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Abstract
Recent interest in supporting packet-audio applica-

tions over wide area networks has been fueled by the
availability of low-cost, toll-quality workstation audio
and the demonstration that limited amounts of inter-
active audio can be supported by today's Internet. In
such applications, received audio packets are bu�ered,
and their playout delayed at the destination host in or-
der to compensate for the variable network delays. In
this paper we investigate the performance of four dif-
ferent algorithms for adaptively adjusting the playout
delay of audio packets in an interactive packet-audio
terminal application, in the face of such varying net-
work delays. We evaluate the playout algorithms using
experimentally-obtained delay measurements of audio
tra�c between several di�erent Internet sites. Our re-
sults indicate that an adaptive algorithm which explic-
itly adjusts to the sharp, spike-like increases in packet
delay which we observed in our traces can achieve a
lower rate of lost packets for both a given average play-
out delay and a given maximum bu�er size.

1 Introduction
During the past several years, there has been a sig-

ni�cant increase in interest in the use of packetized
audio over wide-area, packet-switched networks. For
example, live audio from several sessions of the March
1992 Internet Engineering Task Force (IETF) meet-
ing were \audiocast" over the Internet to participants
at 20 sites [3]. More recently, sessions from the IETF
meeting in Amsterdam were audiocast (and videocast)
to over 500 users, using a semi-permanent multicast
testbed, known as the mbone, layered over the Inter-
net. Much of this interest has been fueled by the avail-
ability of low-cost, toll-quality audio on workstations
and the realization (via demonstration) that limited
amounts of interactive audio can indeed be supported
by today's Internet.

From an application standpoint, a principal chal-
lenge in supporting interactive audio over a wide-area
network is the need to provide synchronous playout
of audio packets in the face of stochastic end-to-end
network delays. This is typically achieved by bu�er-
ing received audio packets (i.e., delaying their play-
outs) for enough time so that \most" of the packets
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will have been received before their scheduled playout
times. This additional arti�cial delay until playout
can either be �xed throughout the duration of an au-
dio call, or may vary adaptively during a call's lifetime
[4, 9, 14]. Packets which are not received before their
scheduled playout time are considered lost. Packet
loss rates of between 1 and 10% can be tolerated, de-
pending on the manner in which voice is coded and
missing packets are masked [7].

In this paper we investigate the performance of four
di�erent algorithms for adaptively adjusting the play-
out delay of audio packets in an interactive packet-
audio terminal application, in the face of such varying
network delays. This work is motivated in part by
recent Internet delay measurements [2, 12] indicating
that end-to-end delays may 
uctuate rapidly and sig-
ni�cantly over small intervals of time. In comparing
these algorithms, our results indicate that those adap-
tive algorithms which adjust rapidly to these changing
delays can achieve a lower rate of lost packets (due to
late packet arrivals) for both a given average play-
out delay and a given maximum bu�er size. We eval-
uate these playout algorithms using experimentally-
obtained delay measurements of audio tra�c between
several di�erent Internet sites. We note that we do not
consider here the network-level issue of how to control
these delays, but rather the host-level issue of how to
adaptively respond to the variable delays incurred as
packets traverse the network.

The remainder of this paper is structured as fol-
lows. In section 2 we describe the problem of deter-
mining playout delays for packetized voice and survey
past research in this area. In section 3, we describe
the four adaptive playout delay adjustment algorithms
considered in this paper. In section 4 we describe the
manner in which the audio delay traces were obtained
and how these traces were then used to evaluate the
four algorithms. We then quantitatively compare the
performance of these four algorithms and discuss our
results. Section 5 concludes the paper.

2 Background
The use of wide-area, packet-switched networks to

carry packetized voice was an active research area in
the late 70's and early 80's [4, 7, 9, 14] and has again
recently seen a surge in activity, perhaps as a result of
recent demonstrations of carrying such tra�c over the
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Figure 1: Generation and reconstruction of packetized
voice

Internet [3, 13]. Throughout this time, the underlying
model and assumptions regarding the generation and
(to a somewhat lesser extent) the playout of packetized
voice have remained unchanged.

Figure 1, adapted from [4], shows the operation of
the sending and receiving hosts while taking part in
an audio session. At the sender, packets are periodi-
cally generated as a result of the periodic sampling of
an audio source. When the audio source is active (i.e.,
sound is being produced) packets containing the au-
dio samples are generated and sent into the network.
The staircase nature of the sender in Figure 1 indi-
cates that packets are being generated periodically at
the source. In the NeVoT audio terminal program [13]
used in our Internet experiments, one 160 byte audio
packet is generated approximately every 20 millisec-
onds when the speaker is in talkspurt. The average
talkspurt length is typically on the order of several
100's of milliseconds, although the lengths can vary
with di�erent silence detection thresholds.

Packets incur random delays while traversing the
network. This is illustrated by the decidedly non-
staircase nature of the number of received packets as
a function of time in Figure 1. In order to smooth
out such delay jitter, a receiving host can delay the
initiation of periodic playout of received packets for
some time. For example, in Figure 1, if the receiver
delays the beginning of playout until t2; all packets
will have been received by the time their playout is
scheduled. The 45 degree line emanating from t2 in-
dicates the playout time of packet i under a periodic
playout strategy which begins playout at t2: On the
other hand, if the playout delay begins at t1; there
is a shorter playout delay, but packets 6, 7, and 8
will be lost at the receiver, having arrived after their
scheduled playout time. This illustrates the tradeo�
between the delay that an audio application is willing
to tolerate and the packet loss su�ered as a result of
the late arrival of packets.

Figure 1 shows a playout strategy in which the play-
out delay is �xed. If both the propagation delay and
the distribution of the variable component of network

delay are known, a �xed playout delay can be com-
puted such that no more than a given fraction of ar-
riving packets are lost due to late arrival. This ap-
proach is advocated in [1], where this playout delay
is �xed either for the length of the audio call [9, 4],
or is recalculated at the beginning of each talkspurt.
One potential problem with this approach is that the
propagation delay is not known (although it can be
estimated and typically remains �xed throughout the
duration of the audio call). A more serious concern
is that the end-to-end delay distribution of packets
within a talkspurt is not known, and can change over
relatively short time scales [2].

An approach to dealing with the unknown nature
of the delay distribution is to estimate these delays
and adaptively respond to their change by dynami-
cally adjusting the playout delay. In the following
section, we de�ne four receiver-based algorithms for
performing such delay estimation and dynamic play-
out delay adaptation. As we will see, these algorithms
determine a playout delay on a per-talkspurt basis.
Within a talkspurt, packets are played out in a pe-
riodic manner, thus reproducing their periodic gen-
eration at the source. However, the algorithms may
change the playout delay from one talkspurt to the
next, and thus the silence periods between two talk-
spurts at the receiver may be arti�cially elongated or
compressed (with respect to the original length of the
corresponding silence period at the sender). Compres-
sion or expansion of silence by a small amount is not
noticeable in the played-out speech [9].

3 Four adaptive playout delay adjust-
ment algorithms

In this section we de�ne four adaptive playout de-
lay adjustment algorithms. In describing these algo-
rithms, the notation in Figure 2 will be useful. Figure
2 shows the various times associated with the sending
and receiving of packet i within an audio call. We
make no assumptions here about the synchronization
of the host sender and receiver clocks.

We introduce the following times associated with
packet i:

ti : the time at which packet i is generated at the
sending host,

ai : the time at which packet i is received at the
receiving host,

pi : the time at which packet i is played out at the
receiving host,

Dprop : the propagation delay from the sender to
the receiver, which is assumed to be constant
throughout the lifetime of an audio connection,

vi : the queueing delay experienced by packet i as it
is sent from the source to the destination host,

bi : the amount of time that packet i spends in the
bu�er at the receiver, awaiting its scheduled play-
out time, bi = pi � ai,
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Figure 2: Timings associated with packet i

di : the amount of time from when the ith packet
is generated by the source until it is played out
at the destination host, di = pi � ti (this will be
referred to as the \playout delay" of packet i),

ni : the total \delay" introduced by the network, ni =
ai � ti. Because we have not assumed that the
sender and receiver clocks are synchronized, ni

may not be equal to the actual delay experienced
by the packet ).

The idea behind the four playout algorithms de-
scribed in this paper is simple; all follow the so-called
absolute timing method as de�ned by Montgomery [9].
In determining the playout point for packet i, we con-
sider two cases, depending on whether or not it is the
�rst packet in a talkspurt:

� If packet i is the �rst packet of a talkspurt, its
playout time, pi is computed as:

pi = ti + d̂i + 4 � v̂i; (1)

where d̂i and v̂i are estimates of the mean and
variation in the end-to-end delay during the talk-
spurt.

� The playout point for any subsequent packet in a
talkspurt is computed as an o�set from the point
in time when the �rst packet in that talkspurt
was played out. If i was the �rst packet in a
talkspurt and packet j belongs to this talkspurt,
the playout point for j is computed as:

pj = pi + tj � ti: (2)

We note that d̂i and v̂i are computed for every packet
received, although they are only used to determine the
playout point for the �rst packet in any talkspurt. The
four algorithms described in section 3.1 through 3.4
di�er only in the manner in which d̂i is computed. The
computation of v̂i (which in turn depends on d̂i) is the
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Figure 3: Example illustrating playout mechanisms

same for all the algorithms, and is de�ned in equation
3. From an intuitive standpoint, the 4� v̂i term is used
to set the playout time to be \far enough" beyond
the delay estimate so that only a small fraction of
the arriving packets should be lost due to late arrival.
A discussion of this variation measure and standard
measures of variation, such as standard deviation, can
be found in [6].

The playout mechanism is further illustrated in Fig-
ure 3. The graph at the top of the �gure, labeled A,
represents the network delay, ni (on the y-axis), expe-
rienced by packet i transmitted at time ti (note that
the unit of time on the x-axis is the inter-packetization
interval, which is 20 ms in the case of our audio ex-
periments). Two talkspurts are shown in the �gure,
one starting at t1 = 1 and another starting at t7 = 9.
The time axis labeled B shows the arrival pattern of
the packets at the receiver. For example, packets 2,
3 and 4, shown on top of each other, arrive almost
simultaneously at ai = 8; as they experience di�erent
network delays. The remaining three axes illustrate
the playout behavior for three possible delay adapta-
tion scenarios.

The axis labeled C computes the playout delay for
talkspurt 1 to be 8 units and thus schedules the play-
ing of packet 1 at time p1 = 9 units. The remaining
packets in talkspurt 1 are scheduled one after another,
in the order in which they were generated. In this ex-
ample, it is then determined that the playout delay
for the second talkspurt should be be 7 units. Recall
that this playout delay for the packet at the beginning
of every talkspurt depends on the d̂i and the v̂i which
are computed for every packet seen so far and which in
turn depend on the delay adaptation algorithm used.

The axis labeled D illustrates a second possible



if (ni > d̂i) then
d̂i = � � d̂i + (1� �) � ni

else
d̂i = � � d̂i + (1� �) � ni

Figure 4: Algorithm 4

playout scenario, in which playout delay for the �rst
talkspurt is determined to be 7 units. Note that this
leads to the dropping of packet #5, as it doesn't arrive
at the receiver until after its scheduled playout time.
The axis labeled E shows yet another scenario in which
the playout delay for talkspurt 1 is determined to be
9 units.

It is important to note how the silence period be-
tween the two talkspurts di�ers in these scenarios. In
scenario 1, the silence period is one unit of time shorter
than what was generated by the audio source; in the
third scenario, the silence period is completely elim-
inated. From Figure 3, it is also clear that if we set
the playout delay of a talkspurt to be greater than or
equal to the maximum network delay experienced by
any packet in that talkspurt, we would not have any
late packet loss. Of course this value in not known a
priori , although one could possible set a playout de-
lay to a large enough value to ensure that a signi�cant
percentage of packets would not be lost. On the other
hand, setting the playout delay to a high value leads to
longer delays between the transmission and the play-
out of the audio packets; long delays are intolerable
with interactive audio [7]. Thus we desire a playout
adaptation mechanism which has low loss rate as well
as low playout delay.

We now describe the four delay adaptation algo-
rithms considered in this paper.

3.1 Algorithm 1
In our �rst algorithm, the delay estimate for the ith

packet is calculated based on the RFC793 algorithm
[11] and a measure of the variation in the delays is
calculated as suggested by Van Jacobson [6] in the
calculation of round-trip-time estimates for the TCP
retransmit timer. Speci�cally, the delay estimate for
packet i is computed as

d̂i = � � d̂i�1 + (1� �) � ni

and the variation is computed as

v̂i = �v̂i�1 + (1� �)jd̂i � n1j (3)

This algorithm is basically a linear recursive �lter
and is characterized by the weighting factor �. In our
experimental studies, the value of � was chosen to be
0.998002 to conform with the existing implementation
of this algorithm in the distribution of NeVoT 1.4 [13].

3.2 Algorithm 2
The second algorithm is a small modi�cation to

the �rst algorithm, based on a suggestion by Mills [8]
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Figure 5: A typical spike

which would allow the TCP retransmission timer esti-
mate to adapt more quickly to short burst of packets
incurring long delays. The idea is to use a di�erent
weighting mechanism by choosing two values of the
weighting factor, one for increasing trends in the de-
lay and one for decreasing trends. The algorithm is
given in Figure 4.

In our studies, � was chosen as 0.75 and � was
0.998002 as before. The delay variation estimate re-
mains the same as in Algorithm 1.

3.3 Algorithm 3
This algorithm is the delay adaptation algorithm

currently used in NeVoT 1.6. Let Si be the set of all
packets received during the talkspurt prior to the one
initiated by i. The delay estimate is computed as

d̂i = minj2Si
fnjg

3.4 Algorithm 4
In the course of our work, we examined a series of

traces of the observed network delay of audio pack-
ets transmitted point-to-point between several Inter-
net sites. In these traces, we noted frequent occur-
rences of delay spikes. The occurrence of spikes have
been reported by Mills and Bolot[8, 2]. Figure 5,
adapted from one of these traces, depicts a typical
spike. Each point shown represents a packet arriving
at the time indicated by its x-axis value, having expe-
rienced an end-to-end network delay (ni) equal to the
y-axis value.

A spike constitutes a sudden, large increase in the
end-to-end network delay (ni in Figure 2), followed
by a series of packets arriving almost simultaneously,
leading to the completion of the spike. In Figure 5
notice how after the sudden increase in delay, approx-
imately 50 packets arrive within a time span of 200
milliseconds. (Under normal conditions, we would ex-
pect a packet approximately every 20 milliseconds or
around 10 packets over a period of 200 milliseconds).

The �rst three delay adaptation algorithms (includ-
ing Algorithm 1) do not adapt fast enough to such
spikes - taking too long to increase their delay esti-
mate on detection of a spike and too long again to
decrease their estimate once the spike is over. Algo-
rithm 4, on the other hand does adapt to such spikes.



3.4.1 Design

A spike is characterized by a sudden large increase in
the delay. Hence, detection of the beginning of a spike
is simple - we need only check if the delay between
consecutive packets at the receiver is large enough for
it to be called a spike. i.e.,

if (abs(ni � ni�1) > spike threshold)
mode = IMPULSE;

The actual formula we used for computing
spike threshold is given in the pseudocode for Algo-
rithm 4 in Figure 6.

Once we enter the impulse mode on detection of a
spike, it seems natural for us to \follow" the spike.
Thus, in impulse mode, we allow our estimate to be
dictated only by the most recently observed delay val-
ues. Speci�cally,

if (mode == IMPULSE) d̂i = d̂i�1 + ni � ni�1;

The detection of the completion of a spike is a bit
tricky. For example, we observed that in certain
cases the delay on completion of the spike was di�er-
ent from the delay before the beginning of the spike.
Nonetheless, one prominent characteristic (see Figure
5) was that a series of packets would arrive one af-
ter another almost simultaneously at the receiver, and
almost immediately following the observed increase
(upward spike) in delay. Since the packets within a
talkspurt are transmitted at regular intervals at the
sender, near simultaneous arrivals implies that subse-
quent packets in the burst of arrivals have experienced
progressively smaller end-to-end network delays. We
thus employ a variable (var in the pseudcode in Figure
6) with an exponentially decaying value that adjusts
to the slope of spike. When this variable has a small
enough value, indicating that there is no longer a sig-
ni�cant slope, the algorithm reverts back to normal
mode.

Recall that ni is the end-to-end network delay of
packet i: In algorithm 4, the equation

var = var=2 + abs((ni � ni�1)=8 + (ni � ni�2)=8);

uses the two most recent delay observations together
with the current value, ni, to track the \slope" of the
spike. In the case of a spike, abs(2ni � ni�1 � ni�2)
is going to be non-zero and will determine whether
the spike has ended or not. The full description of
the algorithm is given in Figure 4. All the parameters
involved in the detection of the beginning and end
of a spike were chosen based on our examination of
the behavior of a number of di�erent spikes from a
large set of audio traces (not reported here) that we
have collected over time. In algorithm 4, all times
are measured in bytes, with 20 milliseconds (the voice
packetization interval) of time corresponding to 160
bytes (i.e., 160 bytes of audio data are generated at
the sender in 20 ms of time).

3.5 Implementation
The delay adaptation algorithm is run for every

packet received at the destination host. Typically, the

1. ni = Receiver timestamp � Sender timestamp;
2. if (mode == NORMAL) f

if (abs(ni � ni�1) > abs(v̂) � 2 + 800) f
var = 0; /* Detected beginning of spike */
mode = IMPULSE;

g
else f
var = var=2 + abs((2ni � ni�1 � ni�2)=8);
if (var <= 63) f
mode = NORMAL; /* End of spike */
ni�2 = ni�1;
ni�1 = ni;
return;

g
g

3. if (mode == NORMAL)
d̂i = 0:125 � ni + 0:875 � d̂i�1;

else
d̂i = d̂i�1 + ni � ni�1;

v̂i = 0:125 � abs(ni � d̂i) + 0:875 � v̂i�1;
4. ni�2 = ni�1;
ni�1 = ni;
return;

Figure 6: Algorithm 4

packetization interval is around 20 ms, which implies
the that the adaptation algorithm bee�cient enough
to execute 50 times a second while incurring low over-
head.

The low pass �lter computation can be optimized,
as suggested in [6], by keeping scaled versions of d̂i and
v̂i and doing the multiplication/division as shift oper-
ations. The computation of the variable var in Algo-
rithm 4 can also be performed similarly as all fractions
are chosen such that they are reciprocal powers of 2.

4 Algorithm Comparison
4.1 Experimental Internet delay mea-

surements
NeVoT [13], an audio conferencing tool, was used

to collect experimental data. This tool has options for
tracing various network- and audio-dependent events
which occur during an audio conversation. The traces
were obtained on Sun Sparcstation platforms using vat
audio packet format as the audio protocol and unicast
UDP as the transport protocol. As noted previously,
NeVoT transmits 160 bytes of audio data, approxi-
mately every 20 milliseconds.

In all our experiments, we obtained traces both at
the source and at the receiver hosts.. Thus, we had a
log of when a packet left the source and when it arrived
at the receiver. Our traces were obtained by repeat-
edly playing an audio �le at the sending host, with
the receiving host \listening" to the received packets.
The sites chosen were University of Massachusetts-
Amherst(UMASS), INRIA-France (INRIA), Univer-
sity of California-Irvine(UCI) and Osaka University-



Japan(OSAKA). The route between UMASS and OS-
AKA had 26 hops and was very lossy. We observed
packet loss rates of up to 20-30%. The route between
UMASS and INRIA had 27 hops but the packet loss
rate was around 2-10%. The route between UMASS
and UCI had 18 hops and had the lowest loss rate of
around 1-4%. All our traces were taken between hosts
connected point-to-point and while the host machines
were relatively idle. In this paper, we present our anal-
ysis based on the traces shown in Table 4.1.

4.2 A comparison and discussion of re-
sults

In order to compare the four algorithms, we wrote
a simulator which takes the received packet trace �le
generated by running NeVoT and simulates the be-
havior of the playout algorithms. The simulator ran
the four algorithms on the same set of traces and we
were thus able to compare the performance of the al-
gorithms under identical network conditions.

One of our primary performance metrics is the per-
centage of packets lost at the receiving host. Such loss
results from either the late arrival of a packet (i.e., the
arrival of a packet after its scheduled playout time) or
an extremely premature arrival of a packet. In the lat-
ter case, packet loss results from a limitation on the
size of the (�nite) audio storage bu�er.

In our simulations, we adopted a circular bu�er-
ing scheme (the one implemented in NeVoT) in which
packets are played out sequentially and periodically
from the bu�er. When a packet arrives, its play-
out time is computed (according to one of the algo-
rithms described in sections 3.1 - 3.4) and the packet
is placed in the appropriate location in the playout
bu�er. Thus, if the ith packet is currently being played
out and the packet bu�er can hold up to k audio pack-
ets, any packet arriving at this time with a number of
i + k or greater will be discarded, having arrived too
far in advance of its playout time to be bu�ered. We
study the e�ect that the length of this audio playout
bu�er has on the performance of the four playout de-
lay adaptation algorithms.

Figures 7 to 13, compare the performance of the
four algorithms for the traces shown in Table 4.1. Let
us �rst consider Figure 7. The upper graph plots the
percentage packet loss versus the average playout de-
lay of successfully played-out packets. The average
playout delay was computed by taking the average of
the di values of the successfully played-out packets and
subtracting the smallest value of di in the entire trace.
(The subtraction of this constant value was done to
give an idea of the average delay incurred by packets
as a result variable network delay and bu�ering at the
receiving host { delays beyond the immutable propa-
gation delay). Each curve in the upper plot is param-
eterized by a di�erent maximum bu�er size. That is,
for a given maximum bu�er size and the given trace
(trace # 1 in this case), each algorithm results in a
certain packet loss and a certain average playout de-
lay; these points are plotted in the upper graph in
Figure 7. As indicated in the lower graph in Figure
7 this maximum bu�er size ranged from 160 bytes to
4K bytes.

The upper graph in �gure 7 indicates that, for this
trace, Algorithm 4 performs slightly better than Algo-
rithms 1 and 3 in the range of loss rates of interest (less
than 10% loss). Algorithm 2 performs quite poorly
with this trace, as with other traces as well. Although
this algorithm may be e�ective in reducing the number
of super
uous retransmissions in the case of TCP, it
produces long playout delays in the packetized audio
environment with no appreciable reduction in losses.
This is further evidence that what is good for one do-
main need not necessarily be good in another domain,
even though the idea behind both (estimating delays)
is the same.

The lower graph in �gure 7 plots packet loss as a
function of the maximum bu�er size. By this compar-
ison, Algorithm 4 again performs slightly better than
Algorithms 1 and 3 in the regions of interest.

Figures 8 though 13 plot loss versus average delay,
for the remaining traces shown in Table 4.1. Although
we also have results on loss versus bu�er size, for these
traces, we do not present them here for lack of space.
Generally, we note that Algorithm 4 performs as well
as, or much better than, the other three algorithms.
In Figures 8 and 9, Algorithms 3 and 4 perform a lit-
tle better than Algorithm 1. In Figures 12 and 13,
Algorithm 4 outperforms Algorithms 1 and 3 by a sig-
ni�cant margin. For example, in Figure 13, the av-
erage playout delay is about 300 milliseconds less for
the same loss rate under Algorithm 4 than under the
other playout strategies. Under traces 4 and 5 (Fig-
ures 10 and 11), Algorithms 3 and 4 perform slightly
worse then Algorithm 1, although a di�erence in av-
erage playout delay if less than 10 milliseconds is not
that signi�cant. The reason that algorithm 4 performs
much better under traces 6 and 7 and not as well under
traces 4 and 5 can be understood if we look at Figures
14 and 15. The jitter in the delays in the former is
extremely large while almost negligible in the latter.
Algorithm 4 has a signi�cant performance advantage
in the case of large delay jitters (i.e., the spike-like de-
lay behavior shown in Figures 5 and 14) as a result of
its spike detection/adaptation algorithm.

A direct comparison between Algorithms 1 and 3
is more di�cult; in some cases, Algorithm 3 performs
a little better and in some cases Algorithm 1 does
better. A point in favor of Algorithm 3 is the minimal
computation involved. Note that Algorithm 3 doesn't
fare well in cases where the jitter is high. For example,
under trace 7 (Figure 13), the average playout delay
under Algorithm 3 is even worse than the that under
Algorithm 2 for the same loss rate. This indicates
that taking the minimum of delay values of packets
in the previous talkspurt may not be a robust delay
estimate when delay varies signi�cantly from talkspurt
to talkspurt.

5 Conclusions
In this paper we have investigated the performance

of four di�erent algorithms for adaptively adjusting
the playout delay for audio packets in the face of vary-
ing network delays. We evaluated these playout algo-
rithms using experimentally-obtained delay measure-
ments of audio tra�c between several di�erent In-



Trace # Sender Receiver Start time(Receiver) Day Duration of trace
1. INRIA UMASS 09:20 P.M. Aug 26 Thursday 580 secs
2. INRIA UMASS 10:35 A.M. Aug 27 Friday 302 secs
3. UCI UMASS 08:28 P.M. Aug 24 Tuesday 132 secs
4. UCI UMASS 01:20 P.M. Aug 25 Wednesday 634 secs
5. UCI INRIA 09:00 P.M. Sep 18 Saturday 1091 secs
6. OSAKA UMASS 07:48 A.M. Sep 08 Wednesday 125 secs
7. OSAKA UMASS 00:35 A.M. Sep 24 Friday 649 secs

Table 1: Trace Details

ternet sites. In comparing these algorithms, our re-
sults indicate that an adaptive algorithm (Algorithm
4) which explicitly adjusts to the sharp, spike-like in-
creases in packet delay which we observed in our traces
can achieve a lower rate of lost packets for both a given
average playout delay and a given maximum bu�er
size.

We have compared these algorithms from the per-
spective of number of packets dropped. We are cur-
rently investigating possibilities for quantifying the
distortion which occurs when silence periods are ar-
ti�cially contracted or expanded, and comparing the
algorithms based on this factor. Delay adaptation in
the face of varying network delays is crucial in deter-
mining the audio quality at the receiver; additional re-
search is needed in formalizing and arriving at a better
understanding of the dynamics of network delays.
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Figure 7: Comparison using trace 1 (UMASS-INRIA)
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Figure 8: Comparison using trace 2 (UMASS-INRIA)
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Figure 9: Comparison using trace 3 (UMASS-UCI)
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Figure 10: Comparison using trace 4 (UMASS-UCI)
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Figure 11: Comparison using trace 5 (UCI-INRIA)
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Figure 12: Comparison using trace 6 (UMASS-
OSAKA)
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Figure 13: Comparison using trace 7 (UMASS-
OSAKA)
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Figure 14: Delay experienced by the audio packets
(UMASS-OSAKA)
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Figure 15: Delay experienced by the audio packets
(UMASS-UCI)


