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Abstract

Classical (or biaxial) twill is a textile weave in which the weft threads pass over and under two or more warp threads,
with an offset between adjacent weft threads to give an appearance of diagonal lines. This paper introduces a theoret-
ical framework for constructing twill-woven objects, i.e., cyclic twill-weavings on arbitrary surfaces, and it provides
methods to convert polygonal meshes into twill-woven objects. It also develops a general technique to obtain exact
triaxial-woven objects from an arbitrary polygonal mesh surface.

1. Motivation

Beyond its use in fabric design, weaving provides a
wide variety of ways to create surface patterns that can
be embodied in sculpture and in innovative architec-
tural design. We focus here on twill-weaving, which
can provide strength, durability, and water-resistance,
along with interesting diagonal patterns. We describe
methods to convert polygonal meshes into twill-woven
sculptures.

It has recently been shown (Akleman, et al. [3, 4])
how any given polygonal mesh can be transformed into
objects woven from ribbons of varying width, such that
the ribbons cover the underlying surface almost com-
pletely, except for small holes. The ribbons can be man-
ufactured inexpensively by using laser-cutters on thin
metal sheets. The corresponding plain-woven sculp-
tures are constructed physically by weaving these metal
ribbons. Mallos [26] has created large-scale plain-
woven objects.

With the design and construction of more and more
unusually shaped buildings, the computer graphics
community has started to explore new methods to re-
duce the cost of the physical construction for large
shapes. Most of the currently suggested methods fo-
cus on reduction of the number of differently shaped
components [31, 11, 12]. There exists a contemporary
interest among architects to explore weaving as an al-
ternative construction method [23, 13, 18] based on tra-
ditional bamboo-woven housing [19, 20, 29]. This sug-
gests how weaving with ribbons from thin metal sheets
can also be useful for economical construction of com-
plicated shapes.

Figure 1: Three biaxial twill-woven objects ob-
tained by applying Catmull-Clark subdi-
vision to the same initial mesh.

2. Introduction

It has recently been described [3] how any arbitrary
twist of the edges of an extended graph rotation system
induces a cyclic plain-weaving on the corresponding
surface. The method works for all meshes and is very
simple: just twisting all edges in the same way. On the
other hand, in order to construct other weaving struc-
tures we had to use two different types of twisted edges,
characterize conditions to design the desired weaving
structures, and develop algorithms to create exact and
approximate versions of the weaving structures. Herein
we extend the mathematical model to twill-weaving,
which is used in fabrics such as denim or gabardine.
Classical twill is a biaxial textile weave in which each
weft (filling) thread passes over and under two consec-
utive warp threads, and each row is obtained from the
row above it by a shift of one unit to the right or to the
left. The shift operation creates a diagonal pattern that
adds visual appeal to a twill fabric or to a twill-woven
object, as illustrated in Figure 1.

In what follows, we define a twill-weaving as a type
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of cyclic weaving structure on general surfaces. Based
on this definition, we identify three mesh conditions
that are collectively necessary and sufficient to obtain a
twill-weaving from a given mesh. In fact, many meshes
do not satisfy these three conditions, which implies that
it is impossible to obtain an exact twill for them. In-
tuitively, we may expect that a mostly-(4, 4) mesh, i.e.,
a mesh with large areas of quadrilaterals with 4-valent
vertices, would admit a reasonably good twill. Indeed,
we have developed an edge-coloring algorithm that will
create an exact twill whenever the mesh is twillable.
Even if the mesh is not twillable, the output of the al-
gorithm satisfies most of the twill conditions, and it
exhibits the characteristic diagonal pattern for mostly-
(4, 4) meshes, as shown in Figure 11(c).

Our generalized definition of twill leads us to iden-
tify a previously unknown weaving pattern that we call
triaxial twill. Triaxial twill patterns are created from
meshes that are populated with (3, 6) regions (i.e., tri-
angles with 6-valent vertices). Such meshes can be ob-
tained by triangular schemes such as mid-edge subdivi-
sion [25] or

√
3 subdivision [24]. We prove that every

mesh obtained by mid-edge subdivision [25] is twill-
able. Triaxial twill patterns are visually interesting and
reminiscent of some of the tilings of M. C. Escher, as
shown in Figure 11(d). We note that a triaxial twill
does not demonstrate the characteristic diagonal pattern
of classical biaxial twill.

Obtaining a biaxial twill that exhibits diagonal pat-
terns depends on having a proliferation of (4, 4) re-
gions in the mesh. Quad-remeshing schemes such as
the Catmull-Clark [6] or Doo-Sabin subdivisions [10]
can achieve that proliferation, and they can make the
number of crossings in each cycle divisible by 4, an im-
portant property of twill weaving. In §8, we show the
existence of meshes that continue to be biaxially twill-
able after application of quad-remeshing schemes.

3. Textile Twill

Most textile weaves are 2-way weaves, also called bi-
axial weaves. They consist of row and column strands,
called weft and warp respectively, at right angles to each
other. They are also 2-fold, which means that there are
never more than two strands crossing each other. The
popularity of biaxial weaving comes from the fact that
most textile weaving structures are manufactured using
loom devices by interlacing the two sets of strands at
right angles to each other. The basic purpose of any
loom device is to hold the warp strands under tension,
so that the weft strands can weave under and over warp
strands to create a fabric. Using a loom, it is possible
to manufacture a wide variety of weaves by raising and
lowering different warp strands.

Grunbaum and Shephard [16] formally investigated
the mathematics behind these 2-way, 2-fold woven fab-
rics. They coined the phrase isonemal fabrics [17]
to describe 2-way, 2-fold fabrics that have a transitive

symmetry group acting on the strands. Twill weav-
ing belongs to a certain family of isonemal fabrics in
which each weft row of length n (the period) is obtained
from the weft row immediately above it by a cyclical
shift of s units (the offset) to the right, for some fixed
value of the parameter s, such that n and s are relatively
prime. If s = ±1, the fabric is called twill [17]. More
generally, the resulting fabrics are called (n, s)-fabrics.
This family of fabrics also includes plain-weaves (with
n = 2, s = 1) and satins.

Twills are widely used in clothing fabrics, for in-
stance, in denim or gabardine. Their characteristic di-
agonal pattern that makes the weaving visually appeal-
ing. Since twill-weaving uses fewer crossings than
plain-weaves, the yarns in twill-woven fabrics can move
more freely than the yarns in plain-woven fabrics. This
property makes twill-weaving softer, more pliable, and
better draped than plain-weaving. Twill fabrics also
recover better from wrinkles than plain-woven fab-
rics. Moreover, yarns in twill-weaving can be packed
closer. This property makes the twill-woven fabrics
more durable and water-resistant, which is a reason why
twill-fabrics are often used for sturdy work clothing or
for durable upholstery.

A special family of twills is characterized by two in-
tegers a and b, where a is the number of over-crossings,
and b the number of under-crossings of a weft thread as
it crosses the warp threads. Each twill-weaving pattern
in this family can be expressed by a triple a/b/s, where
s = ±1 and where b/a/-1 is a 90◦-rotated version of
a/b/1. For instance, 2/2/1 and 2/2/-1 in Figure 2 de-
fine 90◦-rotated versions of exactly the same twill struc-
tures. Similarly, 3/1/1 and 1/3/-1 define exactly the
same twill-weaving structures. This is expected since
one over in weft must correspond to one under in warp
and one under in weft must correspond to one over in
warp. Thus, the total number of overs and the total num-
ber of unders should be equal.

2/2/1 2/2/-1 3/1/1 1/3/-1

Figure 2: All possible biaxial twills for period n =

4.

In this paper, we focus mainly on 2/2/1 twill, simply
called 2/2 twill, but our results generalize to other a/b/1
twills. The 2/2 twill pattern is quite common, and its
characteristic pattern of twill is not limited to fabrics.
Brick walks and hardwood floor tiles sometimes exhibit
twill patterns. (See Figure 3(c).)

This work can also be useful to study the covering of
an arbitrary surface with hexagonal tiles. The visual re-
lationship between the 2/2 twill pattern and the regular
hexagonal tiling is shown in Figure 4. [28] [27]
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(a) (b) (c)

Figure 3: Non-fabric examples of twill pattern. (a)
is a twill woven basket from Mozam-
bique, and (b) shows its detail. (c) is an
hexagonal tiling that exhibits the same
diagonal pattern as twill weaving.

Figure 4: A regular hexagonal tiling and a related
2/2 twill weaving.

In this paper, we are concentrating on topological and
aesthetic properties of twills, rather than exploring the
physical aspects of twill-weaving. Our goal is to obtain
twill patterns on surfaces and to understand the impact
of the initial mesh structures. Unlike plain-weaving,
which results in an isotropic checkerboard-like pattern,
twill-weaving results in an anisotropic structure.

4. General Twill-Weaving on Surfaces

In this section, we generalize twill weaving from pla-
nar weaves to weaves on arbitrary surfaces. We define a
cyclic weaving on an arbitrary orientable manifold sur-
face S o to be a projection of a link L to S o, such that
there are no triple intersections of the link image at a
single point on S o [3]. Under this definition, cyclic
weaves on general surfaces are 2-fold but not necessar-
ily 2-way weaves. That is, a cyclic weave need not have
a clear distinction of warp and weft cycles. In some ex-
ceptional cases, like those shown in Figure 1, the char-
acteristic diagonal patterns of twill-weaves, as shown in
Figure 2, can be obtained by coloring warp and weft
threads with different colors. On the other hand, when
the warp and weft distinction does not happen, it is still
possible to obtain an approximate twill, which exhibits
a strong diagonal pattern in most places (see Figure 11).

Similar to the terminology of knot theorists (for knot
theory, see [9, 22]), we call the part of a cycle between
any two consecutive crossings a segment, and we call
the two crossing points the ends of the segment. Two
segments are called adjacent if they share a crossing. A
gap is a “hole” in the weave, something like a region
of a graph drawing that allows edge-crossings. For in-
stance, in Figure 5(b), the region r of the surface that is
partially bounded by the sequence of segments a, b, c is
a gap.

b c
a

b over

   c 
over

a under
r

(a) Cycle condition (b) Offset condition

Figure 5: 2/2-twill weaving conditions.

Definition 4.1. General 2/2-twill weaving. A cyclic
weave on a surface S o is a 2/2-twill if it satisfies the
following conditions:

• Cycle condition: In a complete traversal of every
cycle, one must alternatingly encounter pairs of
over-crossings and pairs of under-crossings. See
Figure 5(a).

• Offset condition: Let a, b, and c be three consec-
utive segments in a traversal of the boundary of a
gap, such that both ends of segment b are of the
same type (i.e, either both over or both under).
Then the other ends of segments a and c (i.e., the
ends not touching segment b) must be of different
types from each other. See Figure 5(b).

Akleman, et al. [2] introduces the concept of ex-
tended graph rotation systems, which facilitates a prac-
tical description of a cyclic weave as a mapping of a
link L on the orientable surface S o, and develops a pro-
jection algorithm to convert the weaving cycles to 3D
threads, such as ribbons or yarns. In the next section, we
describe how cyclic weaves are specified by extended
graph rotation systems and how they are constructed by
means of the projection algorithm.

5. Extended Graph Rotation Systems

Let G be a graph (without any self-loops). A rotation
at a vertex v is a cyclic ordering of the edges incident
at v. A rotation system for the graph G is a collection
of rotations, one for each vertex of G. By the Heffter-
Edmonds Theorem (see [14]), there is a one-to-one cor-
respondence between graph rotation systems and graph
embeddings on orientable surfaces, in which the rota-
tion at a vertex corresponds to the ordering of the inci-
dent edges embedded around the vertex on the surface.

In an extended graph rotation system (EGRS), an
edge is viewed as a thin rectangular strip that can be
twisted clockwise or counter-clockwise, in helical sense
(see Figure 6). The sides of the strips provide two
“strands” in the corresponding weaving pattern. For
an “untwisted edge”, these strands are “parallel” to the
mesh-edge, and for a “twisted edge”, they both cross
over the mesh-edge and one over the other. The type
of the crossover depends on the helical twist sense (i.e.,
clockwise or counter-clockwise). If an arbitrary sub-
set of edges of a mesh on an orientable surface S o is
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twisted in the same helical sense, then the EGRS in-
duces a cyclic plain-weaving on S o [2]. We now show
how controlling the twist-type of every edge makes it
possible to construct different weaves, beyond simple
plain-weaving .

(a) (b) (c) (d)

Figure 6: (a) An edge, as usually represented. (b)
A visual interpretation of an untwisted
EGRS edge. (c) A counter-clockwise
twisted EGRS edge. (d) A clockwise
twisted EGRS edge.

5.1. Specifying Weaves on Surfaces with EGRS
A rotation system ρo(G) of a graph G = (V, E) with

no twisted edges uniquely determines a set W of closed
walks that serve as the set of boundaries of regions of
an embedding of that graph on an orientable surface
S o of Euler characteristic |V | − |E| + |W |. The set W
is constructed by applying the face-tracing algorithm,
and each closed walk in W is regarded as the boundary
of a polygon. The surface S o is obtained by pasting the
polygons together. (See [14].) If we imagine that the
graph G is in 3-space, then the polygons (if the poly-
gons are sufficiently flexible) can be pasted to G so as to
form the surface S o in 3-space. We imagine further that
the graph G is thickened to a “regular neighborhood” N
in which the edges become the thin rectangular strips.
Thus, we have a model in 3-space of a thickened graph
on a closed surface.

Figure 7(a)(b)(c) illustrates this for the example of
the octahedral graph on the sphere. Observe that
the neighborhood N of the graph is a surface-with-
boundary that lies on the sphere. Notice also that the
components of bd(N) form a link in 3-space, in which
the components are completely unlinked.

Next let A be an arbitrary subset of edges of G.
Choosing either the clockwise or counterclockwise
sense and then twisting all the edges of A in that di-
rection gives an EGRS ρ(G). (Beyond the usual case
of a single half-twist of an edge, an EGRS permits any
number of half-twists, each specifying a unique weave.)
Twisting the corresponding strips in the surface N has
the effect of linking components of bd(N). An effect
of twisting the strips is to link some of the components
of bd(N) together, thereby forming a link L in 3-space,
with a natural projection to the surface S o, as shown in
Figure 7(d)(e)(f). Applying the face-tracing algorithm
to the EGRS ρ(G) constructs the components of the link
L. The link L mapped on S o makes a cyclic weaving W

(a) (b) (c)

(d) (e) (f)

Figure 7: An example of creating a cyclic weaving
on a surface with face-tracing. The mesh
in (a) is an octahedron with untwisted
edges, embedded in a sphere. As shown
in (c), the eight face-boundary walks of
the octahedron are initially unlinked in
3D. However, if some edges are twisted,
as shown in (d), then some of the cycles
represented by the boundary walks be-
come merged together, and the resulting
cycles are linked, as in (f).

on the surface S o. We say that the cyclic weaving W is
induced by the extended graph rotation system ρ(G).

An important property of cyclic weaving, easily de-
rived [3], is that every cycle c in a cyclic weaving in-
duced by an extended graph rotation system has an even
number of crossings. If c is a self-crossing, then every
sub-cycle of c separated by a self-crossing has an even
number of crossings (see Figure 8). This property holds,
regardless of how we twist the edges, and it will be used
in the rest of the paper.

Figure 8: Every cycle and sub-cycle in a cyclic
weaving induced by a EGRS has an even
number of crossings.

5.2. General 2/2 Twill Conditions for Meshes
We now describe how the theory of extended graph

rotation systems can be used to simplify our initial prob-
lem of specifying generalized twill-weaving on surfaces
to a problem in edge-bicoloring, in such a way that the
induced cyclic weaving resembles a 2/2 twill-weave
with a strong diagonal pattern in most places. A lo-
cal perspective on the edge-bicoloring is represented in
Figure 9:
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• blue means the edge is counter-clockwise twisted;

• red means the edge is clockwise twisted.

We will call a mesh twillable if there exists at least
one edge-labeling solution such that the corresponding
EGRS ρ(G) induces a general 2/2 twill-weave.

Definition 5.1. We now redefine a 2/2 twill-weaving in
terms of an edge-bicoloring. Let ρ be the EGRS ob-
tained by twisting all the edges of a mesh Mo.

• Edge condition: Any three edges consecutive in a
“face boundary” induced by ρ must have two con-
secutive like-colored edges and the other edge col-
ored differently. See Figure 9(a).

• Face condition: If two consecutive edges in a “face
boundary” Fo in Mo are colored differently in ρ,
then their neighboring two edges in Fo must be
like-colored in ρ. See Figure 9(b).

• Vertex condition: If two edges consecutive in the
rotation at a vertex v in Mo are colored differently
in ρ, then their neighboring two edges in the rota-
tion at v must be like-colored in ρ. See Figure 9(c).

s

fp

   s 
over

   s 
over

under

over

under    f 
over

   p 
over

   p 
under

   f 
under

(a) edge condition (b) face condition (c) vertex condition

s over

Figure 9: 2/2-twill mesh conditions.

Theorem 5.2. Twillable mesh conditions. A mesh is
twillable if and only if there exists a edge bicoloring
that satisfies the edge, vertex, and face conditions given
just above.

Proof: As we described above, the two sides of an edge
in the mesh correspond to two cycle segments in the cor-
responding weaving structure. In particular, a clockwise
twist of the edge implies that the left segment under-
crosses the right segment at their crossing point, while
a counterclockwise twist of the edge implies that the left
segment over-crosses the right segment at their crossing
point (the sides of the segments are determined when
we traverse the edge on the surface along a specific di-
rection. Note that no matter which direction of the edge
we are traversing, the above statements always hold
true). Therefore, two consecutive segments in a cycle
from two consecutive edges of the same twisting type
in a face boundary induce two different types of cross-
ings, while two consecutive segments in a cycle from
two consecutive edges of different twisting types in a

face boundary induce two crossings of the same cross-
ing type (note that a segment moves from one side to
the other side after it passes through its crossing point).

Based on this observation, and comparing Figure 5
and Figure 9, we can easily prove the theorem now:
the edge condition for meshes in definition 5.1 is just
equivalent to the cycle condition for 2/2 twills in defini-
tion 4.1, while the face and vertex conditions for meshes
in definition 5.1 are equivalent to the offset condition for
2/2 twills in definition 4.1. 2

Figure 10 shows an example of a (4, 4)-grid (i.e
quadrilaterals with 4-valent vertices) structure that is
edge-bicolored to satisfy twillable mesh conditions.
The edge bicoloring on the right defines a 2/2 twill-
weave.

Figure 10: Applying twillable mesh conditions
to a regular (4, 4) mesh creates an
anisotropic structure of twist types.

6. Edge Bicoloring with Voting

Each cycle in a twill must have the number of its
crossings divisible by 4, because the pattern is 2-over,
2-under, and the numbers of over-crossings and under-
crossings must be equal. Although many meshes do not
admit an exact twill, for meshes with large sub-meshes
of quadrilaterals with 4-valent vertices, it seems intu-
itively possible to obtain a reasonably good twill-weave
in most places. Based on this intuition, we have de-
veloped and implemented an edge-bicoloring algorithm
that can satisfy the twill conditions in most places. The
resultant weavings can demonstrate strong diagonal pat-
terns everywhere. This edge-bicoloring algorithm cre-
ates exact twill if the mesh is twillable. When we en-
counter an obstruction to the extension of a twill, we use
a “voting” strategy that seeks to minimize the number of
conflicts with the edge, face and vertex conditions.

6.1. Partitioning Threads into Bunches

In order to distinguish the cycles of the mesh from
those of the induced weaving, we refer to the latter as
threads. We observe that the mesh itself induces the
threads. That is, since every edge of the mesh is to be
twisted, the face-tracing algorithm yields the same set
of threads, no matter which way any individual edge is
colored or twisted.
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A preliminary step before assigning colors (repre-
senting twist directions) to the edges is to partition the
threads into bundles such that no cycle crosses another
in the same bundle. (This is like vertex-coloring in
graph theory.) For instance, if there exist only two bun-
dles of threads, they are classified as warp and weft.
The characteristic diagonal pattern of twill becomes vis-
ible when distinct colors are applied to warp and weft
threads (see Figure 1). Even in the cases when parti-
tioning into two bundles is not possible, giving all the
threads in the same bundle the same color illuminates
the structure of the weaving, as shown in Figure 11(c).

6.2. Breadth-first Extension with a Voting Strategy
Our edge bicoloring involves growing a sub-mesh of

colored (i.e, twisted) edges by coloring frontier edges,
i.e., edges that are incident on a vertex of the growing
submesh, but are not yet colored. The color is chosen to
meet all the twilling conditions, if possible. When exact
twilling is not possible, we use a “voting” rule. Here is
the procedure:

1. Initialize submesh S with an arbitrarily selected
vertex v0. Color all edges incident at v0 (i.e., the
first frontier set) in such a way that the vertex con-
dition is satisfied (the edge and face conditions are
vacuously satisfied), and add those edges to S , in-
cluding their other endpoints.

2. Determine the set F of frontier edges for S .
3. Select a frontier edge from F for which one of

the two possible colors satisfies all available edge,
vertex and face conditions and assign that color.
Continue such selections from F and color assign-
ments as long as possible. The remaining edges
are called “leftover edges”.

4. Each leftover edge is potentially subject to four ap-
plications of the edge condition, since each of its
two threads traverses a neighboring edge in each of
two directions. It is similarly subject to four appli-
cations of the face condition and four applications
of the vertex condition. We view each of these 12
conditions as having an equal “vote”. When some
neighboring edges are not yet colored, a vote may
be unavailable. If all available conditions agree,
the edge is colored accordingly. If there is any con-
flict, the decision is postponed.

5. Until every edge has been considered, return to
Step 2.

6. Color a least conflicted (i.e., strongest majority)
edge e by majority rule; then recalculate the votes
for the neighboring edges. Continue choosing and
coloring a least conflicted edge until all edges are
colored.

6.3. Group Hierarchy in Voting
Partitioning the threads into bunches and assigning

the same color to each thread in the same bunch helps
to produce strong diagonal patterns. The voting power

of bunch is proportional to the sum of the lengths of its
threads, which permits a largest bunch greater power in
defining the twill. This approach provides a consistent
look as shown in Figure 11.

6.4. Weighted Voting

The vertex and face conditions are important to ob-
taining diagonal patterns. The edge condition guaran-
tees only that the cycle alternates two-over and two-
under. If the mesh is not twillable, it is helpful to give
the vertex and face conditions higher weighting in the
voting than the edge condition. Allowing 3/1 twill in
few places helps to achieve strong diagonal patterns as
it can be seen in Figure 11.

As mentioned earlier, if the mesh is twillable, then
our edge-bicoloring algorithm constructs an exact twill.
Fortunately, there exist a large number of twillable mesh
families. We study mesh families that can provide exact
biaxial twill in Section 8. In studying twillable meshes,
we have discovered that there also exists another family
of twill patterns, which we call triaxial twill. Interest-
ingly, it is easy to obtain meshes that can produce exact
triaxial twill, as explained in the next section.

7. Exact Triaxial Twill

Triaxial twill-weaves are created from meshes with
(3, 6) regions (i.e triangles with 6-valent vertices) pre-
dominating. Such meshes can simply be obtained (see
Loop [25]) by mid-edge subdivision, which involves su-
perimposing what graph theorists call a medial graph on
an arbitrary mesh. As illustrated in Figure 12 (left), the
procedure begins with a “parent mesh”:

1. Insert a “new vertex” at the midpoint of each par-
ent edge. This subdivides each parent edge into
two “old edges”.

2. Traverse the boundary of every face of the parent
mesh, and in so doing, join each pair of consecu-
tive new vertices by inserting a “new edge”.

3. Color every old edge blue and every new edge red
(Figure 12 (right)) — or vice versa.

Figure 12: Mid-edge subdivision always produces
a twillable mesh.
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(a) Venus (b) Bunny (c) Cubical (d) Genus-30

Figure 11: Examples of Approximate biaxial cyclic twill woven objects constructed from polygonal meshes with
the voting algorithm. Genus-30 example has its cycles partitioned into two bunches, even though the
weaving does not satisfy twill conditions everywhere.

Theorem 7.1. For any parent mesh on any orientable
surface, the mid-edge subdivision scheme produces a
twillable mesh.

Proof: Let M be a mesh obtained by the mid-edge sub-
division scheme on an arbitrary mesh. It suffices to
prove that the coloring process on the mesh M given
in step 3 above gives a bicoloring of the edges of M that
satisfies the conditions of Theorem 5.2.

First observe the following: (1) if v is an old vertex in
M, then all edges incident to v are old edges; (2) if v is
a new vertex in M, then v is incident to exactly 6 edges,
in which two are old edges, four are new edges, and in
the rotation at v, the two old edges are separated by two
consecutive new edges on each side; (3) each face in M
either has all new edges on its boundary, or is a triangle
made by one new edge and two old edges; and (4) no
two faces whose boundaries are all new edges share a
common edge.

Based on these observations, we can easily verify that
the bicoloring given in step 3 satisfies the conditions of
Theorem 5.2. For example, to see that the face condi-
tion is satisfied, let e1 and e2 be two consecutive edges
in the boundary of a face F in M. If e1 and e2 are col-
ored with different colors, then the face F must be a
triangle whose boundary consists of one new edge and
two old edges. Therefore, the other edge of F must be
an old edge, which is neighboring to both e1 and e2 in
the face boundary. Thus, the neighboring edges of e1
and e2 (which in this case are the same edge) must be
colored with the same color. That is, the face condition
in Theorem 5.2 is satisfied. The vertex condition and
the edge condition can be verified similarly. 2

Triaxial twill patterns are interesting, reminiscent of
some M. C. Escher tilings (as in Figure 13). However,
triaxial twill does not demonstrate the characteristic di-
agonal pattern.

Figure 13: Examples of triaxial twill weaving on
genus-0 surfaces.

8. Exact Biaxial Twill

To obtain the characteristic diagonal patterns, we
use biaxial twill that is obtained from meshes popu-
lated by (4, 4) regions (i.e., meshes with large areas
of quadrilaterals with 4-valent vertices). The simplest
method (Peters-Reif [30]) involves overlaying the me-
dial graph. The vertex-insertion method (Catmull-Clark
[6]) involves insertion of a new vertex at the center of
a region, followed by a subdivision of each edge on the
region boundary, and adjoining the resulting vertex to
the vertex at the center of the region. The corner-cutting
method (Doo-Sabin [10]) involves reapplication of the
medial graph construction. These are collectively called
quad-remeshing schemes. They can convert any mesh
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into a quad mesh, either in which all faces are 4-sided,
or in which all vertices are 4-valent. Moreover, iter-
atively applying such quad-remeshing schemes causes
(4, 4) regions to predominate.

If a quad mesh M0 is twillable, then any mesh ob-
tained from M0 by these quad-remeshing schemes is
also twillable. This hereditary twillability helps us to
create an arbitrarily dense weaving, by iterative quad-
remeshing.

Having threads whose numbers of crossings are mul-
tiples of 4 crossings is not sufficient to obtain a 2/2
twill. We must also create consistent offsets to obtain
the twill look. To create offsets, twisting the edges so as
to satisfy the vertex and face conditions in definition 5.1
is still important.

We have experimentally created a few such meshes
and we have formally shown the existence of quad-
meshes on every surface of genus larger than 0 in the
form of (4m, 4n, g)1 [1]. [Examples of twill-woven
objects obtained by remeshing (8, 4, 3) and (16, 4, 4)
meshes are shown in Figures 14 and 15, respectively. It
is also possible to use semi-regular polyhedra to create
twillable meshes. The twill-woven objects in Figure 16
come from descendant-twillable meshes that were pro-
duced by adding handles to 2n-gonal bipyramids [33],
such as an octahedron.

Figure 14: Diagonal twill-weaving patterns on a
quad mesh obtained by remeshing a
(8, 4, 3) regular mesh.

Another important property of cyclic biaxial twill-
woven objects is that two thread colors are sufficient, as
shown in Figures 1, 15, 14 and 16. This is because the
threads in an exact biaxial twill-weaving can be natu-
rally partitioned into warp and weft thread bundles such
that no two threads in the same bundle cross each other.

9. Implementation and Results

We have developed a system by implementing an
edge bicoloring algorithm to obtain twill patterns. This
algorithm provides exact twill-weaves for biaxial and
triaxial twillable meshes and acceptable approximate

1The notation (n,m, g) denotes a genus-g regular mesh where all
faces are n-sided and all vertices are m-valent [1, 7, 32].

Figure 15: Diagonal twill-weaving patterns on a
quad mesh obtained by remeshing a
(16, 4, 4) regular mesh.

twill weaves for other meshes. Our system can trans-
form any given polygonal mesh into an approximate or
exact cyclic twill-woven object. The system converts
threads of the weave into ribbons or into yarns by us-
ing the projection algorithm described in [3]. Users can
interactively change the thickness of ribbons or yarns.
Figure 17 shows an example of an edge bicoloring and
of the resulting cyclic woven objects, for thick and thin
ribbons. All the twill woven-object images in this pa-
per are direct screen captures from the system, and they
were created in real-time. The colors of the threads are
chosen based on the partitioning algorithm.

Bicolored edges Thin ribbons Thick ribbons

Figure 17: The correspondence between the bicol-
ored edges and cyclic weave.

We use saturated colors to emphasize the twill struc-
ture. For choosing the colors, we employ two different
strategies.

1. To get colorful yet balanced results as in Figure 1,
we sample the hue space with equal angles. This
strategy is useful to emphasize strong diagonal pat-
terns, which are clearly visible in the case of non-
self crossing cycles.

2. To get a subtle twill effect as in Figure 1(a), (b)
and (c), we sample only a small portion of the hue
space with equal angles. This is used in the case
of self-crossing cycles. Despite the color similari-
ties, the diagonal pattern remains evident in these
images.

The projection algorithm always guarantees that the
sizes of the ribbons are relative to the underlying poly-
gons. Therefore, the widths of the ribbons vary in differ-
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Figure 16: Two higher genus examples of biaxial twill woven objects that are induced by a quad mesh obtained
from meshes produced by adding handles to 2n-gonal bipyramids.

ent parts of the mesh. The projection method can create
a sparse weaving, but, since twill becomes more visible
in dense weaving, we use only dense woven objects in
our examples. The projection method closes the gaps
better with the mesh is obtained from a few iterations
of a subdivision scheme. Since we already apply subdi-
vision schemes to obtain denser meshes, the projection
method covers the entire surface very smoothly, and the
results look as if texture mapped onto smooth surfaces.
Perhaps surprisingly, the results we have achieved can-
not be obtained with texture mapping.

3D geometry allows us to achieve more realism in
an interactive rendering. We can compute a real-time
shadow, which can show the top ribbon’s shadow on
the bottom ribbon. We can also use a specularly re-
flected environment map, which looks significantly dif-
ferent in the top and bottom ribbons. Having 3D geom-
etry also allows us to change the width of the ribbons in
real time. Since we can easily unfold the ribbons, it is
theoretically possible to construct these woven surfaces
as physical shapes.

10. Conclusion and Future Work

We have introduced a theoretical framework for cre-
ating twill-woven objects based on extended graph ro-
tation systems. We have formulated generalized twill
conditions that apply to twills on any surface, not just
on the plane. Based on the twill conditions, we have de-
veloped an edge bicoloring algorithm that produces ac-
ceptable approximate twill-weaves for any given mesh
and exact twill for twillable meshes. Moreover, we have
developed a procedure to convert an arbitrary mesh to
generalized triaxial twill, which exhibits an interesting
pattern that is significantly different from diagonal pat-
terns. In our investigations so far, we have not located
commercial textile looms for triaxial twill. However,
triaxial twill patterns provide an interesting hexagonal
tiling of surfaces.

We have shown, furthermore, that for any surface of
positive genus, it is possible to construct meshes that

can be converted to a biaxial twill that exhibits diagonal
patterns. Since the geometry is not important for twill-
ability of a mesh, the same mesh structure can be used
to cover any surface of the same genus. In addition, we
have shown that these twill-weaving structures can be
painted in two colors. We have identified the effect of
subdivision schemes on the cyclic weaving structures.

Our results are not limited to twill. The relation-
ship between mesh subdivision and weaving refinement
can effectively be used for other weaving and knitting
patterns. It may be useful to check some remeshing
schemes that we have not analyzed, such as the remesh-
ing scheme of

√
3 subdivision [24].

Our results also suggest that it is possible to provide
consistent anisotropy over an arbitrary surface of posi-
tive genus, and it can be used to understand the limita-
tions and requirements to create anisotropic structures
on arbitrary surfaces. Another important implication
of this result can be the characterization of the mesh
structures that are parameterizable, since any consistent
parametrization can be used to cover the surface with a
consistent anisotropic pattern.

An interesting direction is to explore the links be-
tween plane symmetry patterns [15, 8] and weaving.
There currently exists an interest in computer graphics
for exploring symmetry patterns on surfaces such as N-
way rotational symmetries (N-RoSy) fields [28, 27]. In
particular, 4-RoSy fields have potential to design twill
patterns on a given surface while moving singularities
to invisible or natural positions.

We are currently researching on the material and con-
structing technicalities of weaving on an architectural
scale. As we have discussed in section 1, plain or twill
woven objects can be constructed from ribbons of vary-
ing width that are manufactured inexpensively by using
laser-cutters on thin metal sheets. For future research,
there are several practical issues that need to be resolved
to make this happen. For instance, the unrolled flat rib-
bons are both long and wavy. Cutting such a ribbon as
one continuous piece results in a huge amount of waste
material. It is our experience that the physical construc-
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tion of weaving is difficult with such long and wavy
ribbons. Therefore we currently explore ways, such as
shortening the strips into more manageable lengths, for
easier construction of woven objects.

The venus and bunny meshes that are used to create
approximate biaxial cyclic twill woven objects in Fig-
ure 11(a) and (b) are created by the Quadcover method
[21], courtesy of Wenping Wang and Li Yupei. The rest
of the models in the paper are created using TopMod3D
[5].

We are grateful to the anonymous reviewers for their
helpful suggestions for the improvement of the paper.
This work partially supported by the National Science
Foundation under Grant No. NSF-CCF-0917288.
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