is not needed. Even in the unicast case, receiver adaptation is
useful when the sender is incapable or unwilling of performing
adaptation. Receiver adaptation is also useful when feedback is
not sent frequently.

III. EXISTING PLAYOUT BUFFER ALGORITHMS

Much work has gone on in the area of playout buffers algo-
rithms since the early 70’s. Recent work in addressing the prob-
lem specifically for the Internet is found in [18] and [19]; our
work builds on theirs, so we review it briefly.

Ramjee et. al. [18] propose four adaptation algorithms. Each
algorithm computes, in some fashion, an estimate of the mean
network delay seen up to the arrival of theith packet,d̂i, and a
variation measure in this delay,v̂i. The playout delay is adjusted
at the beginning of each talkspurt. Ifti is the generation time of
a packet which is the first in a talkspurt, the playout timepi of
the first packet is computed aspi = ti + d̂i + �v̂i, with � = 4.
For a subsequent packetj in the same talkspurt, its playout time
is computed aspj = pi + tj � ti.

All four algorithms maintain a running estimate ofd̂i andv̂i,
updated foreach packet. All four computêvi in the same fash-

ion, v̂i = �v̂i�1 + (1 � �)
���d̂i � ni

���, whereni is the network

delay of theith packet. The four algorithms thus differ only in
their computation of̂di:
Exp-Avg: This algorithm estimates the mean delay through an
exponentially weighted average, much like the estimation of the



INFOCOM 2000 3

variance above. In particular,̂di = �d̂i�1 + (1 � �)ni, with
� = 0:998002.
Fast Exp-Avg:This algorithm is similar to the first, except it
adapts more quickly to increases in delays by using a smaller
weighting factor as delays increase:

d̂i =

�
�d̂i�1 + (1� �)ni : ni > d̂i�1

�d̂i�1 + (1� �)ni : ni � d̂i�1

For the algorithm to respond quickly to increasing delays,� <

�. [18] used� = 0:75.
Min-Delays: This algorithm attempts to be more aggressive in
minimizing delays. It uses the minimum delay of all packets
received in the current talkspurt (letSi be this set of delays) as

the average delay, i.e.̂di = minj2Si(nj)
Spk-Delay: It has been observed [1] that network delays of-
ten exhibitspikes, which are sharp increases in delay followed
by nearly simultaneous reception of a large number of pack-
ets.Spk-Delaycontains a spike detection algorithm which finds
these spikes. During a spike, the delay estimate tracks the delays
closely, and after a spike, an exponential weighted average is
used. We avoid a detailed description here, referring the reader
to [18] for details.

In [19], Moon et. al. propose an algorithm similar toSpk-
Delay, which we callWindow. This algorithm also looks for
spikes. During spike mode, the delay of the first packet in a
talkspurt is used as the playout delay. In normal (non-spike)
mode, the playout delay is chosen by finding the delay which
represents theqth quantile among the lastw packets received by
the receiver. This determination is easily made by incrementally
updating a histogram of the delays among the lastw packets. In
their simulations, a value of 10,000 is used forw.

IV. N EW PLAYOUT BUFFER ALGORITHMS

In this section, we present our new algorithms which are ca-
pable of coupling and meeting non-zero loss targets.

A. Virtual Delay Algorithms

Our first contribution are a class of algorithms we callvir-
tual delayplayout adaptation algorithms. These algorithms are
all modifications of existing algorithms to allow them to com-
pensate for FEC. They are based on the following simple ob-
servation. Without FEC, the probability of playing out a par-
ticular packet is given in Equation 1. With FEC, we can gen-
eralize this simple formulation. A packet is played out if it ei-
ther arrives before its playout time, or is recovered before its
playout time. IfpN is the probability that a packet neither ar-
rives nor is recovered, anddV is the difference between the
time a packet either arrives or is recovered (given it arrives or
is recovered) and the time it was sent, the playout probability is
pR = (1 � pN )P [dV < D] . This formulation is identical to
the one in Equation 1, but with the simple random variables (p

andd) replaced by the more complex ones (pN anddV ). We can
therefore use any existing playout adaptation algorithms which
compute the playout delayD as some function of the packet
delays by substitutingdV for d in the computation. Formally:

Definition 1: The virtual delaydV of a packet is the differ-
ence in time between the earlier of the arrival and recovery

times, and the generation time. If a packet neither arrives nor
can be recovered, the virtual delay is undefined.

Any existing playout buffer adaptation algorithm is thenvir-
tualizedby using the virtual delays to drive it instead of network
delays. In most cases, it is not necessary to derive an expression
for dV to do this. A receiver just implements the FEC algorithm
as it normally would. The instant it recovers a packet, the vir-
tual delay of the packet is computed as the difference in time
between transmission of the packet and the current time. If a
packet is correctly received, the virtual delay is the network de-
lay of the packet, unless it is recovered before it is received. The
virtual delays are then used in the adaptation algorithm instead
of the network delays.

It is important to note that implementing the virtualized ver-
sion of the algorithms is a natural consequence of a layered im-
plementation of FEC and playout buffer adaptation, where the
recovery using FEC is done before the playout buffer adapta-
tion. The playout buffer adaptation component cannot differen-
tiate recovered packets from received packets. In this case, it
will compute the arrival time of a packet as either its recovery
time or arrival time, whichever is lower. The result is that the
playout buffer adaptation algorithm will unknowingly compute
virtual delays instead of real delays, and thus become virtual.

A.1 Supporting Target Loss Probabilities

It is the job of the playout adaptation algorithm to trade loss
for delay. For the algorithms in [18], this tradeoff is controlled
by the variation multiplier�, set to a large static value (here, 4).
The result are algorithms which target near zero loss. To be able
to target non-zero losses, we must make this parameter adaptive.

Our algorithm assumes a target valuepT for the playout prob-
ability pR. Unfortunately, you can’t always get what you want,
and this target may be unachievable given the current network
loss rate. Therefore, we compute a current achievable target loss
ratepC:

pC = max(pT ; f(p)); (3)

where f(p) is the achievable minimum application loss rate
given a network loss rate ofp. For Reed-Solomon FEC,

f(p) = p

 
1�

n�1X
i=k

�
n� 1

i

�
(1� p)ipn�1�i

!
(4)

and for the redundant codecs,f(p) = pK.
We maintain a running estimate of the network loss ratep̂. At

the end of each talkspurt,̂p is used to computepC via Eq. 3.
Then, the actual application loss ratepL is measured. The vari-
ation multiplier� from [18] is computed for the next talkspurt
based on the following algorithm:

if (pC < pL � �) ^ (� � �max � Æinc)
� � + Æinc;

else if (pC > pL + �) ^ (� � �min + Ædec)
� � � Ædec;

else
� �

� is a threshold which introduces hysterisis into the algorithm.
�min and�max are the minimum and maximum allowed values



INFOCOM 2000 4

for �. Æinc andÆdec represent the step size for the coefficient.
In our simulations, we used�min = 0, �max = 8, � = 0:05,
Æinc = 0:4 and Ædec = 0:2. We found performance was best
when the rate of increase in� (Æinc) was larger than the rate
of decrease (Ædec). We believe this is because it allows the algo-
rithm to act more conservatively - rapidly increasing delays (and
thus reducing losses) but gradually reducing them. As such,
short lived decreases in jitter or loss won’t cause the algorithm
to undershoot the needed delay.

This small enhancement can be applied to all of the algo-
rithms in [18]. When coupled with virtualization, we call the
resulting algorithmsadaptively virtual.

B. “Previous Optimal” Algorithm

Ideally, an optimal playout delay algorithm would work as
follows. It would work offline, and know the packet delays and
losses ahead of time. It would choose a playout delay which
would meet an arbitrarily chosen criteria. Unfortunately, this
algorithm is non-causal. As with many non-causal filters, this
algorithm can be made causal by delaying the output of the algo-
rithm for a talkspurt. In other words, the optimal playout delay
for the previous talkspurt can be used as a playout delay for the
next talkspurt. More generally, we can use any function of the
optimal playout delays from previous talkspurts as the playout
delay of the current talkspurt. For reasons of simplicity, we con-
sidered exponentially weighted averages of previous talkspurts.

At the end of each talkspurt, we compute the optimal playout
delayDopt for that talkspurt. We then choose the playout delay
Dw for the next talkspurt asDw = �Dw�1 + (1� �)Dopt . We
chose� = 0:25, which allowed the algorithm to adapt quickly.
We also observed that in cases where the target loss is quite low
(less than 2%), we needed to add a variation multiplier, so that
the actual playout delayDact is Dact = Dw + �v̂w wherev̂w
is computed in the same fashion as [18], except that it is driven
by Dw. We used the adaptive algorithm described in Section
IV-A.1 to compute�, but with�max = 6, which we found to
give slightly better results.

We define the optimal playout delay for a talkspurt as the min-
imal playout delay that achieves a specified application loss rate.
For a particular choice of playout delayD, the fraction of pack-
ets played out are all of those that arrive with a virtual delay
less than the playout delay (V i

D < D), divided by the total num-
ber of data packets sent,N . Interestingly, the optimal playout
delay can only be equal to one of the values ofV i

D. For any de-
lays between two adjacentV i

D, the number of packets for which
V i
D > D remains the same, but the delay increases. This means

Dw equals the minimumV j

D overj which satisfies:

1

N

NX
i=1

I(V i
D < V

j
D)) < (1� pR)

I() is the indicator function, equal to 1 when its argument is
true, 0 when false.

ComputingDw isO(N ). To reduce the complexity, we quan-
tize the virtual delays using a linear quantizer withL steps. The

quantizer uses a step size of 5 ms, and sets theL
2

th
quantized

value to the virtual delay of the first packet received for the
talkspurt. Any packet with a delay more than 400 ms larger or

smaller than the first packet is quantized toL � 1 and 0, re-
spectively. We maintain a probability mass function of virtual
delays in an array. At the end of the talkspurt, the probability
distribution function is computed by summing this array. We
then perform a search over theL entries in the distribution array
to computeDw. This search isO(1) (with a constant factorL).

C. Model-Based “Analytical” Playout Adaptation Algorithm

The analytical algorithm works by attempting to model the
impact of network loss and delay on the application playout
probability and the end to end delay. It then uses this model
to choose a playout delayD.

Our model attempts to computepR, the probability of playing
out a packet to the application, whether it arrived in time or was
recovered in time, as a function of the network loss probability
p, the network delay distribution and the playout delayD. We
assume packet losses are independent. The model assumes Reed
Solomon codes, wheren�k FEC packets protectk data packets.
Any k of then packets in a block must be received to recover
the remainingn� k. We also assume then packets in the block
are received in order. There is not sufficient space in the paper
to derive this expression; details can be found in [20]. The final
expression turns out to be:

pR = (1� p) � P [ni � D] +

(1� (1� p)P [ni � D])
1

k0
@ nX
g=k+1

(S(g � k)� S(g))P [X2(g)]

+
kX
j=1

S(n � j + 1)P [X2(n)]

1
A (5)

where:

P [X2(g)] =

g�1X
r=k

�
g � 1

r

�
(1 � p)rpg�1�r

S(j) = P [ni � D � j�] (6)

What we desire, in fact, is the inverse of this function: to
computeD as a function ofpR and the delay and loss. Since
the function cannot be inverted in closed form, we obtainD

by trying various values, computingpR based on those values
using Eq. 5, and comparingpR against the desired value. This is
effectively a search. In fact, since the function is monotonically
increasing withD, we perform a binary search. At the end of
each talkspurt, the current target loss ratepC is computed, using
equation 3. We start with an arbitrary value forD, and compute
pR from above. If the result is belowpC by more than some
threshold (we used 5%), a higher value ofD is tried, and if the
result is abovepC , a lower value is tried.

The computation ofpR from Eq. 5 requires an expression
for the network delay distributionP (ni < X) for a range of
X, and an estimate ofp. We measure the loss probabilityp by
computing the percentage of lost packets in each talkspurt (~p),



INFOCOM 2000 5

and applying an exponential filter to average this value, yielding
p̂ = 0:25~p+ 0:75p̂.

To compute the network delay distribution, we maintain the
delays of the last 1000 packets in a queue. Each delay is first
quantized, using a linear quantizer with a step size of 5 ms and
upper limit of 5 s. The frequency ofeach delay is maintained
in a histogram. When a new packet arrives, the delay of the
oldest packet is removed from the histogram, and the delay of
the newest is added. The delay distribution is computed using a
cumulative sum of the frequencies, and is done only at the end
of each talkspurt.

V. SIMULATIONS

The objective of our simulations is two-fold: first, to demon-
strate that our new algorithms outperform the decoupled ones;
second, to determine the performance of the new algorithms
compared to each other.

A. Simulation Model

In our simulation model, the sender generates speech pack-
ets every 20 ms. Each packet consists of an IP/UDP/RTP [21]
header, totaling 40 bytes, in addition to 24 bytes of speech. This
is equivalent to a 9.6 kb/s speech codec. The speech is protected
with a (5,3) Reed-Solomon code. This means that every three
packets, two additional FEC packets are generated. As long as
the receiver gets any three of the five packets, the three media
packets are recovered. These two FEC packets are piggybacked
on the first two data packets in the next block, so that the FEC is
sent spaced apart. Recent results [22] have shown that spacing
the FEC in this manner yields better performance.

To model packet loss, we used both Bernoulli and Gilbert pro-
cesses; studies have shown these to be reasonable models [22].
However, delay models, particularly those that capture correla-
tion, are not easy to find. As a result, we based our simulations
on a network model which combines real measured traces on
the Internet with simulated losses. Our real traces are based on
measurements taken in the September of 1997. We used three
traces. The first (“trace 1”) is between a host at GMD Fokus in
Germany and a host at Columbia University in New York. The
second (“trace 2”) is between a host at UC Santa Cruz and the
host at Columbia, and the third (“trace 3”) is between the host
in Santa Cruz and a host at the University of Massachusetts in
Amherst. To generate each trace, packets were sent between
the endpoints for 14 minutes, and the delay and loss ofeach
packet was recorded. The trace gives us a real sample path of an
end-to-end delay process. We used the algorithm described in
[23] to remove clock skew from these traces. The average loss
probabilities in the three traces were 0.001, 0.057, and 0.026,
respectively. The average one way delays were 2 ms, 6.4 ms
and 13.3 ms, respectively. The jitter was 2.64 ms, 3.46 ms, and
8.18 ms, respectively, computed as the standard deviation in the
delay.

To support a wider range of simulations, we salted these
traces with additional losses. Of the packets which did arrive
in the actual trace, each was subject to a simulated loss with
probabilityp drawn from a Bernoulli process. By varyingp, we
were able to adjust the network loss rates from the actual value

in the trace (p = 0) to 1 (p = 1). We also ran simulations with
Gilbert loss, and observed similar results.

At the receiver, the playout buffer algorithms were imple-
mented, and the FEC was used to recover lost packets when
possible.

B. Coupled vs. Uncoupled

In this section, we compare uncoupled versions of the Exp-
Avg, Spk-Det and Window algorithms with our virtually adap-
tive versions of these algorithms. For brevity, we omit the sim-
ulation results of the fast exponential average and min-delay al-
gorithms, since according to our simulation results, these two al-
gorithms usually do not outperform the others. For the window
algorithm, we use a 1000 packet window instead of the 10,000
packet widow used in [19], which we found to be too large to
adapt adequately.

We use two uncoupled versions of these algorithms. The first
version is the original algorithm - no extra delay is added to
compensate for FEC. In the second version, we added 80 ms of
delay to the original output of each algorithm. This corresponds
toN � 1 packet intervals, enough to receive all the FEC for any
packet in the absence of jitter.

The adaptively virtual versions of the algorithms operate with
a loss target of zero.

Figure 1 contains six graphs. The two at the top compare the
performance of the uncoupledExp-avgalgorithm with its adap-
tively virtual extension; the two in the middle compare the un-
coupledSpk-detalgorithm with its extension; the two at the bot-
tom compare uncoupledwindowalgorithm with its extension.
Each graph in the figure has three curves, corresponding to the
two uncoupled versions of the algorithm and the adaptively vir-
tual extension. The left column shows the average application
loss probability after FEC and playout buffer adaptation (1�pR)
vs. the network loss probabilityp, varied by salting the traces.
The right column shows the averageD across all talkspurts vs.
the network loss probabilityp. All plots use trace two between
Columbia and UC Santa Cruz.

In all three pairs of graphs, the results are the same. The orig-
inal version of the algorithm shows increasing application loss
probabilities with increasing network loss rate. This is because
the playout delay computed by the algorithm is not large enough
to make use of the FEC packets. The plots in the right column
show this as well. The original version of each algorithm has a
constant playout delay as the network loss varies. For the origi-
nal versions of Exp-Avg and Spk-Det, the increase in application
loss probability is linear with the network loss probability. This
is because the playout delay is not sufficiently large to allow the
FEC to be consistently used (80 ms is needed).

When we add 80 ms of delay to the output of the original
algorithms, the loss rates drop substantially. Now, there is suffi-
cient delay to make full use of FEC. In fact, the loss rates track
those of our adaptively virtual extensions. However, the decou-
pled algorithm now tends to have consistently large playout de-
lays, even when network loss rates are small and the delay is not
needed.

Our adaptively virtual extensions perform much better. The
right graphs show that in all cases, the network delays start low,
and gradually increase as network loss rates increase. The result



INFOCOM 2000 6

is that the end to end delay of our extension is generally lower
than the uncoupled version which adds 80 ms, but with the same
low application loss probabilities. This is exactly the desired
behavior.

C. Comparisons of New Algorithms

In this section, we compare the performance of our new al-
gorithms (adaptively virtual extensions, previous optimal, and
analytical) against each other. The simulation environment is
identical to that described in Section V-A. Our simulations cover
two metrics: the ability to make good use of FEC with small de-
lays, and the ability to achieve a target application loss rate with
the minimal delay.

C.1 Using FEC with Minimal Delays

Figure 2 depicts the application loss rate (left column) and av-
erage playout delay (right column) vs. network loss rate. Each
graph shows the performance of the adaptively virtual Exp-Avg
algorithmExp-Avg Ext, the adaptively virtual Spk-Det algorithm
Spk-Det Ext, the adaptively virtual window algorithmWindow
Ext, the previous optimalPrev-opt (Bin)algorithm and the ana-
lytical algorithm, all targeting zero loss. We also include a plot
of an unrealizable non-causal “optimal” algorithm. This algo-
rithm computes the playout delay for all talkspurts at the begin-
ning of the trace (assuming knowledge of the packet delays and
losses in the entire trace), based on minimizing the average de-
lay for the entire trace for a given application loss probability.
This optimal algorithm is actually the lower bound described in
[19], but with the virtual delays replacing the network delays in
the computation.

The figure has three pairs of graphs; each pair is obtained
from a different trace. The results indicate fairly consistent be-
haviors across traces. The adaptively virtual window algorithm
tends to have the highest delays, and low loss rates, but not the
lowest. The analytical and previous optimal algorithms gener-
ally have lower end-to-end delays than the adaptively virtual
window algorithm (with the exception of the previous optimal
algorithm in trace 1), with application loss probabilities that are
generally equal to or less than the adaptively virtual window al-
gorithm. This indicates that the analytical and previous-optimal
algorithms are generally preferable to the adaptively virtual win-
dow algorithm.

The virtually adaptive Exp-Avg algorithm appears to perform
quite well. Its delays are consistently closest to the optimal (only
Spk-Det does noticeably better in trace 3), and its loss proba-
bilities are only slightly higher than the previous optimal and
analytical algorithms. The virtually adaptive Spk-Det algorithm
also maintains low delays, but its application loss probabilities
are generally the highest. This would indicate that the adaptively
virtual Exp-Avg is generally preferable to the adaptively virtual
Spk-Det. This result contradicts [18], where the more sophisti-
cated Spk-Det outperforms Exp-Avg. We believe this is because
Spk-Det attempts to track the network delays too closely and
loses packets whenever its delay estimate is small. The results
by Moon et. al. in [19] agree with ours.

C.2 Achieving a Loss Target

All of our algorithms are capable of achieving a specified loss
target, input as a parameter to the algorithm. In Fig. 3, we con-
sider the ability of the algorithms to meet a wide range of targets
under a fixed network condition. This fixed network condition
corresponds to the unsalted traces 1, 2 and 3. The target loss rate
is varied from 0 to 15%. As with the other plots, the application
loss rate and playout delay are shown.

Ideally, the application loss rate should equal the target, cor-
responding to a straight line with slope one on the left graphs.
The non-causal optimal algorithm achieves this goal, of course.
The plots on the right show that the optimal algorithm decreases
the end to end delay as the target increases, as expected.

The results here are consistent with those in the previous sec-
tion. The adaptively virtual window algorithm is the worst per-
former, consistently overshooting the required delay and, as a
result, undershooting the target. The previous optimal algorithm
consistently undershoots the target loss, although it comes close
in all traces but the first (it’s worthwhile to note that trace 1 has
little jitter or loss, making it difficult to achieve a large target
loss rate). Not surprisingly, it also tends to overshoot the optimal
delay. The analytical algorithm tends to have very good delay
properties, coming close to the optimal delay. Its ability to meet
the loss target varies, though. It consistently undershot it in trace
1 (although, in all fairness, all other algorithms undershot it in
this trace as well), but overshot it in all the others, although not
by too much. Performance is especially good in trace 2, where
the analytical algorithm is the best performer. The adaptively
virtual Exp-Avg and Spk-Det have similar performance. They
both came consistently close to the target with reasonably good
delays.

Overall, the simulations demonstrate that our algorithms were
generally able to meet the goal of achieving a desired target loss
rate.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we have demonstrated that there is a need to
coupled both loss and delay into adaptive playout buffer algo-
rithms when FEC is used. We have presented a number of novel
algorithms to perform this coupling. One such algorithm is in
fact a class of algorithms calledadaptively virtualalgorithms
that extend existing algorithms. Our algorithms also allow us to
control the target application loss probabilities.

Our future efforts are focused on alternate definitions of opti-
mality (instead of minimalD for achieving a targetpR), which
we have found to be too sensitive to the tail of the network delay
distributions. We are also investigating other mechanisms for
adapting� in the adaptively virtual algorithms, such as multi-
plicative increase and linear decrease. Finally, we are exploring
the sensitivity of our algorithms to the various tunable parame-
ters they make use of.

VII. A CKNOWLEDGMENTS

The authors would like to thank Dina Katabi, S. Keshav, Sue
Moon, Ramachandran Ramjee and Yin Zhang for their help and
comments.



INFOCOM 2000 7

REFERENCES

[1] Jean-Chrysostome Bolot, “End-to-end packet delay and loss behavior in
the Internet,” inSIGCOMM Symposium on Communications Architectures
and Protocols, Deepinder P. Sidhu, Ed., San Francisco, California, Sept.
1993, ACM, pp. 289–298, also inComputer Communication Review23
(4), Oct. 1992.

[2] Vern Paxson, “End-to-end internet packet dynamics,” inSIGCOMM Sym-
posium on Communications Architectures and Protocols, Cannes, France,
Sept. 1997.

[3] Amarnath Mukherjee, “On the dynamics and significance of low fre-
quency components of internet load,”Internetworking: Research and Ex-
perience, vol. 5, no. 4, pp. 163–205, Dec. 1994.

[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated service,” Request for Comments 2475, In-
ternet Engineering Task Force, Dec. 1998.

[5] J. Wroclawski, “Specification of the controlled-load network element ser-
vice,” Request for Comments 2211, Internet EngineeringTask Force, Sept.
1997.

[6] S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed
quality of service,” Request for Comments2212, Internet Engineering
Task Force, Sept. 1997.

[7] C. Perkins and O. Hodson, “Options for repair of streaming media,” Re-
quest for Comments 2354, Internet Engineering Task Force, June 1998.

[8] Colin Perkins, Orion Hodson, and Vicky Hardman, “A survey of packet
loss recovery techniques for streaming audio,”IEEE Network, vol. 12, no.
5, pp. 40–48, Sept. 1998.

[9] Nachum Shacham and Paul McKenney, “Packet recovery in high-speed
networks using coding and buffer management,” inProceedings of the
Conference on Computer Communications (IEEE Infocom), San Fran-
cisco, California, June 1990, IEEE, pp.124–131.

[10] J. Rosenberg and H. Schulzrinne, “An RTP payload format for generic
forward error correction,” Internet Draft, Internet Engineering Task Force,
June 1999, Work in progress.

[11] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” ACM Computer Communication Review, vol. 27, no. 2, pp.
24–36, Apr. 1997.

[12] C. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J. C. Bolot,
A. Vega-Garcia, and S. Fosse-Parisis, “RTP payload for redundant audio
data,” Request for Comments 2198, Internet EngineeringTask Force, Sept.
1997.

[13] Jean-C. Bolot and Andres Vega-Garcia, “The case for fec-based error
control for packet audio in the internet,”ACM Multimedia Systems, pp. –,
1997.

[14] Jean-Chrysostome Bolot and Andres Vega Garcia, “Control mechanisms
for packet audio in the internet,” inProceedings of the Conference on
Computer Communications (IEEE Infocom), San Fransisco, California,
Mar. 1996.

[15] Vicky Hardman, Angela Sasse, Mark Handley, and Anna Watson, “Re-
liable audio for use over the internet,” inProc. of INET’95, Honolulu,
Hawaii, June 1995.

[16] Danny Cohen, “Issues in transnet packetized voice communications,” in
Proceedings of the Fifth Data Communications Symposium, Snowbird,
Utah, Sept. 1977, ACM, IEEE, pp.6–10 – 6–13.

[17] Warren A. Montgomery, “Techniques for packet voice synchronization,”
IEEE Journal on Selected Areas in Communications, vol. SAC-1, no. 6,
pp. 1022–1028, Dec. 1983.

[18] Ramachandran Ramjee, Jim Kurose, Don Towsley, and Henning
Schulzrinne, “Adaptive playout mechanisms for packetized audio applica-
tions in wide-area networks,” inProceedings of the Conference on Com-
puter Communications (IEEE Infocom), Toronto, Canada, June 1994, pp.
680–688, IEEE Computer Society Press, Los Alamitos, California.

[19] Sue B. Moon, Jim Kurose, and Don Towsley, “Packet audio playout delay
adjustment: performance bounds and algorithms,”ACM/Springer Multi-
media Systems, vol. 5, no. 1, pp. 17–28, Jan. 1998.

[20] Jonathan Rosenberg, Lili Qiu, and Henning Schulzrinne, “Integrating FEC
into adaptive voice playout buffer algorithms on the internet,” Technical
Report CUCS-00X-99, Columbia University, New York, New York, Aug.
1999.

[21] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a trans-
port protocol for real-time applications,” Request for Comments 1889,
Internet Engineering Task Force, Jan. 1996.

[22] Jean-Chrysostome Bolot, Sacha Fosse-Parisis, and Don Towsley, “Adap-
tive FEC-Based error control for interactive audio in the internet,” in
Proceedings of the Conference on Computer Communications (IEEE Info-
com), New York, Mar. 1999.

[23] Sue Moon, Paul Skelly, and Don Towsley, “Estimation and removal of
clock skew from network delay measurements,” inProceedings of the

Conference on Computer Communications (IEEE Infocom), New York,
Mar. 1999.



INFOCOM 2000 8

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
pp

lic
at

io
n 

L
os

s 
Pr

ob
ab

ili
ty

Network Loss Probability

Exp-avg vs. Its Extension

Exp-avg
Exp-avg (add (N-1)*pkt-length)
Exp-avg Ext

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Exp-avg vs. Its Extension

Exp-avg
Exp-avg (add (N-1)*pkt-length)
Exp-avg Ext

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
pp

lic
at

io
n 

L
os

s 
Pr

ob
ab

ili
ty

Network Loss Probability

Spk-det vs. Its Extension

Spk-det
Spk-det (add (N-1)*pkt-length)
Spk-det Ext

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Spk-det vs. Its Extension

Spk-det
Spk-det (add (N-1)*pkt-length)
Spk-det Ext

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
pp

lic
at

io
n 

L
os

s 
Pr

ob
ab

ili
ty

Network Loss Probability

Window vs. Its Extension

Window
Window (add (N-1)*pkt-length)
Window Ext

0

0.05

0.1

0.15

0.2

0.25

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Window vs. Its Extension

Window
Window (add (N-1)*pkt-length)
Window Ext

Fig. 1. Performance of adaptively virtual algorithms on trace 2



INFOCOM 2000 9

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 0.05 0.1 0.15 0.2

A
pp

lic
at

io
n 

L
os

s 
Pr

ob
ab

ili
ty

Network Loss Probability

Trace 1

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Trace 1

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
pp

lic
at

io
n 

L
os

s 
Pr

ob
ab

ili
ty

Network Loss Probability

Trace 2

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.05

0.1

0.15

0.2

0.25

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Trace 2

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
pp

lic
at

io
n 

L
os

s 
Pr

ob
ab

ili
ty

Network Loss Probability

Trace 3

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Trace 3

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

Fig. 2. Comparison of loss and delay performance across all algorithms



INFOCOM 2000 10

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
pp

lic
at

io
n 

L
os

s 
Pr

ob
ab

ili
ty

Target Loss Probability

Trace 1

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Target Loss Probability

Trace 1

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
pp

lic
at

io
n 

L
os

s 
Pr

ob
ab

ili
ty

Target Loss Probability

Trace 2

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Target Loss Probability

Trace 2

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
pp

lic
at

io
n 

L
os

s 
Pr

ob
ab

ili
ty

Target Loss Probability

Trace 3

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Target Loss Probability

Trace 3

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

Fig. 3. Performance of algorithms in achieving varying target loss probability


