
Follow the River and You Will Find the C

Jae Woo Lee
Dept. of Computer Science

Columbia University
New York, NY, USA

jae@cs.columbia.edu

Michael S. Kester
Dept. of Computer Science

Columbia University
New York, NY, USA

msk2117@columbia.edu

Henning Schulzrinne
Dept. of Computer Science

Columbia University
New York, NY, USA

hgs@cs.columbia.edu

ABSTRACT
We present a one-semester transition course intended to
bridge the gap between a Java-based introductory sequence
and advanced systems courses. We chose to structure our
course as a series of lab assignments that, while indepen-
dent, are also milestones in a single main project, writing a
web server from scratch. By anchoring the course on a single
real-world application, we were able to provide depth, instill
good programming practices, give insight into systems, and
generate excitement.

Categories and Subject Descriptors
K.3.2 [COMPUTERS AND EDUCATION]: Computer
and Information Science Education—Curriculum, Computer
science education, Information systems education

General Terms
Design, Human Factors, Languages

1. INTRODUCTION
Current trends in the introductory computer science se-

quence follow the objects-first paradigm. Java is the lan-
guage of choice in most cases [10], while some have argued
Python as a good alternative [9]. Others have resisted the
trends and remain committed to a traditional imperative-
first or even functional-first approach. The subject remains
an ongoing debate [11, 7, 8, 17] and the authors take no po-
sition in this paper. Rather, we address a concrete problem
that arises as a consequence of choosing objects-first.

Our school has adopted the objects-first approach. Specif-
ically, it follows the three course sequence recommended by
CC2001 [6]. This conversion, however, created a gap in
knowledge as the students progress to upper level courses
like operating systems and computer graphics, where they
need a command of C and the UNIX environment.

This“gap problem”seems common among our peer schools.
The nationwide decline in enrollment has forced educators

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03 ...$10.00.

to seek ways to attract and retain students. This has led to
many changes in the introductory sequence the most promi-
nent of which is the shift to the objects-first paradigm [13].
On the other hand, the upper level courses have largely re-
mained the same, in part because retention of students is less
of a concern, and in part because the focus is on the current
body of knowledge rather than pedagogy. Most schools that
opt for objects-first offer a transition course aimed at bridg-
ing the gap. A review of the curricula of our peer schools
showed that transition courses typically attempt to cover
too many topics. This either limits the course to a cursory
treatment of the material, which may leave the students un-
derprepared for advanced coursework, or results in a course
where success requires substantial prior programing experi-
ence. Such a course would alienate many promising future
CS majors.

This paper presents a C-based introductory systems pro-
gramming course [1] designed to avoid common problems
associated with transition courses. We explore the princi-
ples of our course design in Section 2. We present a detailed
layout of our course in Section 3. We discuss survey results
and student experiences in Section 4. Lastly, we summarize
our contribution in Section 5.

2. DESIGN PRINCIPLES
In our search for a suitable model for our transition course,

we found surprisingly little research about structuring such
a course. We feel this is largely based on two factors. First,
a typical introduction to UNIX and C is probably consid-
ered fairly bland from an educational research standpoint.
On a more practical level, the shift to objects-first is a rela-
tively new phenomenon, so educators have yet to come to a
consensus on the effect it has on the CS curriculum.

Our course is designed as a single project with milestones,
each of which we call a lab. Each lab constitutes a step to-
ward completion of the project without explicitly referring
to it as such. Students are given one to two weeks to com-
plete each lab assignment, and are expected to work inde-
pendently. Shortly after each due date a fully commented
solution is provided. This course overlaps with the last
semester of the introductory sequence, which is, introduc-
tion to programming (CS1), object-oriented design (CS1.5),
and data structures and algorithms (CS2), each taught in
Java. Our school recommends our course be taken concur-
rently with CS2.

For the single-project approach to be most effective, it
is critical to achieve four sub-goals. (a)Don’t forgo depth.
Upon completion of this course, the students should be ready

for Linux kernel programming in our school’s operating sys-
tem course [20], which requires a strong C and UNIX back-
ground. (b)Focus on doing it right. We emphasize writing
bug-free code, rather than simply producing the required re-
sults. (c)Lay out the big picture. At the end of the course
the students should have a clear concept of how a complex
software system works. (d)Don’t be boring. The students
should experience the joy of programming.

We chose writing a web server from scratch as our big
project. Each lab, though self-contained, contributes an
individual part of the system, either with subsystem code
or a fundamental concept. This structure also affords us
a surprising degree of breadth as we incorporate concepts
from data structures, databases, operating systems, net-
working, and multi-tier server architectures. This is similar
in spirit to “teaching breadth-first depth-first” as put forth
by Murtagh [19, 18]. He advocates, rather than teaching
the normal wide ranging topics found in a CS1 course as a
disjoint set, exploring them as a whole through the lens of
a single subfield, computer networking.

Building a web server from scratch is far more effective
in motivating students than completing programming exer-
cises. Literature supports that students respond far more
enthusiastically to working with production software than
pedagogic software [14]. Our students reported exultation
when they saw a web page appear in Firefox, served by code
they wrote (achieving sub-goal d). The surprise they expe-
rience from building something large and real at this early
stage has a lasting impact on their education [21].

We address the remaining sub-goals in a similar fashion.
The web server was required to communicate with a back-
end server and generate pages dynamically. As such, stu-
dents thoroughly learn how web-based multi-tier software
architectures work (c). Coding a web server requires a strong
command of C (a). We put an emphasis on proper memory
management (b). Memory errors are a primary source of
bugs for novice C programmers [16].

3. THE COURSE
In this section, we describe the course implementation.

There are ten lab assignments. The completed web server is
lab 7. In a way, the course forms a narrative following a typ-
ical structure of a drama: an exposition (labs 1-3) to lay the
groundwork of what is to come, a rising action (labs 4-6) to
bring the participants ready for the climax (lab 7), a falling
action (lab 8) to wind down the climax, and a resolution
(labs 9-10) to close the course.

3.1 Exposition
Labs 1-3 introduce the basic tools and skills needed in

later labs. At the completion of this section of the course,
students will be familiar with the most common UNIX com-
mands, be able to use pointers, and understand the linked
list data structure.

Lab 1: UNIX Basics, SVN, and Make
“The beginning is the most important part of the work.”

- Plato

Lab 1 provides an introduction to three components crit-
ical to the remainder of the course: UNIX, SVN, and Make.
We help the students set up their shell environments, and
introduce them to the UNIX man pages, encouraging them

int main(int argc, char **argv)
{

if (argc <= 1) return 1;
char **copy = duplicateArgs(argc, argv);
char **p = copy;

argv++;
p++;
while (*argv) {

printf("%s %s\n", *argv++, *p++);
}
freeDuplicatedArgs(copy);
return 0;

}

Figure 1: The main function provided in lab 2.

to learn new commands as they encounter them. We provide
a short tutorial on SVN, which the students are required to
use throughout the semester. In the first semester we taught
the class, the students were expected to learn Make on their
own from the online documentation, which proved to be in-
sufficient as a tutorial. In subsequent semesters, we provided
a tutorial during lecture. In both cases, we provided a heav-
ily commented solution for future use as a template.

The deliverable for lab 1 was a trivial program. The goal
was simply to introduce the tools that would become the
buttresses of their C programming repertoire.

Lab 2: Pointers and Arrays
“It can be hard to teach them in half an hour, but we can give

them a few pointers. . . ” - Scott Morrison

Lab 2 builds a solid understanding of pointers and arrays
in C. For example, the most challenging problem in lab 2
asks the students to properly create and destroy a copy of
the argv structure. The students are given the main func-
tion of a program called twecho, shown in Figure 1, which
echoes each command line argument twice, once verbatim
and once capitalized. The students are asked to implement
the two functions it calls: duplicateArgs and freeDupli-

catedArgs. The former duplicates the argv structure into
a newly allocated structure and the latter frees the struc-
ture. Writing the two required functions, without making
any memory errors, requires a solid understanding of how to
allocate and destroy a non-trivial memory structure. It also
requires an understanding of how to manipulate pointers to
access and modify data in memory locations.

In this lab we introduce Valgrind [5]. Valgrind is a error
checking utility that detects memory leaks, overrunning ar-
ray bounds, and a number of other common errors. Valgrind
enables the identification of memory errors in a program
even when the program appears to work. This is consistent
with our focus on doing it right. Lab submissions that pro-
duced the correct results at the expense of memory errors
were heavily penalized.

The initial foray into memory management tends to be
challenging for beginning C students. As such, we allowed
ample time for this assignment, the teaching staff provided
significant support to help the students during office hours,
and a class mailing list provided a forum in which the stu-
dents could discuss common problems. Our goal was not
only to help them get their code working, but also to make
them understand it.

struct Node {
struct Node *next;
void *data;

};
struct List {

struct Node *head;
};
struct Node *addFront(struct List *lst, void *data);
struct Node *findNode(struct List *lst, const void *dataSought,

int (*compar)(const void *, const void *));

Figure 2: An excerpt from lab 3’s header file.

Lab 3: Implementing a Linked List
“In all planing you make a list and you set priorities.”

- Alan Lakein

Lab 3 introduces the students to data structures in C by
having them implement a singly linked list. While this is a
typical assignment in a C programming course, we present
it in a manner consistent with our prevailing principles. We
specify the prototypes, some of which are shown in Figure 2,
and we provide a comprehensive test driver program. The
students are required to run the test driver using Valgrind
in order to make sure that their implementation is free of
memory errors.

We also introduce two new concepts: callback functions
and libraries. Several linked list functions rely on a pointer
to function, such as the findNode function shown in Fig-
ure 2. The students follow a tutorial to build a library from
their linked list implementation, which they are required to
use in subsequent labs.

The linked list follows pointer semantics. Each node holds
a void* to a generic data item, but does not manage the life-
time of that item. The interface of the linked list is revisited
later in lab 10, which asks the students to wrap the pointer-
based linked list in a new value-based interface using C++.

3.2 Rising Action
Labs 4-6 focus on details that are essential to the ultimate

goal of writing a web server. The topics include I/O, process
management in UNIX, TCP/IP, Sockets, and HTTP.

Lab 4: Standard Input and Output
“A library is thought in cold storage.”

- Herbert Samuel

The lectures at this point cover I/O in C. Topics include
standard input and output streams, redirection and pipes
in UNIX, formatted I/O functions, and file I/O. These con-
cepts are exercised in lab 4. The students must implement
MdbLookup, a program that searches through a message
database. The message database is a binary file in which
each record has a simple structure of two fields, name and
message which are limited to 15 and 23 characters respec-
tively:

struct MdbRec {
char name[16];
char msg[24];

};

When the program starts, every message of the database
is read into memory using the linked list from lab 3. The
program then enters a loop prompting the user for a search
string and matching it with the records. An empty string,
which can be input by simply pressing Enter at the prompt,
matches all records.

Lab 5: Turning MdbLookup into a server
“The old pipe gives the sweetest smoke.”

- Irish Proverb

At this point we have concluded our discussion of C, and
shift focus to UNIX and TCP/IP networking. During lec-
ture, we give a brief overview of operating systems and
TCP/IP networking, without going into detail. The main
focus is to convey to the students the concept of “layers.”
We first explain the layers in software systems: OS kernel,
system calls, library functions, and applications. We then
introduce the five layers of the Internet protocol stack, again
with limited detail. The sockets API is an interface between
layers 4 and 5, which allows us to treat layers 1 through 4
as a black box. The students had no problem with these
concepts because of their daily experiences with operating
systems and the Internet. We also introduce the concept of
processes, and how a new process in UNIX is created using
fork and exec.

Here we introduce Netcat [2], a command line program
that creates a TCP socket and connects it to the standard
I/O. The incoming end of the TCP connection is connected
to stdout and the outgoing end of the TCP connection is
connected to stdin. It can run as either a client where it
will initiate a connection, or server where it will listen on a
port. The client mode operation is similar to that of Telnet.

Lab 5 demonstrates how to combine the MdbLookup pro-
gram and Netcat in a pipeline forming a network server with-
out sockets programming. We provide the pipeline and the
command to make a named pipe:

mkfifo mypipe
cat mypipe | nc -l -p 40000 | mdb-lookup > mypipe

The standard input and output of MdbLookup is connected
to those of a Netcat session using pipes. Netcat in turn
connects its standard input and output streams to a socket
connection. The students are asked to wrap the pipeline in
a shell script and control the script from a parent program
which calls fork and exec.

One of the goals here is to convey to the students the cen-
tral tenet of UNIX: small is beautiful [12]. A complex task
is broken up into small building blocks, and the standard
I/O paradigm makes it possible to connect them together.

Lab 6: Sockets Programming and HTTP
“From now on, I’ll connect the dots my own way.”

- Bill Watterson

Lab 6 covers two topics that are needed to implement a
web server: sockets programming and HTTP. During lec-
ture, we walk through simple TCP client and server exam-
ples. The server echoes back strings sent from the client.

The first part of lab 6 asks the students to write a ver-
sion of MdbLookup server using sockets. There is actually
very little code to write. They combine the lab 4 program
and the TCP echo server example to make the MdbLookup
server. The solution we supplied merged the two programs
and required fewer than 20 lines of modifications.

The second part of lab 6 asks the students to write a
limited version of Wget [3], a command line program that
downloads a given URL. The students were only required to
implement basic single file download functionality. In prepa-
ration for this part, we demonstrated how HTTP works
by capturing the dialog between a web browser and server.

First, we use Netcat in client mode to pose as a web browser.
We connect to a real website and take note of the headers
generated by the server. Next we use Netcat in server mode
to see what headers the browser had sent.

3.3 Climax

Lab 7: Writing a Web Server
“If we fix a goal and work towards it, then we are never just

passing time.” - Anna Neagle

Lab 7 is the culmination of all efforts up to this point.
It is a serious undertaking, but the students have all the
necessary tools and background. The assignment is to code
a web server that implements a subset of HTTP 1.0. The
server handles GET requests for static content. The server
does not send a content-type header, but modern browsers
can usually detect the types of the incoming files, enabling
the retrieval of HTML pages with images.

In addition to static pages, the server is required to re-
turn dynamic content, specifically MdbLookup records. The
web server provides an HTML front-end to the MdbLookup
server from lab 6. The web server maintains a persistent
TCP connection to the MdbLookup server. GET requests in
the form of /mdb-lookup?key=string trigger the web server
to query the MdbLookup server. The web server formats the
returned messages into an HTML table.

3.4 Falling Action

Lab 8: Writing an Apache Module
“It’s easier to find a new audience than to write a new speech.”

- Dan Kennedy

Now with one of the most intense aspects of the course
out of the way, the students are given a task that may have
seemed daunting at the beginning of the course. They must
reimplement the HTML front-end of MdbLookup server us-
ing an Apache module. They compile and install an Apache
web server, and write a module to connect to the MdbLookup
server. Many students were surprised to find that this is in
fact one of the easier labs. It was treated as extra credit.

Software Architecture: The Big Picture
“Details create the big picture.”

- Sanford I. Weill

This is an appropriate time to reexamine the labs from a
software architecture point of view. We show the students
how the evolution of MdbLookup reflects the various forms
of software architecture:

• Lab 4: command line, confined to the local database

• Lab 5: server, put together using Netcat and pipes

• Lab 6: server, coded using the sockets API

• Lab 7: web-based server, written from scratch

• Lab 8: web-based server, written as an Apache module

The students now have a clear understanding of what a
multi-tier client-server architecture entails. They can im-
mediately understand other popular web-based architectures
such as Linux-Apache-MySQL-PHP, commonly referred to
as LAMP, or Java EE [4]. Our evolutionary approach was

constructed conscientiously in order to teach the students
how to look at systems from an architectural point of view.
This enables the students to dissect a complex software sys-
tem by identifying the components and understanding the
connections between them.

3.5 Resolution
After lab 8, we have about three weeks left in the semester.

The students are introduced to C++ at this point. Given
the limited time, we focus on one aspect of the language:
object construction and destruction. The interplay between
memory allocation and object lifetime is often poorly un-
derstood, even by those students who use C++ regularly.
The lack of a precise understanding of that issue is often the
source of bugs. A solid understanding of object lifetime is
the foundation for using more advanced C++ features such
as inheritance and templates.

Lab 9: Object Construction and Destruction in C++
“High aims form high characters, and great objects bring out

great minds.” - Tryon Edwards

In lecture, we study a basic C++ string implementation,
MyString, which has two data members:

class MyString {
public:

...
// member functions
...

private:
char *data;
int len;

};

This canonical example of a C++ class shows how construc-
tor, destructor, copy constructor, and assignment operator
should perform memory management. We call these mem-
ber functions the Basic4.

Lab 9 helps the students gain a precise understanding of
when each of the Basic4 is invoked. We inserted trace output
statements in the Basic4 functions of the MyString class. We
ask the students to analyze the trace output when the fol-
lowing function is called, identifying precisely at what point
each of the Basic4 is invoked and on which object, including
unnamed temporaries:

MyString add(MyString s1, MyString s2)
{

MyString temp(" and ");
return s1 + temp + s2;

}

The -fno-elide-constructors flag for the g++ compiler is
used in a Makefile that we provide to the students. The flag
makes sure that the compiler generates all copy constructor
calls; otherwise the compiler will optimize away some copy
constructor calls for temporary objects. Lab 9 also asks
the students to provide definitions to some of the member
functions and operators that the course-provided version left
unimplemented.

Lab 10: Linked List Redux
“Experience isn’t interesting until it begins to repeat itself.”

- Elizabeth Bowen

In lecture, we cover the template container classes in the
standard C++ library including vector and list. We em-
phasize the important semantic difference between these con-
tainers and the linked list we implemented in lab 3. The

standard containers provide “value semantics,” that is, an
item is copied and held by value in the container. In con-
trast, the linked list from lab 3 only held a pointer to a given
object.

The first part of lab 10 tests the students’ understanding
of this difference. It asks them to write a linked list class
in C++, called StrList, that holds MyString objects. The
challenging requirement is that they need to use the linked
list class they implemented in lab 3 as the underlying engine.
In other words, the students were required to wrap the lab 3
linked list with a new C++ interface that provides value
semantics. For example, one of the member functions that
they were asked to implement:

void StrList::addFront(const MyString& str)

must call:

struct Node *addFront(struct List *list, void *data)

Being able to switch from value semantics to pointer seman-
tics, and vice versa, represents a significant challenge to the
students. As with lab 3, a comprehensive test driver was
provided and Valgrind-clean execution was mandatory.

Lab 10 also gives the students a glimpse of working with
legacy code. While the first part asked them to wrap a
piece of legacy code with a new interface, the second part
asks them to do the opposite, namely, keep the new inter-
face and upgrade the implementation. It asks them to turn
StrList into TList, a template class that can hold data types
other than MyString. The underlying engine is no longer
based on the lab 3 code, but replaced by the standard C++
list template container class. By using the following two
typedefs,

typedef string MyString;
typedef TList<string> StrList;

the students were able to use the same test driver provided
in the first part without modification.

SmartPtr: Java-style Object Reference in C++
“We live in an instant-coffee world. Sometimes real-world

solutions take a little longer.” - Mike Conaway

By this time, the students appreciate the difficulty of ob-
ject lifetime management in C/C++; they appreciate the
benefit of being able to pass around object references in Java
without worrying about deallocating the object. We end the
course by examining a reference-counted smart pointer class
in C++, SmartPtr, that can mimic the semantics of Java
object references.

A SmartPtr instance is initialized with a pointer to a heap-
allocated object–a pointer returned by the new operator–and
takes over the lifetime management of the given object. The
SmartPtr instance is passed around by value. When it is
copied, the copy constructor increments the reference count.
The SmartPtr’s destructor decrements the reference count,
and calls delete on the underlying object only when the
reference count goes to zero. We draw comparisons between
a SmartPtr and a Java reference. Although the mechanisms
are different (reference counting for a SmartPtr and garbage
collection for a Java reference), the effect is the same: you
can copy and return an object reference freely without wor-
rying about deallocating the underlying object.

 0

 10

 20

 30

 40

 50

Poor Fair Good Very Good Excellent

N
um

be
r

of
 r

es
po

nd
an

ts
 (

to
ta

l =
 7

1)

Overal Quality
Amount Learned

Figure 3: Survey: Overall Quality & Amount Learned

4. STUDENT EXPERIENCE
We taught this course for three consecutive semesters:

Spring 2008, Fall 2008, and Spring 2009. The student en-
rollments were 30, 46, and 49, respectively. The majority of
the students were prospective or declared CS majors. Fig-
ure 3 shows the results from two relevant questions from the
end-of-semester course evaluations. It indicates that student
reaction to the course has been overwhelmingly positive.

We implemented several methods to mitigate the demand-
ing workload. We ran a class mailing list, where the students
were encouraged to help each other but were forbidden from
posting code. This was obviously helpful to those struggling
but was equally helpful to those providing guidance as they
learned through teaching.

We structured the course rigidly. The lab descriptions
clearly laid out the steps needed to complete the assign-
ments correctly. This reflects our viewpoint that, in a C-
based introductory systems course, precise direction is more
valuable than encouraging creativity. One drawback to this
approach was that plagiarism was more difficult to detect.

In order to evaluate our students’ performance in the oper-
ating systems course (OS), for which our class was designed
as preparation, we conducted an additional survey. Among
the 40 respondents, 15 went on to take OS. We compared the
GPA of those 15 students to that of all OS students from Fall
2008 to Spring 2010, during which all 15 took OS. Our stu-
dents bettered the four semester average for OS: 3.14 to 2.99.
This result is by no means scientific, but we are bolstered by
the fact that our students did not perform poorly, especially
considering that OS classes are generally comprised of more
than 75% graduate students, many of whom have significant
industry experience.

Our core mission in education is to engage students and
get them excited about CS. This mission, by nature, is dif-
ficult if not impossible to evaluate. Perhaps more telling
is the personal observations of our students. One student
reported that our course “was critical to [his] success in [op-
erating systems].” He went on to describe that many of his
peers lacked enough background knowledge in C, and ended
up dropping OS. The most gratifying comment we received
came from a student who was majoring in Applied Physics,
took our course in his third year, and fell in love with CS.

He took as many CS courses as he could in his forth year
and was admitted to a top Ph.D. program [15].

“Due to this course alone, I found myself fully-
prepared for subsequent coursework in databases,
operating systems, and software engineering. [. . .]
We were tacitly taught a lesson in iterative devel-
opment - we built the server part-by-part, with
the requirement of having a working (tested) sys-
tem at each stage in development. Along the
way, I developed skill in efficiently managing a
large codebase (in C) on the UNIX command-
line - something invaluable in my systems work
in graduate school.”

5. SUMMARY
We present a one-semester course intended to bridge the

gap between a Java-based introductory sequence and ad-
vanced systems courses. By anchoring the course on a single
real-world application, we were able to provide depth, instill
good programming practices, give insight into systems, and
generate excitement.

Our contribution is twofold. First, we propose a course
organization technique and demonstrate its efficacy. Tradi-
tionally classes are structured as either a term project with
milestones, or a series of homework assignments testing in-
dividual topics. We combine the two approaches. From the
outside, our course seems to consist of ten independent as-
signments, but in fact, they are milestones to a single main
project. This technique can be applied to other CS courses.
Second, we use this single-project approach to implement
a transition course addressing the “gap problem” caused by
the shift to objects-first. The course effectively transitioned
our students from the introductory Java sequence to upper
level systems courses. We present a detailed description of
the course material, which others can adapt for their own
classes.

Acknowledgments
The authors would like to thank Prof. Angelos Keromytis
for providing his previous course materials which gave the
foundation for this course, and Prof. Jason Nieh and Prof.
Junfeng Yang for their help with the evaluation. We also
thank our students and TAs for their effort and feedback.

6. REFERENCES
[1] COMS W3157 Advanced programming, Columbia

University. http://www1.cs.columbia.edu/~jae/
cs3157/2009-1/syllabus.html.

[2] GNU Netcat. http://netcat.sourceforge.net/.

[3] GNU Wget. http://www.gnu.org/software/wget/.

[4] Java EE at a glance. http://java.sun.com/javaee/.

[5] Valgrind. http://valgrind.org/.

[6] The Joint Task Force on Computing Curricula.
“Computing Curricula 2001”. Journal of Educational
Resources in Computing, 1(3), 2001.

[7] O. Astrachan, K. Bruce, E. Koffman, M. Kölling, and
S. Reges. Resolved: objects early has failed. SIGCSE
Bull., 37(1):451–452, 2005.

[8] K. B. Bruce. Controversy on how to teach CS 1: a
discussion on the SIGCSE-members mailing list.
SIGCSE Bull., 37(2):111–117, 2005.

[9] R. J. Enbody, W. F. Punch, and M. McCullen.
Python CS1 as preparation for C++ CS2. In SIGCSE
’09: Proceedings of the 40th ACM technical symposium
on Computer science education, pages 116–120, New
York, NY, USA, 2009. ACM.

[10] J. Forbes and D. D. Garcia. “...But what do the
top-rated schools do?”: a survey of introductory
computer science curricula. In SIGCSE ’07:
Proceedings of the 38th SIGCSE technical symposium
on Computer science education, pages 245–246, New
York, NY, USA, 2007. ACM.

[11] J. Gal-Ezer, T. Vilner, and E. Zur. Has the paradigm
shift in CS1 a harmful effect on data structures
courses: a case study. SIGCSE Bull., 41(1):126–130,
2009.

[12] M. Gancarz. The UNIX philosophy. Digital Press,
Newton, MA, USA, 1995.

[13] A. Gaspar, N. Boyer, and A. Ejnioui. Role of the C
language in current computing curricula part 1: survey
analysis. J. Comput. Small Coll., 23(2):120–127, 2007.

[14] R. Hess and P. Paulson. Linux kernel projects for an
undergraduate operating systems course. In SIGCSE
’10: Proceedings of the 41st ACM technical symposium
on Computer science education, pages 485–489, New
York, NY, USA, 2010. ACM.

[15] N. Knight. personal correspondence, 2009.
UC Berkeley.

[16] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A
study of the difficulties of novice programmers. In
ITiCSE ’05: Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer
science education, pages 14–18, New York, NY, USA,
2005. ACM.

[17] R. Lister, A. Berglund, T. Clear, J. Bergin,
K. Garvin-Doxas, B. Hanks, L. Hitchner,
A. Luxton-Reilly, K. Sanders, C. Schulte, and J. L.
Whalley. Research perspectives on the objects-early
debate. SIGCSE Bull., 38(4):146–165, 2006.

[18] T. P. Murtagh. Teacing breadth-first depth-first. In
ITiCSE ’01: Proceedings of the 6th annual conference
on Innovation and technology in computer science
education, pages 37–40, New York, NY, USA, 2001.
ACM.

[19] T. P. Murtagh. Weaving CS into CS1: a doubly
depth-first approach. In SIGCSE ’07: Proceedings of
the 38th SIGCSE technical symposium on Computer
science education, pages 336–340, New York, NY,
USA, 2007. ACM.

[20] J. Nieh and C. Vaill. Experiences teaching operating
systems using virtual platforms and linux. In SIGCSE
’05: Proceedings of the 36th SIGCSE technical
symposium on Computer science education, pages
520–524, New York, NY, USA, 2005. ACM.

[21] L. Thomas, C. Zander, and A. Eckerdal. Harnessing
surprise: tales from students’ transformational
biographies. In SIGCSE ’10: Proceedings of the 41st
ACM technical symposium on Computer science
education, pages 300–304, New York, NY, USA, 2010.
ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

