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Abstract. Star-ladder graphs were introduced by Gross in his development
of a quadratic-time algorithm for the genus distribution of a cubic outerplanar
graph. This paper derives a formula for the genus distribution of star-ladder
graphs, using Mohar’s overlap matrix and Chebyshev polynomials.

Newly developed methods have led to a number of recent papers that de-
rive genus distributions and total embedding distributions for various families
of graphs. Our focus here is on a family of graphs called star-ladders.

1. Introduction

Genus distributions problems have frequently been investigated in the past
quarter century, since the topic was inaugurated by Gross and Furst [6]. The
contributions include [1, 5, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26]
and [27]. Gross [11] presents a quadratic-time algorithm for computing the genus
distribution of any cubic outerplanar graph. He analyzes the structure of any cu-
bic outerplanar graph and finds that such a graph can be obtained by a series of
iterated edge-amalgamations of a new classes of graphs called star-ladders, so as
to form a tree of star-ladders. Thus, beyond the direct interest in a closed formula
for the genus distribution of star-ladders, such a formula is possibly a step toward
a closed formula for the genus distribution of the cubic outerplanar graphs. Our
closed formula in this paper for the genus distribution of star-ladders is derived
with the aid of Mohar’s overlap matrices [17].

1.1. Star-ladders. An n-rung closed-end ladder Ln can be obtained by tak-
ing the graphical cartesian product of an n-vertex path with the complete graph
K2, and then doubling both its end edges. The new rungs obtained thereby
are called end-rungs. Figure 1 presents a 4-rung closed-end ladder. In [5], Furst,
Gross, and Statman obtained a closed formula for the genus distribution of closed-
end ladders.
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Figure 1. The 4-rung closed-end ladder L4.

For an k-tuple of non-negative integers U = (n1, n2, . . . , nk) the star-ladder
with signature U is the graph SLn1,n2,...,nk

obtained from the cycle graph C2k, with
consecutive edges labeled e1, e2, . . . , e2k as follows:

(1) For each i ≤ k such that ni = 0, double the edge e2i.
(2) For each of the ladders Ln1 , Ln2 , . . . , Lnk

such that ni > 0,
• subdivide one end rung of Lni

into three parts, and take the middle
third as the root-edge;
• amalgamate Lni

across its newly created root edge to the edge e2i.

The star-ladder SL2,1,0 is shown in Figure 2.

Figure 2. The star-ladder SL2,1,0.

1.2. Genus polynomial. It is assumed that the reader is somewhat familiar with
the basics of topological graph theory, as found in Gross and Tucker [7]. All graphs
considered in this paper are connected. A graph G = (V (G), E(G)) is permitted
to have both loops and multiple edges. A surface is a compact 2-manifold
without boundary. In topology, surfaces are classified into the orientable surfaces
Sg, with g handles (g ≥ 0), and the nonorientable surfaces Nk, with k crosscaps
(k > 0). A graph embedding into a surface means a cellular embedding. For
any spanning tree of G, the number of co-tree edges is called the Betti number
of G, and is denoted by β(G).

A rotation at a vertex v of a graph G is a cyclic order of all edge-ends
(or equivalently, half-edges) incident with v. A pure rotation system ρ of a
graph G is the collection of rotations at all vertices of G. An embedding of G
into an oriented surface S induces a pure rotation system as follows: the rotation
at v is the cyclic permutation corresponding to the order in which the edge-
ends are traversed in an orientation-preserving tour around v. Conversely, by the
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Heffter-Edmonds principle, every rotation system induces a unique embedding
(up to homeomorphism) of G into some orientable surface S. The bijection of this
correspondence implies that the total number of orientable embeddings is∏

v∈V (G)

(dv − 1)!,

where dv is the degree of vertex v.

A general rotation system is a pair (ρ, λ), where ρ is a pure rotation system
and λ is a mapping E(G)→ {0, 1}. The edge e is said to be twisted (respectively,
untwisted) if λ(e) = 1 (respectively, λ(e) = 0). It is well-known that every oriented
embedding of a graph G can be described by a general rotation system (ρ, λ)
with λ(e) = 0 for all e ∈ E(G). By allowing λ to take non-zero values, we
can describe the nonorientable embeddings of G. For any spaning tree T , a T -
rotation system (ρ, λ) ofG is a general rotation system (ρ, λ) such that λ(e) = 0,
for all e ∈ E(T ).

By the genus polynomial of a graph G, we mean the polynomial

ΓG(z) =
∞∑
i=0

gi(G)zi,

where gi(G) means the number of embeddings of G into the orientable surface Si,
for i ≥ 0.

1.3. Overlap matrices. Mohar [17] introduced an invariant that has subse-
quently been used numerous times (e.g., [2, 3, 4]) in the calculation of distri-
butions of graph embeddings, including non-orientable embeddings. We use Mo-
har’s invariant here in our derivation of a formula for the genus distribution of
star-ladders.

Let T be a spanning tree of a graph G and let (ρ, λ) be a T -rotation system.
Let e1, e2, . . . , eβ(G) be the cotree edges of T , where β(G) is the cycle rank of G.
The overlap matrix of (ρ, λ) is the β(G)×β(G) matrix M = [mij] over Z2 such
that

mij =


1, if i = j and ei is twisted;

1, if i 6= j and the restriction of the underlying pure

rotation system to the subgraph T + ei + ej is nonplanar;

0, otherwise.

When the restriction of the underlying pure rotation system to the subgraph
T + ei + ej is nonplanar, we say that edges ei and ej overlap. The importance of
overlap matrices is indicated by this theorem of Mohar [17]:
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Theorem 1.1. Let (ρ, λ) be a general rotation system for a graph. Then the rank
of any overlap matrix M for the corresponding embedding equals twice the genus
of the embedding surface, if that surface is orientable, and it equals the crosscap
number otherwise. The rank is independent of the choice of a spanning tree.

For drawing a planar representation of a rotation system on a cubic graph,
we adopt the graphic convention introduced by Gustin [13], and used extensively
by Ringel and Youngs (see [21]) in their solution to the Heawood map-coloring
problem. There are two possible cyclic orderings of each trivalent vertex. Under
this convention, we color a vertex black, if the rotation of the edge-ends incident
on it is clockwise, and we color it white if the rotation is counterclockwise. We call
any drawing of a graph that uses this convention to indicate a rotation system a
Gustin representation of that rotation system.

The approach here is similar approach to that used for ladders in [5]. In a Gustin
representation of a rotation system for a graph, an edge is called matched if it
has the same color at both endpoints; otherwise, it is called unmatched. In
Figure 3, we have indicated our choice of a spanning tree for a generic ladder
Ln−1 by thicker lines and a partial choice of rotations at the vertices.

a1 a2 a3 an-1 an

b1 b2 bn-2 bn-1

Figure 3. A spanning tree and some rotations for the ladder Ln−1.

The following proposition facilitates the calculation of an overlap matrix for
a ladder graph. The proof is simply to apply the Heffter-Edmonds face-tracing
algorithm.

Proposition 1.2. In the ladder Ln−1, we choose all of the edges on one side of
the ladder plus all of the rungs, except for the two created by doubling, as the
edges of a spanning tree. We label the cotree edges a1, . . . , an, from one end of
the ladder to the other, and we label the tree rungs b1, . . . , bn, from one end of the
ladder to the other (as shown in Figure 3). Then two cotree edges ai and ai+1,
with 1 ≤ i ≤ n− 1, overlap if and only if the rung edge bi is unmatched.
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By Proposition 1.2, the overlap matrix Mn of Ln−1 can be written as

Mn = MX,Y
n =



x1 y1
y1 x2 y2 0

y2 x3 y3
. . . . . . . . .

0 yn−2 xn−1 yn−1
yn−1 xn

 ,

where X = (x1, x2, . . . , xn) ∈ Zn2 and Y = (y1, y2, . . . , yn−1) ∈ Zn−12 . Our notation
MX,Y

n indicates not only that this is a tridiagonal n× n matrix, but also that the
diagonal arrays just below and just above the main diagonal are identical. We say
that such a matrix is symmetrically tridiagonal.

Corollary 1.3. Each symmetrically tridiagonal matrix MX,Y
n corresponds to ex-

actly 2n−1 different T -rotation systems for the ladder Ln−1, where T is the span-
ning tree of Ln−1 given in Figure 3.

Proof. According to Proposition 1.2, changing the rotations at both endpoints of
any or all of the rungs bj does not change any of the coefficients in the overlap
matrix. Moreover, any other change of rotations in ρ does change the overlap
matrix. �

1.4. The rank-distribution polynomial. We now consider the set

An = {MX,Y
n | X ∈ Zn2 and Y ∈ Zn−12 },

of all symmetrically tridiagonal n × n matrices over Z2. We define the rank-
distribution polynomial of the set An to be the polynomial

Pn(z) =
n∑
j=0

Cn(j)zj,

where Cn(j) is the number of different assignments of the variables xi and yk,
with 1 ≤ i ≤ n and 1 ≤ k ≤ n− 1, for which the matrix MX,Y

n in An has rank j.
Similarly, we consider the set

On = {M0,Y
n | Y ∈ Zn−12 },

and we define the rank-distribution polynomial of On to be the polynomial

(1) On(z) =
n∑
j=0

Bn(j)zj,

where Bn(j) is the number of different assignment of the variables y1, . . . , yn−1 for
which the matrix MY

n = M0,Y
n in On has rank j.
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We recall that the Chebyshev polynomials of the second kind are defined
by

Un(t) = 2tUn−1(t)− Un−2(t), U0(t) = 1, U1(t) = 2t.(2)

Lemma 1.4. The rank-distribution polynomial On(z) for symmetrically tridiago-
nal n× n matrices satisfies the recurrence relation

(3) On(z) = On−1(z) + 2z2On−2(z)

with the initial conditions

(4) O0(z) = O1(z) = 1 and O2(z) = z2 + 1.

Moreover,

(5) On(z) = (iz
√

2)n
[
Un

(
1

2iz
√

2

)
+

1

2
Un−2

(
1

2iz
√

2

)]
where i2 = −1, and where Um is the mth Chebyshev polynomial of the second kind.

Proof. It is directly ascertainable that the sequence of functions Bn(j) satisfies
the recurrence system

B0(j) = 0 for j 6= 0

Bn(0) = 1 for all n = 0, 1, . . .

B2(2) = 1

Bn(j) = Bn−1(j) + 2Bn−2(j − 2).(6)

It follows, in turn, from its definition (1) that the polynomial On(z) satisfies
the recursion (3) and the initial conditions (4). Applying induction on n to the
recursion (3), while using the Chebyshev recursion (2), we obtain equation (5):

On(z) = (iz
√

2)n
[
Un

(
1

2iz
√

2

)
+

1

2
Un−2

(
1

2iz
√

2

)]
,

which completes the proof. �

Theorem 1.5. (Furst et al.[5]) The number of embeddings of the closed-end ladder
Ln−1 into the orientable surface Si is

gi(Ln−1) =

{
2n−2+i

(
n−i
i

)
2n−3i
n−i , when i ≤ bn

2
c

0, otherwise.

Proof. Let the genus polynomial of the ladder Ln−1 be

ΓLn−1(z) =
∑
i≥0

gi(Ln−1)z
i.
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By Formula (5) of Lemma 1.4 and Corollary 1.3, we have

ΓLn−1(z) = 2n−1On(z)

= 2n−1

{∑
j≥0

(
n− j
j

)
2j z2j −

∑
j≥0

(
n− 2− j

j

)
2j z2j+2

}
.(7)

Note that gj(Ln−1) is equal to the coefficient of z2j. By (7), we have

gj(Ln−1) = 2n−1
{(

n− j
j

)
2j −

(
n− j − 1

j − 1

)
2j−1

}
.

By Newton’s identity
(
n−m
m

)
= n−m

m

(
n−m−1
m−1

)
, the theorem follows. �

2. Rank-Distribution Polynomial of Star-Ladders

We fix a spanning tree T of SLn1,n2,...,nk
, shown by thicker lines in Figure 4, with

cotree edges e, e1,0, e1,1, . . . , e1,n1 , e2,0, e2,1, . . . , e2,n2 , . . . , ek,0, ek,1, . . . , ek,nk
, also as

shown.

Property 2.1. The cotree edge e overlaps the cotree edge ei,0 if and only if the
edge bi,0 is unmatched, for i = 1, 2, · · · , k.

Property 2.2. The cotree edges ei,ij and ei,ij+1 overlap if and only if the edge
bi,ij+1 is unmatched, for i = 1, 2, · · · , k,ij = 0, 1, · · · , ni − 1.

b1,0b1,n1+1

e1,n1

b1,1

e1,0

bk,0 bk,nk+1

ek,nk

bk,1

ek,1

b2,0

b2,n2+1 e2,n2

b2,1 e2,0

e
Figure 4. A spanning tree for the star-ladder SLn1,n2,nk
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Let W = (w1, w2, . . . , wk) ∈ Zn2 and Yi = (yi1 , yi2 , . . . , yiki ) ∈ Zki2 , for i =
1, 2, · · · , k. Then the overlap matrix of a star-ladder SLn1,n2,...,nk

can be written
in the following form:

MW,Y1,Y2,··· ,Yk
n1,n2,...,nk

=

0 w1 0 0 · · · 0 w2 0 0 · · · 0 · · · wk 0 0 · · · 0
w1 0 y1,1
0 y1,1 0 y1,2

0 y1,2
. . . . . .

...
. . . y1,n1

0 y1,n1 0 0
w2 0 0 y2,1
0 y2,1 0 y2,2

0 y2,2
. . . . . .

...
. . . y2,n2

0 y2,n2 0
...

. . . . . . . . .
wk 0 yk1
0 yk,1 0 yk,2

0 yk,2
. . . . . .

...
. . . yk,nk

0 yk,nk
0



,

where wi = 1, for i = 1, 2, . . . , k, if and only if bi,0 is unmatched, and where
yi,ik = 1, for i = 1, 2, . . . , k and ik = 1, 2, . . . , ni, if only if bi,ik is unmatched.

Proposition 2.3. For a fixed overlap matrix of the form MW,Y1,Y2,··· ,Yk
n1,n2,...,nk

, corre-
sponding to the spanning tree T in a star-ladder graph SLn1,n2,...,nk

, there are

exactly 2
∑k

i=1(ni+1) different T -rotation systems corresponding to that matrix.

Proof. This proof is like that of Property 1.3. �

We let Sn1,n2,...,nk
denote the set of all matrices over Z2 that are of the type

MW,Y1,Y2,··· ,Yk
n1,n2,...,nk

. We let D(j) denote the number of different assignments of the

variables wj, yi,ik for which the matrix MW,Y1,Y2,··· ,Yk
n1,n2,...,nk

in Sn1,n2,...,nk
has rank j,

where j = 1, 2, · · · , n; i = 1, 2, · · · , k; and ik = 1, 2, . . . , ni.

Additionally, We define the rank-distribution polynomial

(8) Sn1,n2,...,nk
(z) =

n1+n2+···+nk+k+1∑
j=0

D(j)zj.
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Theorem 2.4. The rank-distribution polynomial Sn1,n2,...,nk
(z) of the overlap ma-

trices of a star-ladder graph SLn1,n2,...,nk
satisfies the recurrence relation

Sn1,n2,...,nk
(z) = Sn1,n2,...,nk−1(z) + 2z2Sn1,n2,...,nk−2(z)

with the initial conditions

Sn1,n2,...,nk−1,0(z) = Sn1,n2,...,nk−1
(z) + 2k−1z2On1+1(z)On2+1(z) · · ·Onk−1+1(z)

and

Sn1,n2,...,nk−1,1(z) = Sn1,n2,...,nk−1,0(z) + 2z2Sn1,n2,...,nk−1
(z),

where Om(z) is the rank distribution polynomial of the overlap matrices of the
ladder graph Lm−1, as defined in Equation (1).

Proof. There are two cases.

Case 1. For ynk
= 0. It is clear that

rank(MW,Y1,Y2,··· ,Yk
n1,n2,...,nk

) = rank(MW,Y1,Y2,··· ,Yk
n1,n2,...,nk−1 )

so it contributes a term Sn1,n2,...,nk−1(z).

Case 2. For ynk
= 1. If ynk−1 = 0, then

rank(MW,Y1,Y2,··· ,Yk
n1,n2,...,nk

) = 2 + rank(MW,Y1,Y2,··· ,Yk
n1,n2,...,nk−2 ).

Otherwise ynk−1 = 1, under which circumstance we add the last row and last
column, respectively, to row n1+n2+. . .+nk+k and to column n1+n2+. . .+nk+k.
We see thereby that rank(MW,Y1,Y2,··· ,Yk

n1,n2,...,nk
) is equal to 2 plus the rank of the upper-

left matrix, which has the form of MW,Y1,Y2,··· ,Yk
n1,n2,...,nk−2 , that is,

rank(MW,Y1,Y2,··· ,Yk
n1,n2,...,nk

) = 2 + rank(MW,Y1,Y2,··· ,Yk
n1,n2,...,nk−2 ).

In total, it contributes a term 2z2Sn1,n2,...,nk−2(z).

Hence, the polynomials Sn1,n2,...,nk
(z) satisfy the recurrence relation

Sn1,n2,...,nk
(z) = Sn1,n2,...,nk−1(z) + 2z2Sn1,n2,...,nk−2(z),

for all nk ≥ 2 and k ≥ 3. �

Note that for k = 2, the definition (8) implies that

Sn1,n2(z) =

n1+n2+3∑
j=0

D(j)zj = On1+n2+2(z),

where

On(z) =
∑
j≥0

(
n− j
j

)
2j z2j −

∑
j≥0

(
n− 2− j

j

)
2j z2j+2.
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Moreover, for k = 3, Theorem 2.4 implies these three equations:

Sn1,n2,n3(z) = Sn1,n2,n3−1(z) + 2z2Sn1,n2,n3−2(z)

Sn1,n2,0(z) = On1+n2+2(z) + 4z2On1+1(z)On2+1(z)

Sn1,n2,1(z) = Sn1,n2,0(z) + 2z2On1+n2+2(z).

To solve the recursion of Theorem 2.4, we define

S(t1, t2, . . . , tk, z) =
∑

n1,n2,...,nk≥0

Sn1,n2,...,nk
(z) tn1

1 t
n2
2 · · · t

nk
k(9)

and
O(t, z) =

∑
n≥1

On(z)tn.(10)

Rewriting the recurrence relation in the statement of Lemma 1.4 in terms of a
generating function, we obtain

O(t, z) =
(1 + z2t)t

1− t− 2z2t2
.(11)

Rewriting the recurrence in the statement of Theorem 2.4 as a generating function,
we obtain

S(t1, t2, . . . , tk, z) = S(t1, t2, . . . , tk−1, z)

+ 2k−1z2
k−1∏
j=1

t−1j O(tj, z) + 2z2tkS(t1, t2, . . . , tk−1, z)

+ tkS(t1, t2, . . . , tk, z) + 2z2t2kS(t1, t2, . . . , tk, z),

which, by (11), is equivalent to

S(t1, t2, . . . , tk, z) =
1 + 2z2tk

1− tk − 2z2t2k
S(t1, t2, . . . , tk−1, z)(12)

+
2k−1z2

∏k−1
j=1(1 + z2tj)∏k

j=1(1− tj − 2z2t2j)
k ≥ 3.
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Using the fact that Sn1,n2(z) = On1+n2+2(z), we obtain

S(t1, t2, z) =
∑

n1,n2≥0

On1+n2+2(z)tn1
1 t

n2
2

=
∑
n≥2

On(z)(tn−31 + tn−41 t2 + · · ·+ t1t
n−4
2 + tn−32 )

=
∑
n≥2

On(z)
tn−21 − tn−22

t1 − t2

=
O(t1, z)− t1
t21(t1 − t2)

− O(t2, z)− t2
t22(t1 − t2)

=
(1 + 2z2t1)(1 + 2z2t2) + z2(3 + 2z2t1 + 2z2t2)

(1− t1 − 2z2t21)(1− t2 − 2z2t22)
.

which, by (11), implies

S(t1, t2, z) =
(1 + 2z2t1)(1 + 2z2t2) + z2(3 + 2z2t1 + 2z2t2)

(1− t1 − 2z2t21)(1− t2 − 2z2t22)
.(13)

Iterating (12) we obtain

S(t1, t2, . . . , tk, z) = S(t1, t2, z)
k∏
j=3

1 + 2z2tj
1− tj − 2z2t2j

+
z2
∑k

j=3 2j−1
∏j−1

i=1 (1 + z2ti)
∏k

i=j+1(1 + 2z2ti)∏k
j=1(1− tj − 2z2t2j)

,

which, by (13), implies the following result.

Theorem 2.5. Let k ≥ 2. Then the rank distribution of the overlap matrices for
the star-ladder graph S(n1,n2,...,nk) is given by the generating function

S(t1, t2, . . . , tk, z) =

∏k
j=1(1 + 2z2tj)∏k

j=1(1− tj − 2z2t2j)

+
z2
∑k

j=1 2j−1
∏j−1

`=1(1 + z2t`)
∏k

`=j+1(1 + 2z2t`)∏k
j=1(1− tj − 2z2t2j)

.

Now our aim is to find an explicit formula for Sn1,n2,...,nk
(z) by finding the

coefficient of tn = tn1
1 t

n2
2 · · · t

nk
k in the generating function S(t1, t2, . . . , tk, z). At

first, note that the coefficient of tn in

1∏k
j=1(1− tj − 2z2t2j)
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(see Lemma 1.4) is given by

[tn]

(
1∏k

j=1(1− tj − 2z2t2j)

)
=

k∏
j=1

[t
nj

j ]

(
1

1− tj − 2z2t2j

)

=
k∏
j=1

(i
√

2z)njUnj

(
1

2i
√

2z

)

= (i
√

2z)
∑k

j=1 nj

k∏
j=1

Unj

(
1

2i
√

2z

)
(14)

and that
k∏
j=s

(1 + utj) =
∑

A⊆[s,k]

u|A|
∏
a∈A

ta,(15)

for any k ≥ s, where [a, b] = {a, a+ 1, . . . , b}.
We define

ρA(nj) = (i
√

2z)nj−χA(j)Unj−χA(j)

(
1

2i
√

2z

)
,

where Un(t) is the nth Chebyshev polynomial of the second kind, and χA(j) is
defined to be 1 if j ∈ A or 0 otherwise, and i2 = −1.

Now Theorem 2.5 together with (14) and (15) imply the following result.

Theorem 2.6. Let k ≥ 2, let n1, n2, . . . , nk ≥ 0. Then the rank-distribution
Sn1,n2,...,nk

(z) = [tn]S(t1, t2, . . . , tk, z) is given by the polynomial

Sn1,n2,...,nk
(z) =

∑
A⊆[1,k]

(2z2)|A|
k∏
j=1

ρA(nj)

+ z2
k∑
j=1

∑
A⊆[1,j−1]

∑
B⊆[j+1,k]

2|B|+j−1z2|A|+2|B|
k∏
j=1

ρA∪B(nj).

Theorem 2.6 reveals the following nice property:

Corollary 2.7. For k ≥ 2, let π = (n1, n2, . . . , nk) be a n-tuple of k nonnegative
integers, and let π′ be any permutation of π. Then Sπ(z) = Sπ′(z).

Theorem 2.8. The genus polynomial of the star-ladder SLU is as follows:

ΓSLU
(z) = 2

∑k
j=1(nj+1)Sn1,n2,...,nk

(
√
z),

where Sn1,n2,...,nk
(z) is the rank-distribution polynomial defined by equation (8).

Proof. The theorem follows from Proposition 2.3. �
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Example 2.9. Let k = 3 and let us find the polynomial S2,1,0(z). After evaluating
each sum in the formula of S2,1,0(z) according to Theorem 2.6, we obtain

S2,1,0(z) = (1 + 7z2 + 12z4 + 4z6) + (2z2 + 6z4) + (4z2 + 16z4 + 12z6)

= 1 + 13z2 + 34z4 + 16z6.

Thus, ΓSL2,1,0(z) = 64S2,1,0(z) = 64 + 832z2 + 2176z4 + 1024z6.

Example 2.9 can be extended as follows. Let

pn = (i
√

2z)nUn

(
1

2i
√

2z

)
with i2 = −1. Then Theorem 2.6 for k = 3 gives

Sa,b,c(z) = papbpc + 2z2(pa−1pbpc + papb−1pc + papbpc−1)

+ 4z4(pa−1pb−1pc + pa−1pbpc−1 + papb−1pc−1) + 8z6pa−1pb−1pc−1

+ z2papbpc + 2z4papb−1pc + 2z4papbpc−1 + 4z6papb−1pc−1

+ 2z2papbpc + 4z4papbpc−1 + 2z4pa−1pbpc + 4z6pa−1pbpc−1

+ 4z2papbpc + 4z4(pa−1pbpc + papb−1pc) + 4z6pa−1pb−1pc,

which implies this formula

Sa,b,c(z) = (1 + 7z2)papbpc + 2z2(1 + 3z2)(pa−1pbpc + papb−1pc + papbpc−1)

+ 4z4(1 + z2)(pa−1pb−1pc + pa−1pbpc−1 + papb−1pc−1) + 8z6pa−1pb−1pc−1.

Example 2.10. Applying this formula for several values of a, b, c we obtain the
following values:

S0,0,0(z) = 1 + 7z2 S1,0,0(z) = 1 + 9z2 + 6z4

S2,0,0(z) = 1 + 11z2 + 20z4 S1,1,0(z) = 1 + 11z2 + 16z4 + 4z6

S3,0,0(z) = 1 + 13z2 + 38z4 + 12z6 S2,1,0(z) = 1 + 13z2 + 34z4 + 16z6

S1,1,1(z) = 1 + 13z2 + 30z4 + 20z6.
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