
Online Non-Intrusive Diagnosis of One-Way RTP Faults in
VoIP Networks Using Cooperation

A. Amirante, S. P. Romano
Computer Science Department

University of Napoli Federico II, Napoli, Italy
{alessandro.amirante, spromano}@unina.it

K. H. Kim, H. Schulzrinne
Department of Computer Science

Columbia University, New York (NY), USA
{khkim, hgs}@cs.columbia.edu

ABSTRACT
We address the well-known issue of one-way RTP flows in
VoIP communications. We investigate the main causes that
usually lead to this type of fault, and we propose a method-
ology allowing for their automated online detection and di-
agnosis. The envisaged approach exploits node cooperation
and is based on a more general framework for network faults
diagnosis called DYSWIS (Do You See What I See). As
most of the problems associated with one-way RTP can be
ascribed to the presence of NAT elements along the com-
munication path, one of the key features of the proposed
methodology resides in the capability to detect such type of
devices. Besides, another important aspect of this work is
that the diagnosis is non-intrusive, meaning that the whole
process is based on the passive observation of flowing pack-
ets, and on silent active probing that is transparent to the
users. In this way, we also avoid the possibility of being clas-
sified as SPIT (SPam over Internet Telephony). We provide
a thorough description of the various steps the diagnosing
process goes through, together with some implementation
details as well as the results of the validation process.

Categories and Subject Descriptors
C.2.3 [Computer-Communications Networks]: Network
Operations—Network management, Network monitoring ;
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures;
D.2.5 [Software Engineering]: Testing and Debugging—
Diagnostics

General Terms
Algorithms, Management, Experimentation

Keywords
One-way RTP, DYSWIS, VoIP faults diagnosis, Nodes co-
operation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPTComm 2010, 2-3 August, 2010 Munich, Germany
Copyright 2010 ACM ...$10.00.

1. INTRODUCTION
We tackle the challenge of automatically detecting faults

occurring in SIP-based Voice over IP (VoIP) networks. We
first illustrate the most common fault scenarios that charac-
terize a complex communication infrastructure comprising
entities which handle end-to-end data, both in the control
plane (proxies, back-to-back user agents, etc.) and in the
data plane (NATs, Application Level Gateways, relays, etc.).
We then focus on one of the most critical faults that can hap-
pen when trying to setup a multimedia communication in a
SIP [1] network, namely the impossibility of creating a real-
time bi-directional communication channel between a caller
and a callee. Such fault, which is known in the literature
as the “one-way RTP issue”, can be due to a number of dif-
ferent yet often interdependent causes and represents one of
the most cumbersome problems VoIP architects have to face
when deploying and maintaining their networks. We deal
with the above mentioned issue by leveraging a novel peer-
to-peer architecture for network diagnosis, called DYSWIS
(Do You See What I See) [2], which has been conceived at
the outset as an extensible infrastructure for non-intrusive,
cooperation-based detection of network faults. We will de-
scribe how we extended DYSWIS in order to let it support
both the SIP and the RTP [3] protocol state machines. The
paper embraces an engineering approach. It delves into some
of the details of the most notable implementation choices
characterizing our contribution. It also illustrates how the
most common real-world scenarios which suffer from the
one-way RTP issue can be addressed with the approach we
propose. At the best of our knowledge, no other approaches
addressing the one-way RTP problem have been proposed
as yet. The paper is structured as follows. In Section 2
we report the main causes of the problem. In Section 3,
we first introduce the DYSWIS architecture as a framework
for automated network faults diagnosis; then we show how
we added to it support for the SIP, SDP [4] and RTP pro-
tocols. The section explains how we devised an approach
based on passive tests and silent active probing. Section 4
contains some implementation details, while in Section 5 we
show the results of our validation process. Finally, Section 6
concludes the paper by summarizing the main achievements
while also presenting the main directions of future work.

2. ONE-WAY MEDIA FLOWS: A WELL
KNOWN ISSUE

The problem of one-way RTP flows is very common in
VoIP communications. In this section, we provide a clas-
sification of the causes that lead to such kind of fault, by

splitting them into four main categories.

2.1 Configuration problems
Into this category fall all the problems that can be as-

cribed to some error in the configuration of the machine
hosting a User Agent (UA). First of all, there are possible
oversights in the configuration of the UA itself (e.g., wrong
audio capture device selected). Then, we have network inter-
face configuration errors, that are quite common especially
in multi-homed systems. In fact, it can happen to see RTP
packets being received and sent on two different network in-
terfaces, for example on machines having both a wired and
wireless connection up (this is not unlikely on Unix-based
systems, and is usually due to the configuration stored in
the /etc/hosts file). The presence of software firewalls not
properly configured can also cause one-way media flows: for
example, if we want both audio and video to be involved
in the call, it would not be sufficient to open a couple of
ports, since each call leg consumes two ports (one for RTP
and the other for RTCP). Finally, we also classify IP address
conflicts in the network as a local configuration problem.
As we will see in Section 3.3, it is easy to diagnose prob-

lems falling into this category.

2.2 NAT-related problems
Most of the factors that can cause one-way media flows

fall into this category and are related to the presence of
NAT elements along the communication path. Several NAT
traversal solutions have been proposed by the Internet En-
gineering Task Force (IETF), namely the STUN (Session
Traversal Utilities for NAT) [5], TURN (Traversal Using
Relay NAT) [6] and ICE (Interactive Connectivity Estab-
lishment) [7] protocols and the Application Level Gateway
(ALG) and RTP proxy elements. If no such solution is em-
ployed, the User Agent is unable to receive RTP packets.
Even worse, even if a NAT traversal technique is employed, it
can happen that the “natted” party is anyhow unable to see
incoming packets. This is the case of the most widespread
NAT traversal solution: the STUN protocol. STUN is actu-
ally helpful in a number of cases; though, it is useless when
a User Agent is behind a symmetric NAT 1, in which case
it experiences one-way media flows. Furthermore, one more
scenario where the STUN usage does not avoid one-way RTP
flows is when both the caller and the callee happen to be in
the same subnet, since a lot of NAT elements discard packets
received from the private network and destined to their own
public IP address. The last situation can happen also if the
STUN protocol is not employed, but the NAT box has built-
in SIP Application Level Gateway (ALG) functionality. This
is becoming very common, as many of today’s commercial
routers implement such feature. Unfortunately, poorly im-
plemented ALGs are quite common, too, and in some cases
they can be the cause of the problem rather than the so-
lution2. Finally, very often the same device handles both
NAT and firewall functions; in these cases, port blocking
issues have to be taken into account.

2.3 Node crash problems
The sudden crash of a network node also causes the in-

ability to receive RTP packets. We remark that the crashed

1For a thorough description of the different types of NAT,
the reader can refer to [5].
2See www.voip-info.org/wiki/view/Routers+SIP+ALG.

node could be neither the caller nor the called party, but a
possible RTP proxy that belongs to the media path.

2.4 Codec mismatch
A lot of SIP clients offer the possibility to select only a

subset of media codecs, among the ones supported. Unfor-
tunately, sometimes this choice is not reflected in the capa-
bilities offered in the SDP, so it can happen that the result of
the media negotiation is a codec that has been disabled. As
a consequence of this, one of the parties involved in the call
would not hear the voice or see the video of the other, even if
it is actually receiving the corresponding RTP packets. We
report this kind of problem just for the sake of completeness,
as in this case we are not experiencing one-way media flows
since RTP packets flow in both directions. Consequently,
our work does not address this issue.

3. DIAGNOSIS: THE DYSWIS APPROACH
As previously introduced, this work is based upon a net-

work diagnosis architecture that is currently under develop-
ment at Columbia University, called DYSWIS3, which lever-
ages distributed resources in the network, called DYSWIS
nodes, as multiple vantage points from which to obtain a
global view of the state of the network itself. Each DYSWIS
node is capable to detect fault occurrences and perform or
request diagnostic tests, and has analytical capabilities to
make inferences about the corresponding causes.

3.1 Architecture overview
From a very high-level perspective, a DYSWIS node tries

to isolate the cause of a failure by asking questions to peer
nodes and performing active tests. The architecture is de-
picted in Fig. 1; in the following, we do not dwell on ar-
chitectural details, since these are beyond the scope of this
work. We just remark that a modular approach is adopted,
in order to allow support for new protocols in an easy fash-
ion. Specifically, each time a new protocol has to be added,
protocol-specific Detect and Session modules have to be im-
plemented, together with a representation of the fault. Fur-
thermore, new tests and probes have to be implemented,
too, when required. Finally, the rules that drive the diagno-
sis process have to be written. In fact, each DYSWIS node
relies on a rule engine that triggers the invocation of the
probes on the basis of the type of fault and of the result of
previous tests.

As probing functions need to be executed on remote nodes
that have specific characteristics, a criterion to identify such
nodes is needed, as well as a communication protocol. For
example, we could be interested in selecting a peer that has
a public IP address, rather than a node that belongs to
a given subnet. At the time of writing, remote peers are
discovered by means of a centralized repository where each
node registers all its useful information as soon as it becomes
available. However, an alternative approach, exploiting a
Distributed Hash Table (DHT), has been implemented in
order to better fulfill scalability requirements.

In order to communicate among each other, as well as
to convey information about detected failures and request
a probe to be run, the DYSWIS nodes exploit a request-
response protocol. For further details about how this func-

3See http://www.cs.columbia.edu/irt/project/dyswis/

Figure 1: DYSWIS architecture

Figure 2: SIP finite state machine

tionality is provided, refer to Section 4, which discusses im-
plementation aspects.
Finally, when the probing phase is completed, the Analysis

module produces the final response and presents it to the
user.

3.2 Adding SIP/RTP diagnosing features to the
framework

For the purpose of this work, we added support for both
SIP and RTP to the DYSWIS architecture. The detection
part is simply performed by “sniffing” packets on the SIP
standard ports 5060 and 5061, as well as on the media ports
indicated by the SDP’s m-lines. In Fig. 2, instead, we show
the SIP Finite State Machine (FSM) we devised for the ses-
sion module. We note that the detection process is based on
the observation of packets flowing through a host’s network
interface, so it is a bit different from the classical SIP state
machine.
The creation of a new SIP session is triggered by a new

INVITE message and, within a SIP session, one or more RTP
sessions could be created, each one representing a single
medium. Specifically, the creation of an RTP session starts
with the first SIP message that carries an SDP body (that
could be either an INVITE or a 200) and is completed as

soon as the second SDP-carrying message is seen (a 200 or
an ACK, respectively). An RTP session could also be created
or modified by re-INVITE messages; we took into account
such possibility since it is of key importance when both par-
ties of the call make use of the ICE protocol. When the
ICE negotiation ends, in fact, the caller sends a re-INVITE
to update the media-specific IP address and port.

3.3 Proposed diagnosis flow
As already stated, the goal of this work is to diagnose

one-way RTP faults by identifying the source of the prob-
lem among the ones presented in Section 2. We represent
the whole process by means of a flow chart (see Fig. 3) that
applies to both UAC and UAS scenarios. It takes into ac-
count all the scenarios that can lead to one-way media flows
and, even if we will not thoroughly analyze all the possible
branches, we provide, in Section 5, some reference scenarios
that will help the reader understanding our work. In the
diagram, the “local” adjective is used to identify elements or
functionality that belong to the same subnet of the DYSWIS
node which experienced the fault, while“remote”elements or
functionality belong to the same subnet of the other party.
We also make a distinction between tests and probes: the
former class only exploits local information, while the latter
plays an active role by introducing packets into the network.
Finally, we explicitly mark the probes that need the help of
a cooperating node in order to be performed.

We observe that it is not always possible to exactly iden-
tify the cause of the problem. The capability of making
an accurate diagnosis, in fact, strictly depends on the com-
plexity of the network topology under consideration and on
actual availability of “remote” DYSWIS nodes, too. The
ability to identify such nodes is of key importance and is
far from trivial. In fact, when a remote node belongs to a
private network environment (i.e., the remote party of the
call is natted), its IP address is not helpful for our purpose.
Even the node’s reflexive address4 can be not helpful in cases
where hierarchies of NATs are involved, like the one depicted

4From RFC 5389: the reflexive transport address is the pub-
lic IP address and port created by the NAT closest to the
server (i.e., the most external NAT)

Figure 3: Flow diagram representing the whole diagnosis process

Public Internet

NAT
3

NAT
2

NAT
1

192.168.0.254

10.0.0.2

10.0.0.1

192.168.0.254

alice@192.168.0.1

160.39.38.1

bob@143.225.229.143

carol@192.168.0.1

192.168.0.2

diane@192.168.0.2

Figure 4: An example of NAT hierarchy that com-
plicates the identification of “remote” peers

in Fig. 4. We will explain in the following subsection how
we coped with this issue.
It is worth remarking that one of our goals was to carry

out diagnosis in a non-intrusive way. In other words, we did
not want to allocate new “real” SIP call towards the caller
or the callee, because they would be annoying and could be
easily classified as SPIT. Instead, a DYSWIS node tries to
collect as much information as possible: (i) from the obser-
vation of flowing packets, and (ii) with silent active probes
(e.g., a STUN transaction to determine its own reflexive ad-
dress). When an actual SIP session needs to be set up for
diagnosing purposes, it is established between two DYSWIS
nodes without using the default SIP ports, so that possible
softphones running on those machines would not be alerted.

3.4 Description of tests and probes
In this subsection we provide a thorough description of

the probing functions we designed and implemented. These
probes allow us to test the network environments close to
either the caller or the callee (e.g., NATs, ALGs), as well as
possible external nodes, like RTP proxies.

3.4.1 Only incoming test
This is an easy test that checks whether the detected one-

way RTP flow is only incoming or only outgoing.

3.4.2 ICMP port unreachable test
Here, we check if there are incoming ICMP port unreach-

able packets, which would be a clear symptom that the pro-
cess that was supposed to receive data is not active. Herein,
we refer to this situation as a node crash.

3.4.3 RTP proxy probe
This probe determines if there is an RTP proxy along the

media path. An RTP proxy could be manually configured in
the SIP client (e.g., a TURN server) or its usage might have
been forced by a SIP proxy by modifying the SDP payload
of the messages it forwards. We take into consideration both
cases. For the former, we compare the IP address contained
in the Contact header of an incoming message with the
SDP’s c-line of the same message: if they are different,
we can presume that there is an RTP proxy. As to the latter
case, instead, we inspect outgoing SIP packets, checking if
the IP address contained in the SDP’s c-line is different from

both the local interface address and the reflexive IP address
that is retrieved by means of a STUN transaction.

3.4.4 Remote party up probe
Whenever an RTP proxy is employed, we are not capable

to detect a possible crash of the remote node, since we would
not receive any ICMP packet. In these cases, we check the
availability of the remote party by sending a SIP OPTIONS

message to it. Such message is sent through all the SIP
proxies included in the signaling path, if any, in order to
cross a possible remote NAT, making use of the Record-

route and Route SIP headers.

3.4.5 Local NAT test
This test determines if the local node (i.e., the node which

experienced the fault) is behind a NAT by checking if the
local interface has a private IP address.

3.4.6 RTP port blocking
This probe verifies that the port number used for the RTP

flow is not being blocked by a possible firewall running on
the NAT box.

3.4.7 STUN probe
Here we determine if the local node is making use of the

STUN protocol. This probe consists in a STUN transaction
to learn the local reflexive IP address. The result is then
checked against the address contained in the SDP’s c-line of
an outgoing SIP message.

3.4.8 Local/Remote ALG
This probe consists of a direct call attempt to a public

DYSWIS node (i.e., a DYSWIS node that has a public IP
address). As long as this call attempt is performed without
exploiting any NAT-traversal technique, as well as without
the SIP extension for Symmetric Response Routing [8], it
lets us detect if the local or remote NAT has built-in Appli-
cation Level Gateway functionality. In fact, the call attempt
would succeed only if the private IP address, inserted by the
client in the SIP message, is being modified by the NAT el-
ement before forwarding it. As previously said, we do not
make use of the standard SIP ports for this call.

3.4.9 Direct call with STUN
This probe differs from the previously described one only

because the call attempt employs the STUN protocol.

3.4.10 Same NAT probe
The public (reflexive) IP of the remote party is compared

with the local reflexive address: if they match, the two par-
ties are assumed to be behind the same NAT.

3.4.11 Symmetric NAT probe
One functionality offered by the STUN protocol is the pos-

sibility to discover which type of NAT (Full Cone, Restricted
Cone, Port Restricted Cone or Symmetric) is deployed. We
use such feature to determine if there is a symmetric NAT,
that, as already introduced, might be the cause of the fault
we are trying to diagnose.

3.4.12 Remote NAT probe
One of the main issues we had to face is the detection of

remote NAT elements. In other words, we wanted to learn if

the remote party is in a private network environment. Some-
times this is easy because, parsing a received SIP message,
we find a private IP address (e.g., it could be in the SIP
Contact, From or To headers, or in the SDP’s c-line or o-
line). Unfortunately, this depends on the specific implemen-
tation of the SIP element: for instance, some clients, when
using STUN, put their public address in the SDP’s o-line,
while others do not. Similarly, some ALGs just parse out-
going messages and substitute every occurrence of a private
IP, while others perform better thought-out replacements.
When we cannot find any occurrence of private IP, we ex-
ploit a modified version of the IP traceroute we developed
on our own, that sends a SIP OPTIONS message gradually in-
creasing the IP Time-To-Live value. We send such request
towards the public IP address of the remote node and, if
we get an ICMP TTL exceeded packet whose source address
is the original target of our request, it is a clear indication
of the presence of a remote NAT element. Otherwise, we
could either receive a SIP response (e.g., a 200) or do not
receive any response at all. In the latter case, after having
retried to send the message, with the same TTL value, for
a couple of times (to take care of possible packet losses), we
infer that there is a remote NAT box that is not a Full Cone.
Consequently, our SIP message is being filtered. Finally, if
we receive a response to the OPTIONS query, we cannot state
there is no NAT along the path, yet. In fact, in the standard
specification [9], there is no constraint for a NAT element
to decrease the TTL value while forwarding packets. This
topic has been discussed a lot on the BEHAVE5 mailing
list of the IETF, where both personal opinions and imple-
mentation reports were provided. It turned out that a NAT
does not always decrease the TTL of packets received on the
public interface, while, for diagnostic reasons, it always de-
creases it for packets generated in the private environment
and forwarded outside. Then, in order to take into account
this possibility, when we receive a response to the aforemen-
tioned SIP OPTIONS query, we check the TTL value of the
IP packet and try to infer whether it comes from a end-host
or it has been modified by a NAT. This check is performed
by considering that host operating systems have distinctive
values for the initial TTL. Then, if the packet did not go
through a NAT, the received TTL value would be equal to
one of such initial TTL values, decreased by the number of
“hops” returned by the traceroute. Otherwise, we infer the
presence of a NAT. Further details of these OS-specific TTL
values can be found in [10].
For the sake of completeness, we report a draft proposal [12]

that has been recently submitted to the IETF and that
might prove helpful for the NAT detection problem. It in-
troduces a new SIP header field called Debug whose purpose
is to convey extra debugging information.

3.4.13 Remote DYSWIS node probe
We conclude the description of the probing functions by

showing how we realized the selection of a DYSWIS node
that belongs to the same subnet of the remote party of the
call. As we already said, a selection merely based on the
public IP address would not be sufficient whenever there
is a hierarchy of NATs. Then, after having selected all the
DYSWIS nodes characterized by the same public IP address

5BEHAVE (Behavior Engineering for Hindrance Avoidance)
is the working group of the IETF which deals with the be-
havior of NATs

as the remote party, by means of the criterion described at
the beginning of Section 3, we need to verify if one (or more)
of them can be exploited for our purposes. We achieve this
goal by sending a SIP INFO message in broadcast over the
LAN. Such INFO message has to be sent within the dialog
existing between caller and callee, so that, according to the
INFO’s RFC [11], “A 481 Call Leg/Transaction Does Not
Exist message MUST be sent by a UAS if the INFO request
does not match any existing call leg”. This is achieved by
making the node aware of the To and From tags and of the
Call-ID, so that it could be able to generate a request within
a specific dialog. Therefore, each selected node would receive
a non-481 response only if the remote party belongs to its
same subnet.

Among all the methods envisaged by the SIP protocol,
the only two that MUST6 send an error response whenever
they do not find any existing call leg are INFO and UPDATE.
We chose to exploit the first one because, even if it is not
mandatory, it is widely implemented in almost all the clients
currently available.

4. IMPLEMENTATION DETAILS
In this section we provide some brief information about

the implementation choices. Besides Java, that has been
chosen at the outset as the programming language for the
whole framework for its well known platform-independence
characteristic, the framework exploits the Jess rule engine [13]
to control the diagnosis process. Jess uses an enhanced ver-
sion of the Rete algorithm [14] to process rules, making Java
software capable to“reason”using knowledge supplied in the
form of declarative rules. Consequently, we implemented the
whole flow chart presented in Fig. 3 as a set of rules in the
Jess scripting language. The example below shows the rules
allowing for the detection of a node’s crash, when incoming
ICMP packets are detected:

(defrule MAIN::RTP_ONEWAY
(declare (auto-focus TRUE)) => (rtp_oneway (fetch FAULT))
)

(deffunction rtp_oneway (?args)
"one-way RTP diagnosis"

(bind ?result (LocalProbe "RtpOnlyIncomingTest" ?args))(
if (eq ?result "ok") then
(bind ?finalresponse "Local configuration problem")

else then
(bind ?result (LocalProbe "IcmpDestUnreachTest" ?args))(
if (eq ?result "ok") then

(bind ?result (LocalProbe "RtpProxyTest" ?args))(
if (eq ?result "ok") then

(bind ?finalresponse "RTP proxy crash")
else then

(bind ?finalresponse "Other party crash")
)
else then

...

As to the SIP/SDP functionality, we adopted the JAIN
APIs [15] developed by the National Institute of Standards
and Technology (NIST).

For the invocation of remote probes on nodes that hap-
pen to be in natted environments, we chose to make use of
the udp-invoker library [16], slightly modifying it in order
to fit our needs. More precisely, a remote natted node is
contacted by means of a relay agent, as shown in Fig. 5: as

6In the IETF jargon, the capitalized word “MUST” repre-
sents an absolute requirement of the specification.

Figure 5: Remote probing functionality of natted
nodes leveraging a relay agent

soon as a DYSWIS node belonging to a private environment
becomes available, it sends a udp-invoker ping message to
the relay agent, which in turn stores the related public IP
address and port. Such message is sent periodically, in order
to properly refresh the binding in the NAT table. Then, if
the probing functionality provided by a private node needs
to be exploited, the invoke message is sent through the re-
lay agent. We remark that, in such way, we managed to
cross any type of NATs. On the other hand, when the peer
has a public IP address, the XML-RPC protocol [17] is ex-
ploited. Since it uses HTTP as the transport mechanism,
it is more reliable than udp-invoker and, in some cases, it
helps crossing restrictive local NATs.
Finally, the Jpcap library [18] allowed us to “sniff” pack-

ets from the network interfaces and send ad-hoc formatted
packets, as well.

5. VALIDATION
In this section we provide the results of our validation. We

tested our work with several different SIP clients. Specif-
ically, we exploited the following softphones: X-Lite [19]
(Windows), SJPhone [20] (Windows and Linux), Ekiga [21]
(Linux) and PJSIP-UA [22] (Linux). As SIP and RTP prox-
ies, we used OpenSIPS [23] and its RTPproxy [24] compo-
nent, respectively. Finally, we developed our own implemen-
tation of a basic SIP ALG, since we could not find any suit-
able open-source library. With all these components, we set
up a distributed testbed between the IRT lab at Columbia
University and the COMICS lab at the University of Napoli.
For the sake of conciseness, we do not present all the possi-
ble diagnosis paths that result from the flow chart in Fig. 3,
which nonetheless have all been tested. Instead, we just pro-
vide a couple of representative scenarios, which show how
the diagnosis process takes place.

5.1 Scenario 1: problem with the local ALG
The first scenario we examine is characterized by the use

of an ALG in the local network. We deliberately modified
our ALG library in order to induce the one-way RTP fault.
Specifically, we let our ALG function modify the c-line in
the session-level section of the SDP message, without chang-

Figure 6: Local ALG problem

Figure 7: Remote RTP proxy crash: network topol-
ogy

ing the same parameter in the media description section. So,
since the session-level parameter is overridden by an anal-
ogous one in the media description, if present, the remote
party will send its RTP packets to a private, non-routable,
IP address.

In Fig. 6 we show a snippet of the whole flow diagram
that applies to this situation, whose understanding is quite
straightforward. We just clarify the last steps. The call
attempted by the Local ALG probe can take place, thus re-
vealing the presence of an ALG. Though, the resulting RTP
flow is still one-way and this definitely represents a clue that
the source of the problem might be the ALG itself. Such con-
jecture is confirmed by the Direct call with STUN probe. In
fact, as long as we employ the STUN protocol before placing
the call, the ALG does not come into play, since there would
be no private IP addresses to replace.

5.2 Scenario 2: remote RTP proxy crash
In this scenario, we suppose that both caller and callee

use an RTP proxy. If the proxy used by the remote party
crashes, the local DYSWIS node will experience a one-way
RTP fault. Furthermore, it will not see any incoming ICMP
packet (see Fig. 7).

In Fig. 8 we show the diagnosis steps in this scenario.
We are supposing that the remote node is behind a non-
symmetric NAT that has no built-in ALG functionality. How-
ever, even changing such hypotheses, we are still able to

Figure 8: Remote RTP proxy crash: diagnosis flow

identify the cause of the fault. In general, when the diag-
nosis process involves the remote subnet, the results of the
various probing functions allow us to narrow down the set
of possible sources of the problem. In this case, we first get
ensured that the problem cannot be ascribed to a remote
ALG; then, we exclude that it could be somehow related
to the remote NAT’s behavior, since the SIP+STUN call
involves two-way media flows. This brings us to the final
verdict. We observe that, in this lucky case, we are able
to detect the exact cause of the fault, while in other cases,
when the network topology is particularly complex, we are
able to narrow down the fault space to two possible choices.

6. CONCLUSIONS AND FUTURE WORK
In this work we dealt with RTP faults in VoIP networks.

Specifically, we addressed the well-known problem of one-
way media flows, by first introducing the main causes and,
then, by proposing a methodology allowing for its online
detection and diagnosis. The proposed approach leverages
distributed resources in the network that cooperate in order
to isolate the source of the fault, as envisaged by the wider
framework for network fault diagnosis, called DYSWIS, it is
based upon. The diagnosis process is completely transparent
to the users and does not generate any unsolicited calls. We
showed that most of the times we are able to exactly identify
the source of the problem, while, in the worst cases, we man-
age to narrow down the fault space to two possible choices.
We provided the reader with a thorough description of the
diagnosis process, also presenting some reference real-world
scenarios, in order to ease its understanding. Finally, imple-
mentation details about the prototype we realized have been
provided, too, together with the results of the validation we
conducted.
The framework described in this paper paves the ground

to future research challenges. Besides its enrichment with
new protocols and new fault scenarios, we see a big potential
in the exploitation of the DYSWIS framework for security
purposes. For example, as long as we consider an intrusion

as a type of network fault, we might follow the DYSWIS
approach in order to build a distributed IDS (Intrusion De-
tection System). In such context, nodes cooperation is also
helpful in the reaction/remediation process. Finally, secu-
rity issues must be faced in order to avoid that the active
probing functionality is exploited for bad purposes by mali-
cious users. Then, it is worth providing the framework with
intrinsic mechanisms that guarantee its robustness against
possible attacks.

7. ACKNOWLEDGMENT
The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-
gramme INSPIRE (FP7/2007-2013) under grant agreement
no. 225553.

This work has been carried out with the financial support
of Intel Corporation.

8. REFERENCES
[1] J. Rosenberg, H. Schulzrinne et al., SIP: Session

Initiation Protocol, RFC 3261, June 2002.

[2] V. K. Singh, H. Schulzrinne and K. Miao, DYSWIS: An
Architecture for Automated Diagnosis of Networks,
Network Operations and Management Symposium
2008, April 2008, 851-854.

[3] H. Schulzrinne et al., RTP: A Transport Protocol for
Real-Time Applications, RFC 3550, July 2003.

[4] M. Handley, V. Jacobson and C. Perkins, SDP: Session
Description Protocol, RFC 4566, July 2006.

[5] J. Rosenberg, R. Mahy, P. Matthews and D. Wing,
Session Traversal Utilities for NAT (STUN), RFC
5389, October 2008.

[6] J. Rosenberg, R. Mahy and P. Matthews, Traversal
Using Relays around NAT (TURN): Relay Extensions
to Session Traversal Utilities for NAT (STUN),
RFC-to-be 5766, February 2010.

[7] J. Rosenberg, Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator
(NAT) Traversal for Offer/Answer Protocols,
RFC-to-be 5245, February 2010.

[8] J. Rosenberg and H. Schulzrinne, An Extension to the
Session Initiation Protocol (SIP) for Symmetric
Response Routing, RFC 3581, August 2003.

[9] P. Srisuresh and K. Egevang, Traditional IP Network
Address Translator (Traditional NAT), RFC 3022,
January 2001.

[10] T. Miller, Passive OS Fingerprinting: Details and
Techniques, http://www.ouah.org/incosfingerp.htm.

[11] S. Donovan, The SIP INFO Method, RFC 2976,
October 2000.

[12] V. Pascual et al., A SIP Flight Data Recorder
Extension, work in progress, July 2009.

[13] Jess rule engine’s web site:
http://www.jessrules.com/

[14] C. L. Forgy, Rete: a fast algorithm for the many
pattern/many object pattern match problem. In Expert
Systems: A Software Methodology For Modern
Applications, P. G. Raeth, Ed. Ieee Computer Society
Reprint Collection. IEEE Computer Society Press, Los
Alamitos, CA, 324-341

[15] Jain project’s web site:
https://jain-sip.dev.java.net/

[16] UDP-Invoker project’s web site:
http://code.google.com/p/udp-invoker/

[17] XML-RPC project’s web site:
http://www.xmlrpc.com/

[18] Jpcap’s web site:
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/

[19] X-Lite’s web site:
http://www.counterpath.com/x-lite.html

[20] SJPhone’s web site: http://www.sjphone.org/

[21] Ekiga’s web site: http://ekiga.org/

[22] PJSIP’s web site: http://www.pjsip.org/

[23] OpenSIPS’ web site: http://www.opensips.org/

[24] Sippy RTPproxy’s web site:
http://www.rtpproxy.org/

