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Abstract. Traditional perimeter security solutions cannot cope with the com-
plexity of VoIP protocols at carrier-class performance. We implemented a 
large-scale, rule-based SIP-aware application-layer-firewall capable of detect-
ing and mitigating SIP-based Denial-of-Service (DoS) attacks at the signaling 
and media levels. The detection algorithms, implemented in a highly distributed 
hardware solution leveraged to obtain filtering rates in the order of hundreds of 
transactions per second, suggest carrier class performance. Firewall performs 
SIP traffic filtering against spoofing attacks; and request, response and out-of-
state floods. The functionality and performance of the DoS prevention schemes 
were validated using a distributed test-bed and a custom-built, automated test-
ing and analysis tool that generated high-volume signaling and media traffic, 
and performed fine grained measurements of filtering rates and load-induced 
delays of the system under test. The test-tool included SIP-based attack vectors 
of spoofed traffic, as-well-as floods of requests, responses and out-of-state mes-
sage sequences. This paper also presents experimental results. 
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1   Introduction 

Denial-of-Service (DoS) attacks are explicit attempts to disable a target thereby pre-
venting legitimate users from making use of its services. DoS attacks continue to be 
the main threat facing network operators. As telephony services move to Internet 
Protocol (IP) networks and Voice over IP (VoIP) becomes more prevalent across the 
world, the Session Initiation Protocol (SIP) [1] infrastructure components, which form 
the core of VoIP deployments, will become targets in order to disrupt communica-
tions, gain free services, or simply to make a statement. Since DoS attacks are at-
tempts to disable the functionality of the target, as opposed to gaining operational 
control, they are much more difficult to defend against than traditional invasive ex-
ploits, and are practically impossible to eliminate. We designed and demonstrated 
effective defenses against SIP-specific DoS attacks, with the capability to operate at 
carrier-class rates. We addressed all four aspects that an effective solution against 
DoS attacks should cover namely, definition, detection, mitigation, and validation. 
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Definition characterizes DoS attacks on the SIP infrastructure, examining the threat 
taxonomy to identify specific areas that require research focus. Detection distinguishes 
the attack traffic from valid traffic, whereas mitigation reduces the impact of DoS 
attacks on the target infrastructure. Detection and mitigation schemes work in tandem 
and aim to maintain adequate bandwidth and resources for legitimate traffic, throttle 
the malicious packets and streams, and perform continued analysis to enhance the 
detection and mitigation capabilities. Validation of the defense scheme for correct 
operation, involves modeling the system behavior, building a testing setup capable of 
generating VoIP DoS attacks, quantifying their impact on protected and unprotected 
VoIP infrastructure, and measuring the effectiveness of the defense strategies. 

This paper examines the SIP threat model and DoS taxonomy in Section 2. An 
overview of related work is presented in Section 3. This is followed by SIP-specific 
DoS solutions and filter design in Section 4. The system architecture and implementa-
tion aspects are addressed in Section 5. The benchmarking methodology and the se-
cureSIP toolkit with the experimental results are covered in Section 6. Conclusions 
are presented in Section 7. 

2   Problem Definition: The SIP Threat Model 

This section examines the SIP threat model as the basis for formulating requirements 
for our detection and mitigation strategies. Since SIP is used on the public Internet, 
the threat model assumes an environment in which attackers can potentially read any 
packet on the network. Furthermore, the fact that SIP runs over UDP, provides oppor-
tunities for attacks like spoofing1, hijacking, and message tampering. Attackers on the 
network may also be able to modify packets, perhaps at some compromised interme-
diary node. We note that the security of SIP signaling, however, is independent from 
protocols used to secure transmission of media. For example, SRTP (RFC 3711) [2] 
may be used for end-to-end encryption of the RTP encapsulated audio stream. This 
section is based on the VoIP Security Alliance (VOIPSA) threat taxonomy report [3] 
together with definitions in RFC 3261– SIP [1]. 

There are three basic types of DoS attacks that may occur over a VoIP network, 
namely, exploitation of implementation flaws, exploitation of application level syn-
tactic vulnerabilities, and flooding of the SIP signaling channel or the RTP media 
channels. These attacks may target a VoIP component, such as a SIP proxy, or sup-
porting servers, such as a DNS, or a DHCP server. A DoS attack against a supporting 
server affects the VoIP service in different ways. Attacks against a domain’s DNS 
server result in denial of VoIP calls destined to users in that domain. Attacks against 
an authorization service, used by a SIP proxy to store address-of-record (AOR) to 
User Agent (UA) mappings, can result in denial of service to the UAs registering with 
this proxy. This document, however, focuses exclusively on attacks against SIP-based 
components. The following sub-sections describes the three basic types of attacks in 
the SIP-specific context. 

                                                           
1 Usually referred to as IP spoofing, where an attacker fakes or falsifies the source IP address in 

a SIP message header. 
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DoS Due to Implementation Flaws  
Attack occurs when a specific flaw in the implementation of a VoIP component is 
exploited by a carefully crafted packet sent to cause unexpected behavior. The at-
tacked software component, in this case, has typically not been implemented robustly 
enough to handle these unexpected packets, and also suffers from inadequate software 
assurance testing or negligent patching. The malformed packet interacts with installed 
software and may cause excessive memory or disk consumption, extra CPU process-
ing, a system reboot or system crash. The targeted vulnerability may originate in dif-
ferent levels of the network protocol stack, such as the TCP layer or the SIP layer, or 
in the underlying operating system or firmware [5] and [6]. Examples of implementa-
tion flaws attacks include: 

Malformed signaling: Unusually long or syntactically incorrect SIP message packets, 
referred to as “malformed”, are sent to the UA degrading its performance, resulting in 
its inability to process normal setup and teardown messages for calls. 

Invalid call setup messages: A number of invalid call set up messages, such as a SIP 
ACK request when none is expected, are sent to cause the endpoint to crash, reboot, or 
exhaust all of its resources.  
 
DoS Due to Exploitation of Application-level Vulnerabilities 
Attack occurs when a feature of the VoIP protocol syntax is manipulated to cause a 
DoS attack. Examples of application level attacks against SIP-based components 
include:  

Registration hijacking: The SIP registration mechanism allows a UA to identify itself 
to a registrar as a device whose location is  designated by an AOR. Attackers register 
their devices with other users’ AORs, thereby directing all requests for the affected 
user to the attacker’s device. 

Call hijacking: Once a dialog has been established, subsequent requests are sent to 
modify the state of the dialog or session. For example, the attacker injects a 302 Moved 
Temporarily message in an active session, thereby hijacking the media session. 

Media sessions modification: The attacker spoofs re-INVITE messages, thereby modi-
fying security attributes of a session, reducing Quality of Service (QoS), or redirect-
ing media streams to another device for wiretapping. 

Session teardown: The attacker spoofs a BYE message and injects it into an active 
session, thereby tearing down the session. 

Amplification attacks: The attacker creates bogus requests containing a falsified 
source IP address, and a corresponding Via header field identifying a targeted host, as 
the originator of the request. Subsequently, the attacker sends this request to a large 
number of SIP network elements, thereby causing hapless SIP UAs or proxy servers 
to generate a DoS attack aimed at the target host, typically a server. Similarly, DoS 
can also be carried out on an individual by using falsified Route header field values in 
a request that identifies the target host, and then sending these messages to forking 
proxies that will amplify messages sent back to the target. Record-Route is used to 
similar effect when the attacker is certain that the SIP dialog initiated by a request will 
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result in numerous transactions originating in the backwards direction. An attacker 
can also register a large number of contacts designating the same host for a given 
AOR, in order to use the registrar and any associated proxy servers as amplifiers in a 
DoS attack. Attackers may also attempt to deplete a registrar’s available memory and 
disk resources, by registering large numbers of bindings. Multicast may be also used 
to transmit SIP requests, greatly increasing the potential for DoS attacks. 
 
Note that if the volume of an application-level DoS attack is sufficient to cause re-
source depletion, or excessive performance degradation, the attack is reclassified as a 
flooding DoS attack. 
 
DoS Due to Flooding  
Attack occurs when a large number of packets are sent to a target IP component; 
hence any Internet based service is vulnerable to DoS attacks. DoS attacks on services 
that run on IP represent the broader perspective. The attacker floods the network link 
by generating more packets than the recipient can handle, or overwhelms the target 
making it  too busy processing packets from the attack and hence unable to process 
legitimate packets. Flood attacks for IP components include UDP SYN floods, ICMP 
echo packets, where the attacker generates a large number of packets directed to the 
targeted sources. When this attack is done using multiple distributed sources, such as 
botnets2, the result is a Distributed DoS (DDoS) [4]. Both the DoS and the DDoS 
problem for generic IP systems have received a great deal of attention over the years 
and several commercial products already exist that address this threat. The focus of 
this work, however, is on DoS, and its corresponding DDoS variety, specifically tar-
geted to VoIP and VoIP-based components, for which currently no protection exists. 
Flooding DoS attacks to VoIP-based server components can be broadly classified into 
two categories: 

Signaling floods: The most prominent of this category of attacks involves sending a 
large number of SIP INVITE or REGISTER messages originating from one or multiple 
SIP UAs to cause excessive processing at a SIP proxy server - thus delaying or drop-
ping legitimate session establishment messages. There is a computational expense 
associated with processing a SIP transaction at a proxy server. This expense is greater 
for stateful than for stateless proxy servers as stateful servers maintain client and 
server transaction state machines, while stateless do not. Stateful servers are therefore 
more susceptible to flooding than the stateless type. Floods of messages directed at 
SIP proxy servers may lock up proxy server resources and prevent desirable traffic 
from reaching its destination. 

Media floods: A range of ports known to be open for legitimate RTP streams are 
randomly flooded with meaningless and/or un-sequenced packets, over-claiming 
bandwidth and hindering the RTP QoS.  

                                                           
2 Botnet describes a collection of software robots, or bots, running autonomously on groups of 

zombie computers controlled remotely. It also refers to a network of computers using distributed 
computing software. 
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3   Related Work 

There has been previous effort to protect VoIP deployments from DoS threats. An 
early evaluation of firewalls for VoIP security was proposed in [7], but it lacked con-
crete architectural and implementation aspects. A mitigation strategy for flooding 
DoS attacks on media components using a dynamic pinhole filtering device that 
blocks all traffic not associated with a legitimate call was previously developed as 
part of an earlier phase of this research. We designed and built a scalable SIP-aware 
application layer firewall based on the principle of dynamic pinhole filtering for the 
RTP streams [8] and [9]. This was the first attempt to combine the SIP proxy with a 
commercial hardware based, fast packet processing application server, to achieve 
carrier-class performance and full SIP conformance. 

Wu, Y. et al. [10] and Niccolini, S. et al. [11] have applied intrusion detection and 
prevention mechanisms to safeguard the SIP infrastructure, while the work described 
in [12] makes use of finite state machines to achieve similar goals. An interesting 
approach involving VoIP “honeypots” was proposed in [13]. Extensive work on de-
tecting DoS attacks on IP telephony environments has been published in [14], [15], 
[16], [17] and [18]. Although promising, none of the architectures and algorithms 
proposed so far offer a comprehensive DoS mitigation strategy that scales up to the 
performance needs and complexity of carrier-class VoIP deployments, because they 
are based on software solutions. We are not aware of any specific performance meas-
urements for any of these software based systems. Our solution leverages the Cloud-
Shield Technologies CS-2000 distributed hardware platform [18] that combines the 
processing speed of a distributed network processor platform with the full functional-
ity of a SIP proxy. 

4   SIP-specific DoS Solutions and Filter Design 

We propose a novel approach that builds on our earlier SIP-aware firewall design, 
introducing two phases of VoIP traffic filtering, a dynamic pinhole filter (Filter I) for 
the media traffic, followed by SIP-specific filters (Filter II) for the signaling traffic. 
Figure 1 gives a high-level view of a SIP security system consisting of these two 
levels of filtering. Filter I provides the first line of defense by allowing only the sig-
naled media to traverse the firewall, preventing any DoS attacks on the media proc-
essing end points. Additionally, it provides standard static filtering for traditional 
attacks, described as “other attack traffic” in Figure 1, by only allowing traffic on the 
standard SIP (5060) port. The SIP signaling channel, however, can itself contain SIP-
based DoS and hence the motivation forOP Filter II. Filter II, which is comprised of a 
series of SIP-based filters provide the second line of defense by protecting the SIP 
signaling port (and thereby the SIP-proxy) from DoS attacks.  

This paper covers design, realization, and analysis of SIP-specific filters including 
a return routability filter, rate-limiting filter and state-validation filter. Together, these 
filters can protect the SIP infrastructure against known and currently achievable 
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Fig. 1. Two-phase filtering (SIP and media) 

spoofing attacks, flood-of-requests and flood-of-response attacks, and “out-of-state” 
signaling attacks. We built a scalable security system prototype based on the CS-2000 
fast packet processing application server, combined with the Columbia SIP Proxy 
sipd, developed as part of the Columbia InterNet Multimedia Architecture (CINEMA) 
[19], enabling an effective realization of the proposed SIP security architecture for 
carrier-class VoIP deployments.  

The filters are realized in the deep-packet processing module (DPPM) of the SIP-
aware firewall system deployed at a VoIP network perimeter. The DPPM includes 
very high speed silicon databases that use content addressable memory (CAM) tech-
nology for table look-up and keeping state. Additionally, the DPPM is equipped with 
a regular expression engine used for pattern matching logic in state validation. Some 
of the filters require the use of a firewall control protocol (FCP) to update state tables 
in the DPPM, while others result from packet logic manipulation directly on the 
DPPM, and directly updated on the CAM tables. The filters include a return routabil-
ity check, and a series of filters based on SIP method manipulation mechanisms that 
can be used to cause flooding. 

 
Return Routability Filter 
The return routability filter is designed to detect and block spoofed incoming requests 
by using the SIP Digest Authentication3 mechanism. The SIP protocol specifies that 
upon receiving a request, other than CANCEL and ACK, a proxy can challenge the re-
quest initiator to provide assurance of its identity. The challenge is sent in a Proxy-
Authorization header field of a 407 Proxy Authentication Required response, including a 

                                                           
3 Digest Authentication provides message authentication and replay protection only, without 

message integrity or confidentiality. 
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freshly computed nonce4 value. The initiator then retries the request with the proper 
credentials, along with a pre-shared secret5, in a Proxy-Authorization header field.  

The proxy responds with the digest authentication challenge whenever it gets a 
new request, simultaneously instructing the firewall to create a filter rule using the 
FCP. This firewall filter will then block all further unauthenticated requests from the 
same IP address from getting to the proxy. If the request originator responds with the 
correct challenge response, the proxy removes the filter rule from the firewall. The 
filter is temporary, with a short expiration time on the order of seconds. This process 
can be viewed as layer-7-controlled-layer-3- filtering. An example call flow diagram of 
the return routability filter operation is shown in Figure 2. The corresponding detailed 
call flows are in Appendix A. 

INVITE (src addr=IP1) F2

407 challenge, “opaque” F3

Create filter (IP1,”opaque”) F4

INVITE (src addr=IP1) F1

INVITE (src addr=IP1) F6
Challenge-response, “opaque”

407 challenge, ”opaque” F5

INVITE (src addr=IP1) F7
Challenge-response, “opaque”

Remove filter (IP1,”opaque”) F8

INVITE F9

SIP

FCP

DPPM Proxy (sipd)

INVITE (src addr=IP1) F2

407 challenge, “opaque” F3

Create filter (IP1,”opaque”) F4

INVITE (src addr=IP1) F1

INVITE (src addr=IP1) F6
Challenge-response, “opaque”

407 challenge, ”opaque” F5

INVITE (src addr=IP1) F7
Challenge-response, “opaque”

Remove filter (IP1,”opaque”) F8

INVITE F9

SIP

FCP

DPPM Proxy (sipd)

 

Fig. 2. The call flow for digest authentication 

In the call flow described in Figure 2, the DPPM intercepted the first INVITE request 
(F1) with IP1 as the source IP address. The DPPM did not find a match in the filter table 
and hence forwarded the request to the proxy (F2). The proxy received the INVITE re-
quest and responded with a 407 message containing the challenge (F3), and also by 
sending an FCP message (F4) to create a temporary filter rule blocking further requests 
from IP1. The filter rule was based on the nonce that was part of the authentication 
challenge, and was expected to be included in the authentication response unchanged. 
This FCP message was processed by the DPPM and the filter was created. When the 

                                                           
4 A nonce is a uniquely generated string used for one challenge only, computed using IP ad-

dress, timestamp, username, password and realm, and has a lifetime of 60 seconds. 
5 SIP allows the use of “null authentication”, where a proxy can authenticate an “anonymous” 

username with no password. The return routability filter was designed based on null authenti-
cation, which is a necessary and sufficient condition to establish return routability to the re-
quest initiator, avoiding the extra overhead inducing password management process.  
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new SIP request arrived, the DPPM intercepted it (F6) and tried to match the source IP 
address with the IP address in the filter table. If there was no match then the request was 
blocked. Otherwise, if the nonce values were equal, the request was forwarded to the 
proxy (F7) and the proxy successfully authenticated the INVITE request and sent an FCP 
message (F8) to remove the filter from DPPM. By configuring the proxy not to keep 
any state until the return routability was verified by the firewall, the possibility of proxy 
overloading with potentially spoofed request floods could be eliminated. 

 
SIP Method-based Filters  
Method-based filters were designed to mitigate attacks that exploit protocol vulner-
abilities to cause flood DoS. The design focused on rate-limiting SIP requests and 
response floods, and also using state validation mechanisms to achieve this. 

SIP is a request/response protocol. A request and its associated responses constitute 
a SIP transaction, which follows the same signaling path through a set of SIP servers. 
A SIP call, as presented in Figure 3, can be broken down to four levels of granularity. 
A call is composed of one or more dialogs, while a dialog contains one or more trans-
actions. A transaction can be a client transaction or a server transaction; and each of 
the client/server transactions can be divided into INVITE and non-INVITE types. 

INVITE

180 Ringing

BYE

Caller CALLEE

ACK

Individual Messages

Transaction 2

INVITE

CALLEE

ACK

Transaction 1

INVITE

200 OK

Caller CALLEE

ACK

Individual Messages

Transaction 2

INVITE

CALLEE

ACK

Transaction 1

200 OK

Dialog

INVITE

180 Ringing

BYE

Caller CALLEE

ACK

Individual Messages

Transaction 2

INVITE

CALLEE

ACK

Transaction 1

INVITE

200 OK

Caller CALLEE

ACK

Individual Messages

Transaction 2

INVITE

CALLEE

ACK

Transaction 1

200 OK

Dialog

 

Fig. 3. Levels of granularity in a SIP session 

A SIP dialog is identified by a combination of the Call-ID6, From tag and To tag. A SIP 
transaction is identified by the branch7 parameter of the Via header and the Method name 
in the CSeq field. These fields can be used to construct respective dialog ID and transac-
tion ID identifiers. Both of these identifiers are used to maintain the corresponding state 

                                                           
6 Call-ID is a globally unique identifier for a call, generated by the combination of a random 

string and the phone's host name or IP address. 
7 The branch parameter of the Via header is a unique value across space and time that is created 

by a UA for a particular and specific request. 
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information. Rate-limiting can be applied either at the dialog level or at the transac-
tion level; however, for every SIP method except for BYE and CANCEL, the dialog level 
does not provide sufficiently precise parameters to perform meaningful thresholding. 
For example, it may be hard to distinguish a legitimate INVITE from a spurious one(s) 
if they have different transaction IDs. Hence, for every other method, transaction level 
is the most effective way to narrow down to more specific parameter thresholds for 
filtering. 

Dialog based attacks include CANCEL and BYE attacks, that can only happen at the 
dialog level, as both are dialog terminating requests. In a CANCEL attack, a spurious 
CANCEL request is sent before the final response of a dialog/transaction, thereby termi-
nating the dialog prematurely, hence causing DoS. BYE attacks involve sniffing8 session 
parameters (such as Call-ID), and generating illegitimate BYE requests to terminate an 
on-going session without knowledge of any of the involved end-clients. To keep track 
of BYE messages, record-routing has to be enabled at the proxy. Alternatively, the firewall 
at the perimeter may be used to identify unsolicited BYE messages. In addition to BYE 
message filtering based on dialog ID, a table of all participating URIs must be main-
tained to verify whether contact header field of the BYE message corresponds to one of the 
participating URIs. The REFER attack, similar to a man-in-the-middle attack, involves an 
eavesdropper manipulating the Referred-By header to cause DoS. REFER attacks can be 
mitigated by deploying S/MIME to detect possible manipulation of the Referred-By header 
data, but are not covered in our current filter design.  
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Fig. 4. SIP trapezoid 

Transaction-based attacks on a proxy include floods of INVITE requests containing 
same transaction ID, thus causing processing overload. Furthermore, a re-INVITE attack 
can change on-going session parameters by issuing or resending INVITE or UPDATE 

                                                           
8 Sniffing the Call-ID in a SIP message is easy to accomplish given the clear-text nature of the 

protocol in its basic form, i.e. non-encrypted. 
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requests with different parameters. Transaction-based rate-limiting filters detect and 
mitigate floods of INVITE requests with the same transaction ID, and all of their associ-
ated responses, to stop them at the perimeter. 

The SIP trapezoid, as specified in RFC 3261 and shown in Figure 4, is introduced 
to describe the method-based rate-limiting filters in more detail. The transactions 
depicted in the trapezoid are shown in Figure 5 in their client/server relationships. In 
reference to the interaction between the User Agent Client (UAC) and an outbound 
proxy, the request is an INVITE, and the associated responses are comprised of 100 
Trying, 180 Ringing and 200 OK. From the proxy's perspective, this is an INVITE server 
transaction, with the 200 OK ending the transaction and taking the proxy to Terminate 
state. Accordingly, the messages at proxy are rate-limited to one INVITE per transaction 
(incoming); a finite number of 100 Trying per transaction (outgoing); a finite number of 
180 Ringing per transaction (outgoing); and one 200 OK per transaction (outgoing). 

The finite number of allowed 100 Trying and 180 Ringing messages is flexible and 
should be decided by different network parameters depending on the complexity of 
the routed network. To allow for retransmissions, the threshold for INVITE and 200 OK 
messages may also be raised from one message to a higher finite number that can be 
experimentally determined from the network configuration under test. Arbitrary mes-
sages that do not conform to the above sequence may leave the proxy in an unwanted 
state. A similar rate-limiting analysis can be applied to the transactions between the 
outbound proxy and inbound proxy, and User Agent Server (UAS) and inbound 
proxy. The number of INVITEs from a particular UAC is also limited to a single call at 
a time, or to some particular value based on the size of n-way conferences allowed. 
For example, if an INVITE message is from a particular UAC’s IP address already in 
the CAM table, with its state label being intermediate (in-progress), then the new IN-
VITE will be rejected. In order to avoid state exhaustion at the proxy, no state will be 
kept during any of these steps.  

 

Fig. 5. SIP client-server interaction through inbound and outbound proxy 

State Validation Filters 
Extending the analysis in the previous section to the transactions between the UAC 
and outbound proxy, it is not only the rate but also the order of arrival of messages that 
may leave the proxy in an unexpected state. The schematics in Figures 6 and 7 describe 
the state machines for INVITE client and server transactions, respectively. A detailed 
description of INVITE and non-INVITE client/server transactions can be found in [1]. 
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Fig. 6. INVITE client transaction 

 

Fig. 7. INVITE server transaction 

Using the SIP state machine protocol, it is possible to define the set of expected 
messages and hence discard the sequences considered out-of-state. The firewall filter 
will have state tables that point to the current state of a transaction from {Proceeding, 
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Completed, Confirmed, Terminated}, and a set of rules governing the transitions. The table 
structure has the format {Transaction ID, Timestamp, State, Acceptable message codes, Next 
state}. This table is applicable for both rate-limiting as well as state-validation types of 
method-based filters.  

We have also implemented similar table-driven rate-limiting rules to filter non-
standard 1xx (except 100 and 180), non-standard 2xx (except 200), and 300-699 responses 
to a finite number per second, depending on network parameters. This will eliminate 
specific handling for each of the messages in the range. The non-standard messages 
are logged in a table having the structure {Transaction ID, Timestamp, Non-standard 
message code}. 

Rate-limiting is also performed on INVITE requests coming from a single source IP 
and identical From URI, in case of outbound proxy, and INVITE requests coming to a 
single destination IP, and To URI, in case of inbound proxy. The timestamp differences 
between a new INVITE and an identical INVITE in the above table should be within one 
second, or else the request is rejected. This is defined in the firewall filter table as 
{Source/Destination IP, Timestamp, From/To URI}. 

Lastly, filtering at the dialog level helps the identification of spurious BYE mes-
sages by using the dialog ID of a message, and rejecting BYE messages that are not 
part of an existing Dialog. This filtering requires a simple table structure {Dialog ID, 
Timestamp}.  

5   System Architecture and Implementation 

We deployed an architecture in which the SIP proxy (sipd) uses the wire-speed packet 
processing and CAM capabilities of the CS-2000 server DPPM to boost overall 
packet-processing capacity. In this section, we describe the architecture and the im-
plementation components as integral modules of the underlying framework. 

Inbound Outbound

SIP

Switch

FCP/UDP

Drop

Lookup

Linux serverASM
sipd

InboundInbound OutboundOutbound

SIPSIP

Switch

FCP/UDP

Drop

Lookup

Linux serverASM
sipd

 

Fig. 8. Architecture components of CloudShield CS-2000 



 Secure SIP: A Scalable Prevention Mechanism for DoS Attacks on SIP 119 

Components required for implementing the architecture shown in Figure 8 include 
a SIP proxy, data plane execution in the DPPM, and firewall control. The SIP proxy 
supports “null authentication” and a new FCP message9 to create/remove a filter from 
the DPPM using {IP, nonce}. The CS-2000 data plane execution modules run filters as 
applications on DPPM. Filters intercept network traffic and monitor, process, and 
drop packets using static filtering of pre-defined ports (e.g., SIP, ssh, port 6252), dy-
namic filtering of legitimately opened ports (e.g., RTP) and a switch layer function 
performing switching between the input ports. The data plane also includes a return 
routability filter table, with table entries containing {IP address, string (nonce), state-
label, timeout value}. Additionally, the data plane features a counter that maintains a 
count of requests/second for comparison with a pre-determined threshold to detect 
request floods. When the threshold is crossed, the DPPM starts applying the rate-
limiting policy. The DPPM tries to match SIP requests with filters in the state table by 
matching on dialog ID and transaction ID. 

The SIP proxy server runs within the CS-2000 application server module (ASM). 
The proxy server interacts with the DPPM using the Firewall Control Protocol (FCP) 
for the return routability filter. The Firewall Control Module, in the SIP proxy, talks 
with the DPPM, intercepts SIP call setup messages, gets nonce from the 407 Proxy 
Authentication Required header, gets RTP ports from the SDP payload and maintains call 
state, pushes filter for SIP UA (nonce) being challenged, and pushes dynamic table 
updates to the data plane. FCP can be used by multiple SIP proxies that control one or 
more CloudShield firewalls. FCP supports the new return routability create/remove 
filter messages, using the same FCP message format described in [8], with the addi-
tion of a random string option to accommodate the nonce. 

SIP messages are related using message lookup tables, leveraging the DPPM built-
in CAM databases for very low latency lookups. Aged lookup tables are implemented 
to track call, dialog and transaction relationships using the {dialog ID table, transac-
tion ID table} tuple. Messages are identified by type (request or response) and code 
(request method or response status code). The “error status message” rate limiter 
performs error message limiting within the context of a valid transaction. The error 
rate limiters are implemented as high-speed counters in SRAM, with granularity of 
one second. 
 
Return Routability Filter  
The rate at which the SIP proxy can handle incoming SIP requests is mainly bounded 
by CPU power. When digest authentication was enabled, this rate decreased, as for 
every incoming SIP request the proxy had to both process a new challenge and vali-
date the provided authorization data. This process has been thoroughly analyzed in 
[20] and experimentally verified in our test-bed, as detailed in Section 6 below. An 
attack flood of spoofed INVITE messages can then overload the proxy as the authenti-
cation of each spoofed request is attempted. The CS-2000 detected the SIP request 
floods, and a rate-limiting policy was applied in order to reduce the load from the 
proxy. The type of rate-limiting policy has a direct impact on the number of false-
negatives (“bad” requests that were not blocked) and/or false-positives (“good” 
requests that were filtered). In the rate-limiting policy suggested in this work, the 

                                                           
9 A detailed description of the FCP protocol can be found in reference [8]. 
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firewall established a temporary filter, based on IP address and nonce, whenever a 
new request needs to be authenticated. The filter was used to block any further 
unauthenticated request attempts coming from the same source, from getting to the 
proxy. When the proxy got the request, it responded with the digest authentication 
challenge, and simultaneously issued an FCP message to create the filter in the 
DPPM. If the request originator successfully responded with the correct challenge 
response, the proxy removed the filter from the firewall. The filter was also tempo-
rary in the sense that it expired after some short period of time on the order of sec-
onds. The filter can be based on the From URI or the source IP address. 

The detailed design of return routability filters involved the interception of incom-
ing INVITE requests at DPPM, and extraction of source IP addresses from the requests. 
If no corresponding entry for the source IP address was found in the filter’s CAM 
table, the incoming request was forwarded to the proxy. This rule ensured that the 
first packet from a UA always reached the proxy regardless of filters deployed. After 
receiving the INVITE request, the proxy responded back to the UA with a 407 Proxy 
Authentication Required challenge, and also simultaneously sent an FCP message, con-
taining source IP and nonce value, to the DPPM to create a filter table entry. All sub-
sequent INVITE requests coming from the same UA were intercepted by DPPM, as 
before, but at this stage, a corresponding filter entry for this source IP was found to 
already exist. At that point, if the incoming request contained the same nonce value as 
previously stored in CAM table filter entry, the request was forwarded to the proxy, 
and CAM tables were updated to allow all incoming packets from this source IP 
(white-list), for a short interval of time. In the event of no match, however, the request 
was dropped right at the perimeter. White-lists are dynamic and the lifetime of each 
entry was automatically extended with every packet containing the correct nonce. In 
our experiments, we used thirty seconds for the white-list auto expiry default. 
 
Rate-limiting Filters  
Rate-limiting filters required the extraction of the dialog ID (DLGID) and transaction 
ID (TXNID) from every received SIP request, and their storage  in different and sub-
ordinate CAM tables. Since dialog ID and transaction ID are variable length fields, a 
CRC-32 bit hash algorithm was applied in order to generate a fixed length index in 
the CAM tables, to enable state keeping. DLGID was the 32 bit integer calculated by 
Hash {From IP, To IP, Call ID} and for every DLGID entry in CAM database, there was 
a subordinate table for associated TXNIDs. TXNID was the 32 bit integer calculated 
by Hash {Top Via: BranchID, CSeq Command Value}. If a TXNID was not found to be 
duplicated, normal call processing execution continued. If TXNID was found to be 
duplicated, then the packet was dropped before it reached the proxy. Ideally only one 
SIP request message should have been allowed per TXNID, however, because of 
network conditions, the same request may need to be retransmitted multiple times. To 
allow for this, a window of finite retransmissions before packet drop was imple-
mented and the system trained to find the optimum window length for a given net-
work configuration. The purpose of this window was for optimization to prevent 
“false positives”. A CAM table entry was maintained for each authenticated INVITE, 
and state was incremented for each client so that a filter was put up to accept mes-
sages corresponding to only the next allowed state, or any termination message. A 
timeout filter was also used to terminate a session after a predetermined interval. 
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Upon receiving a new subsequent status message, if the status message record is valid 
then the request was accepted, if bogus, the packet was dropped. Additionally, the rate 
of requests per transaction per second was also checked not to exceed a selected finite 
number (6), after which packet was dropped. The rate at which messages are received 
in any state from the session/UA, were limited to a predefined rate, and handled 
within the state a session/UA is in. Arbitrary error messages at high rates were also 
blocked if the rate crosses a pre-determined threshold.  

 
SIP Transaction State Validation 
This filter validated the state of each SIP transaction for each message received and 
complemented the other filtering mechanisms. The use of the CS-2000 regular ex-
pressions engine allowed validation of every arriving message as “in-state” or “out-
of-state” in one CPU cycle, resulting in high scalability and performance. Messages 
that resulted in invalid states were dropped and the transaction state was always main-
tained in a legitimate state. The DPPM made an entry for the first transaction request, 
and logged all subsequent status messages in a buffer, on a per transaction basis. Each 
received packet was added to the status messages table for the original transaction. If 
the received status message fit a valid state pattern, it was accepted while if it was an 
invalid pattern, the message was dropped.  
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Fig. 9. Regular expressions for request-response transaction 

The implementation of the rate-limiting filters, in more detail, involved extraction 
of the dialog ID and transaction ID from an incoming packet, and comparison with 
the dialog ID table and subordinate transaction ID table stored in the CAM databases. 
If a corresponding entry already existed, the message type was entered in a transac-
tion message code log, as shown in Figure 9. The string formed by the sequence of 
messages {INVI_100_180_180_200}, in the example in Figure 9, was matched with the 
rules list {INVI(_100)*?(_180)*?_200{0,1}?(\x00){4}} that codify the SIP state machine pre-
stored regular expression rules. The use of wild cards in regular expression syntax 
afforded validation of all permutations of allowed states in a single operation. If a 
match was found, the new arriving message was inferred to adhere to the state validation 
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rules, and allowed to go through to the proxy; otherwise it was discarded, and also re-
moved from the transaction message log, e.g., in the sequence {INVITE, 100, 180, 200, 180, 
200}; the filters will only allow the sequence {INVITE, 100, 180, 200}, while the last {180, 
200} messages are removed, as the second 180 was already out of state. 

6   Benchmarking Methodology 

The primary aim of the benchmarking methodology was the verification of correct filter 
functionality in effectively preventing DoS attacks, and their performance and scalabil-
ity at carrier-class traffic rates. The security system was verified for its functional accu-
racy, by developing a novel benchmarking toolkit that provided an extensible and auto-
mated interface for testing and analysis based on distributed computing. The test tool 
generated high-volume SIP sessions, including SIP-based attack vectors of spoofed 
traffic, as well as floods of SIP requests, SIP responses and out-of-state message se-
quences. The analysis module presents the data in easy-to-read table form results. 

Prior to determining the filters effectiveness, the baseline capacity of the proxy 
server, for our specific hardware configuration, had to be first established by launch-
ing signaling traffic to find the maximum server call handling rate, for a given set of 
concurrent calls. As described in [21], the call rate handling capacity is directly re-
lated to the processing power of the computer hosting the proxy server, and the num-
ber of concurrent calls is dependent on the machine’s available memory. We evalu-
ated performance of the system with 100,000 concurrent calls of legitimate traffic, as 
a reference number for comparing performance under different experimental call rates 
configurations10.  

For our experiments, two proxy setup configurations were used: one without digest 
authentication, and one with digest authentication enabled. Digest authentication is 
necessary to distinguish spoofed requests from normal traffic; hence it was also required 
by the filters design. Our measurements of the difference in baseline capacity of these 
two setups are in accordance with expected results, and validate the previously reported 
numbers by Salsano, S., et al. [20]. Since the filters, as designed, rely on digest authenti-
cation, we used the maximum performance from this setup as the baseline reference for 
comparisons against measurements carried out with filters turned on. We begin by de-
scribing our test-bed architecture, hardware configuration, attack generation tools and 
mechanisms, followed by an analysis of the experimental results.  

 
Test-bed Architecture 
The generation, measurements and analysis of the SIP DoS attacks were performed in a 
controlled VoIP test-bed, consisting of hardware and software components used to gen-
erate high-volume loads. The test-bed was comprised of an array of seventeen Sun Fire 
X2100 servers, equipped with an AMD Opteron 2-GHz processor and 2GB of RAM, 
running Ubuntu Server OS. The test-bed also included the proxy server sipd, resident on 
the application server module (ASM) of the CloudShield firewall, which consisted of a 
dual Pentium-III 1-GHz based CPU with 1GB of RAM, running Linux 2.6.17-10.  
                                                           
10 The number 100,000 was arrived at from performing various experiments to be sufficient to 

obtain a statistically significant sample. 
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Fig. 10. Test-bed architecture 

The setup was equipped with the SIPstone [22] and SIPp [23] suites of SIP traffic 
generation and benchmarking tools, configured in “loader” and “handler” modes11. 
SIPp is a robust, easily configurable open-source tool, with customizable XML-based 
scenarios for traffic generation and handling. SIPp uses multiple threads to generate 
higher call rates per loader-handler pair, as compared to other user agents. In the Sun 
Fire X2100 server cluster configuration used in these experiments, each loader/ 
handler pair can generate a maximum of 300 calls per second (CPS). SIPstone is a 
Columbia-developed signaling test-suite with enhancements for null-digest authenti-
cation, and generation of spoofed requests, both capabilities required for these ex-
periments. Each Sun fire X2100 server equipped with SIPstone can generate 1200 
spoofed requests/sec in standalone mode.  

The seventeen machines in the setup were loaded with both of these test tools to 
enable a dynamic configuration, and were connected to the CloudShield firewall us-
ing GigE switches as shown in Figure 10. One of these machines was configured to 
host the test-bed controller running secureSIP, a web-based control software described 
in the next section, and the remaining sixteen machines were dynamically configured 
as traffic generators in loader/handler mode or in individual attack generator mode 
(e.g., spoofers). Within this distributed setup, network traffic was also captured in 
real-time using wireshark12 and analyzed [24]. 
 
Controller - secureSIP 
The measurements and validation procedures are controlled by secureSIP, a web-
based control software using distributed computing processes that provides the tester 
a user interface to launch, terminate, manage, measure, analyze and store the out-
comes of the benchmarking tests as shown in Figure 11.  

                                                           
11 Loaders are used to generate calls, behaving as callers, while handlers receive these calls, 

thus behaving as callees. 
12 A network protocol analyzer that allows packet capture from live networks, as well as read-

ing packets from saved “capture” files. 
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Fig. 11. Architecture of secureSIP controller 

Each of the remaining sixteen machines was loaded with secureSIP clients, which 
communicated with the secureSIP controller on a predefined channel over UDP (port 
6252), to perform the required actions. The secureSIP clients used a combination of 
SIPp, SIPstone and SIPUA (used only for registration [19]). Clients support digest 
authentication, and were capable of generating spoofed messages, floods of re-
quests/responses, and out-of-state messages to verify performance of return routabil-
ity, rate-limiting and state validation filters respectively. Each client updated traffic 
statistics in real time to a central relational database server using MySQL [25]. The 
data consolidation at one central server facilitated easy correlation, real-time perform-
ance analysis, exporting results to spreadsheets and drawing charts to visualize pat-
terns from historical data.  

 
Performance Bench-marking  
The first step was the establishment of the test-bed setup baseline, without any secu-
rity enhancements or attack traffic, defined as the base capacity of the proxy server. 
These measurements were performed first with digest authentication turned-off, and 
subsequently enabled. SIPp was used to generate legitimate traffic. After obtaining 
proxy baseline numbers with digest authentication enabled, attack traffic was intro-
duced into the network and performance of the setup without filters was evaluated. 
Subsequently, filters were turned on to evaluate the portion of good and attack traffic 
that was filtered out. For attack traffic generation, SIPstone was used to create 
spoofed call attempts. Floods of requests, responses and out-of-state messages were 
generated using SIPp. The protocol analyzer was also used to analyze the flow of 
network packets to estimate the proportion of dropped calls that were part of legiti-
mate or attack traffic respectively. The validation and measurements were all per-
formed at two different loads; at full capacity, to determine the maximum perform-
ance of the tested configuration as a reference point, and at half capacity of the proxy 
to cover the typical workloads in a carrier-class VoIP service.  

 
Base Capacity 
Base capacity was determined by generating legitimate traffic through SIPp, using 
multiple pairs of loaders and handlers, controlled in an automated fashion by the 
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secureSIP controller. Base capacity was found by incrementing call rate until the 
proxy was unable to respond to all the incoming requests, dropping legitimate calls. 
As each loader/handler pair was able to generate 300 CPS, the load was incremented 
pair by pair until the base capacity for proxy setup without authentication was found 
to be 690 CPS, with three pairs. Network traffic analysis using wireshark also con-
firmed this base capacity.  

Using the same methodology, the digest authentication mechanism was enabled, 
and the new base capacity was found. The load on proxy server was incremented pair 
by pair, finding the new base capacity at 480 CPS, using two pairs. The results 
showed the call handling capacity of the proxy dropped from about 690 CPS to 480 
CPS. Considering the proxy server was operating in stateful mode, these results vali-
date the analysis and measurements published in [20], although we present the results 
at an order of magnitude higher call rates. The observed call drop is attributed to the 
extra processing required for computation of nonce and hashing, and the extra SIP 
messages that are introduced into the network as previously shown in Figure 2. Since 
computation of hashing algorithms causes only 30% of the overhead, the main reason 
for the drop (70%) in performance is due to the extra messages that digest authentica-
tion introduces into the network. For all our subsequent measurements below, we 
assumed digest authentication to be enabled, and comparisons of call rate handling 
capacity for various filters are always made against this benchmark of 480 CPS. 
 
Methodology for Filter Effectiveness Validation and Measurement 
The next three sub-sections provide a detailed treatment of DoS through spoofing, 
method-based flooding and composite attacks. These sets of experiments measured 
the impact of the DoS attacks on the unprotected SIP infrastructure and evaluated the 
effectiveness of the firewall filters in preventing these attacks. 
 
DoS through Spoofing 
These tests verified the operation of the return routability filters. The setup was simi-
lar to the performance benchmarking section, with SIPp generating legitimate traffic, 
and SIPstone used to launch traffic with spoofed addresses. Incremental spoofed traf-
fic attacks were launched under two different workloads, at full capacity (480 CPS) 
and half capacity representing average load conditions (240 CPS). As expected, the 
digest authentication mechanism was able to remove the spoofed traffic; however, the 
performance penalty was such that even at half capacity, the proxy was only able to 
process 3000 spoofed attempts per second, before collapsing. The return routability 
filters, however, once enabled, dropped spoofed calls right at the perimeter, thus sav-
ing the proxy server from processing the additional messages. Our measurements 
show that the filters removed all of the 16800 spoofed attempts per second generated 
by our test-bed, at its maximum workload configuration. It should be noted here that 
this maximum number is the limit of our test-bed configuration and not the limit of the 
firewall.  
 
DoS through SIP Method-Based Attacks 
These tests verified the operation of the rate-limiting and state-validation filters. 
Method-based attacks included three sub-types, consisting of floods of repetitive 
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Flood of Requests Flood of ResponsesFlood of Requests Flood of Responses
 

Fig. 12. Different types of rate-limiting attacks 

requests, repetitive responses and various sequences of out-of-state messages. The 
proxy was subjected to these types of attacks, with and without the corresponding 
filters. We defined three types of attacks – request flood, response flood and out-of-
state flood. 

The first attack consisted of sending a flood of INVITE requests (exact replica of 
each other, with same transaction ID) after the call was setup with the initial request. 
The second type consisted of sending a barrage of responses (any of 1XX Provisional, 
2XX Success or 4XX Error). The last type consisted of flooding the proxy with re-
quests/responses sequences in random order. For all three types of attack traffic, the 
flood packets that follow the first packet will have the same transaction ID, as seen in 
the call-flow diagrams schematic view in Figure 12. SIPp loader/handler pairs were 
used to generate both legitimate and attack traffic for these measurements.  

 
DoS Filters Performance Results 
Measurements from the different test scenarios, including benchmarking, return 
routability filters and rate-limiting filters are summarized in Table 1 below. The array 
of sixteen machines was used to generate the high volumes of different types of le-
gitimate as well as attack traffic. As observed in Table 1, in general, the inbuilt soft-
ware mechanisms in the SIP proxy provide negligible performance against the attack 
traffic in the absence of filters. In particular, the proxy server, without the benefit of 
filters, breaks down with fewer than 200 spoofed requests, when already at maximum, 
but even at half load, the proxy is only able to handle less than 3000 spoofed attempts 
per second. In the same setup, but with filters turned on, the performance increased 
considerably, to well over 17,000 spoofed attempts per second. As noted earlier, the 
amount of attack traffic handled in these experiments was determined by our specific 
test-bed hardware constraints, and not by the capacity of the filters. 

The effectiveness of the rate-limiting filters can be assessed by comparing results 
in similar setup initially without the filters, with results with filters enabled. While 
setup without filters can only deal with a maximum flood of fewer than 600 calls 
(requests) per second, filters pushed the handling capacity to over 7,000 attacks per 
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Table 1. Measurements from different test scenarios 

    Firewall Filters OFF Firewall Filters ON 

Good  Attack  CPU Good  Attack CPU  

CPS CPS Load CPS CPS Load 

Traffic Composition       %       % 

Non-Auth Traffic 690 0 88 690 0 88 

240 0 20 240 0 40 

Auth Good Traffic 480 0 81 480 0 82 

Auth Good Traffic +  240 2950 84 240 16800 41 

Spoof Traffic 480 195 85 480 14400 83 

Auth Good Traffic +  240 3230 84 240 8400 41 

Flood of Requests 480 570 86 480 7200 83 

Auth Good Traffic +  240 2970 87 240 8400 41 

Flood of Responses 480 330 87 480 7200 83 

Auth Good Traffic +  240 2805 86 240 8400 40 

Flood of Out-of-State 480 290 85 480 7200 82 

second. Even at average normal load settings, at half the capacity of proxy server, the 
results without filters were not impressive, as the proxy could only handle up to 3,000 
attacks per second. For measurements involving attack traffic comprised of floods of 
responses, or floods of out-of-state messages, the performance without filters was 
slightly worse, as the proxy collapsed around 300 attacks per second, when at maximum 
load. At half load, 2,800 attacks per second could be handled. The addition of filters, 
however, enhanced the proxy capacity to over 8,000 attacks per second, which again 
was the maximum attack traffic we could generate in our hardware configuration.  

Furthermore, we measured zero false positives and negligible false negatives. 
Through protocol analysis, we could confirm that none of the legitimate traffic was 
dropped while the filters dropped 99% of attack traffic, leading to 1% false negatives. 
The filter algorithm is adaptive, and requires training, based on network conditions, 
before it can isolate bad traffic from good traffic. Due to this adaptive nature of filters, 
some amount of attack traffic manages to pass through filtering system, giving a rate 
of false negatives of 1%. Additionally, since the filters did not drop any packet before 
they were trained, rate of false positives was zero.  

 
DoS through Composite Attacks 
To test our DoS prevention mechanisms against extreme but perhaps more realistic 
scenarios, as attackers will attempt every attack permutation at once, all the above 
described attacks were launched together. Different secureSIP clients in the distributed 
network were configured to launch different types of attack traffic. For instance, the 
sixteen machines in the network could be configured, such that six machines gener-
ated spoofed traffic, four machines flooded the network with requests, two machines 
introduced out-of-state messages and the remaining four were used to generate legiti-
mate traffic. The proxy was subjected to this composite attack, initially with no filters, 
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and subsequently with all the filters loaded on the firewall. All the other measurement 
and traffic generation conditions were kept the same.  

As seen in the measurement results in Table 2, a proxy conforming to the protec-
tion mechanisms specified in [1] was unable to withstand composite attacks. Without 
filters, even at half capacity, the proxy was only able to handle less than 1000 CPS of 
different types of attack traffic before it started dropping legitimate calls within a few 
seconds of the attack (18 seconds in this specific instantiation). At maximum capac-
ity, the results were much worse, and showed practically no tolerance for any kind of 
attack traffic. Once filters were enabled, the proxy dealt efficiently with as much 
attack traffic as could be generated in our test-bed. Both at half load capacity, and full 
capacity, the proxy server showed no sign of performance lag, operating with reason-
able CPU resources. Even in case of composite attacks, we observed zero false posi-
tives and almost negligible false negatives with filters turned on. 

Table 2. Performance measurements of composite attacks 

  Traffic Rate (CPS) 
Filters 

Good Spoof 

Flood 
of 

Req 

Out 
of 

State 

Avg. 
CPU 
(%) 

Off 240 800 800 800 85 
On 240 7200 2400 2400 42 
Off 480 100 100 100 87 
On 480 4800 2400 2400 83 

Benchmarking Summary 
The CPU resource consumption increases linearly with the increased attack traffic 
when the firewall filters are disabled. But once enabled, the filters off-loaded the 
proxy of all the attack traffic, as evidenced by the non-increasing resource consump-
tion versus attack traffic load, in all of the measurements. When all filters were en-
abled, they worked together to protect the system under test from a variety of attack 
traffic. No perceivable performance loss or overhead was observed in the SIP proxy, 
even at the peak of the attack traffic, clearly indicating that the hardware filters had 
removed the attack traffic completely. 

7   Conclusions and Future Work 

The solution presented in this work experimentally demonstrated various SIP vulner-
abilities that may potentially result in DoS attacks. As perimeter security is becoming 
a factor of prime importance to VoIP service providers and carriers, this work sug-
gests highly scalable detection and mitigation strategies against these new SIP-
specific DoS attacks. This implementation leveraged a fast parallel processing packet-
processing server using CAM databases for storing the huge connection state tables 
associated with high volumes of concurrent calls, while providing full SIP confor-
mance. A large-scale distributed test-bed, including a high-powered SIP-specific DoS 
attack tool, was built to measure and verify the effectiveness and scalability of the 
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solution. The web-based controller, also developed as a part of this framework, pro-
vides an effective tool-kit for easy use in testing laboratories. The prototype filtering 
handling capacity presented, with rates in the hundreds of calls per second, is indica-
tive that these systems can be utilized in carrier class environments. In the short term, 
enhancements that cover a broader range of attack cases may be desirable. For exam-
ple, floods of INVITEs (and/or responses) with different transaction IDs within dialogs, 
is a closely related, but harder, problem that needs further study. Longer term, the 
application of anomaly detection, pattern recognition and learning systems, will also 
be desirable for future systems based on the concepts developed in this work.  

The methodologies described in this paper, are applicable to wireline and wireless 
topologies, and can be extended to secure emerging technologies such as Internet 
Multimedia Systems (IMS), as well as presence and unified communications infra-
structures. Other efforts also continue to extend SIP to support Presence, Messaging 
and Unified Communications such as Web Services SIP (WSIP), leveraging the dual 
http and SIP stacks, to allow for reliable unified communication services. The work 
presented in this paper, may also help achieve secure end-to-end communication for 
these services. 
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Appendix A 

Call Flows during Digest Authentication, as seen in Figure 2 

The first INVITE message received by proxy server from user agent does not contain 
any credentials. 

F1 INVITE UA -> Proxy 

INVITE sip:test1@cs.columbia.edu SIP/2.0 
Via: SIP/2.0/UDP 127.0.0.1:7898 
Max-Forwards: 70 
From: sip:test5@cs.columbia.edu 
To: sip:test1@cs.columbia.edu 
Contact: sip:test5@127.0.0.1:7898;transport=UDP 
Subject: SIPstone invite test 
CSeq: 1 INVITE 
Call-ID: 1736374800@lagrange.cs.columbia.edu 
Content-Type: application/sdp 
Content-Length: 211 
v=0 
o=user1 53655765 2353687637 IN IP4 128.3.4.5 
s=Mbone Audio 
t=3149328700 0 
i=Discussion of Mbone Engineering Issues 
e=mbone@somewhere.com 
c=IN IP4 128.3.4.5 
t=0 0 
m=audio 3456 RTP/AVP 0 
a=rtpmap:0 PCMU/8000 
 
After receiving the first INVITE message, the proxy sends back a “407 Authentica-

tion Required” asking user for authentication. This message contains a freshly com-
puted nonce value that must be sent back by user to prove their identity. 

F3 407 Proxy Authentication Required Proxy -> UA 

SIP/2.0 407 Proxy Authentication Required 
Via: SIP/2.0/UDP 127.0.0.1:7898 
From: sip:test5@cs.columbia.edu 
To: sip:test1@cs.columbia.edu; tag=2cg7XX0dZQvUIlbUkFYWGA 
Call-ID: 1736374800@lagrange.cs.columbia.edu 
CSeq: 1 INVITE 
Date: Fri, 14 Apr 2006 22:51:33 GMT 
Server: Columbia-SIP-Server/1.24 
Content-Length: 0 
Proxy-Authenticate:Digest  
realm="cs.columbia.edu", 
        nonce="6ydARDP51P8Ef9H4iiHmUc7iFDE=", 
        stale=FALSE, 
        algorithm=MD5, 
        qop="auth,auth-int" 



132 G. Ormazabal et al. 

User replies back to the “407 Authentication Required” challenge by providing au-
thorization credentials, the nonce value to the proxy server: 

F6 INVITE UA -> Proxy 

INVITE sip:test1@cs.columbia.edu SIP/2.0 
Via: SIP/2.0/UDP 127.0.0.1:7898 
Max-Forwards: 70 
From: sip:test5@cs.columbia.edu 
To: sip:test1@cs.columbia.edu 
Contact: sip:test5@127.0.0.1:7898;transport=UDP 
Subject: SIPstone invite test 
CSeq: 3 INVITE 
Call-ID: 1736374800@lagrange.cs.columbia.edu 
Content-Type: application/sdp 
Content-Length: 211 
Proxy-Authorization:Digest 
username="anonymous",  
realm="cs.columbia.edu", 
nonce="6ydARDP51P8Ef9H4iiHmUc7iFDE=", 
uri="sip:test1@cs.columbia.edu",  
response="0480240000edd6c0b64befc19479924c",  
opaque="", algorithm="MD5" 
 
v=0 
o=user1 53655765 2353687637 IN IP4 128.3.4.5 
s=Mbone Audio 
t=3149328700 0 
i=Discussion of Mbone Engineering Issues 
e=mbone@somewhere.com 
c=IN IP4 128.3.4.5 
t=0 0 
m=audio 3456 RTP/AVP 0 
a=rtpmap:0 PCMU/8000 
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