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Twitter, Facebook, and other related systems that we
call social awareness streams are rapidly changing the
information and communication dynamics of our soci-
ety. These systems, where hundreds of millions of users
share short messages in real time, expose the aggregate
interests and attention of global and local communities.
In particular, emerging temporal trends in these sys-
tems, especially those related to a single geographic
area, are a significant and revealing source of infor-
mation for, and about, a local community. This study
makes two essential contributions for interpreting emerg-
ing temporal trends in these information systems. First,
based on a large dataset of Twitter messages from one
geographic area, we develop a taxonomy of the trends
present in the data. Second, we identify important dimen-
sions according to which trends can be categorized, as
well as the key distinguishing features of trends that can
be derived from their associated messages. We quan-
titatively examine the computed features for different
categories of trends, and establish that significant dif-
ferences can be detected across categories. Our study
advances the understanding of trends on Twitter and
other social awareness streams, which will enable pow-
erful applications and activities, including user-driven
real-time information services for local communities.

Introduction

In recent years, a class of communication and infor-
mation platforms we call social awareness streams (SAS)
has been shifting the manner in which we consume and
produce information. Available from social media services
such as Facebook, Twitter, FriendFeed, and others, these
hugely popular networks allow participants to post streams
of lightweight content artifacts, from short status messages to
links, pictures, and videos. These SAS platforms have already
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shown considerable impact on the information, communica-
tion, and media infrastructure of our society (Johnson, 2009),
as evidenced during major global events such as the Iran elec-
tion or the reaction to the earthquake in Haiti (Kwak, Lee,
Park, & Moon, 2010), as well as in response to local events
and emergencies (Shklovski, Palen, & Sutton, 2008; Starbird,
Palen, Hughes, & Vieweg, 2010).

SAS allow for rapid, immediate sharing of information
aimed at known contacts or the general public. The content
of the often-public shared items ranges from personal sta-
tus updates to opinions and information sharing (Naaman,
Boase, & Lai, 2010). In aggregate, however, the postings by
hundreds of millions of users of Facebook, Twitter, and other
systems expose global interests, happenings, and attitudes in
almost real time (Kwak et al., 2010).

These interests and happenings as reflected in SAS data
change rapidly. The strong temporal nature of SAS informa-
tion allows for the detection of significant events and other
temporal trends in the stream data. Such trends may reflect a
varied set of occurrences, including local events (e.g., a base-
ball game or “fire on 34th street”), global news events (e.g.,
Michael Jackson’s death), televised events (e.g., the final
episode of ABC’s Lost), Internet-only and platform-specific
memes (e.g., a “fad” of users describing various things they
object to using the #idonotsupport keyword), and hot topics
of discussion (e.g., healthcare reform or the tween idol Justin
Bieber).

Most related SAS research so far has focused on Twitter,
due to its wide global reach and popularity, and because
its contents are mostly public and are easily downloaded
with automated tools. Several research efforts focused on
characterizing or analyzing content from individual events
on Twitter (Diakopoulos, Naaman, & Kivran-Swaine, 2010;
Nagarajan, Gomadam, Sheth, Ranabahu, Mutharaju, &
Jadhav, 2009; Sakaki, Okazaki, & Matsuo, 2010; Starbird
et al., 2010; Shamma, Kennedy, & Churchill, 2010; Yardi &
boyd, 2010). Other research efforts have addressed the prob-
lem of detecting and identifying trends in Twitter and other
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SAS data. “Bursts” of interest and attention can be detected
in this data in hindsight (Becker, Naaman, & Gravano, 2010;
Chen & Roy, 2009; Kleinberg, 2003; Rattenbury, Good, &
Naaman, 2007) or in almost real time (Sakaki et al., 2010,
Sankaranarayanan, Samet, Teitler, Lieberman, & Sperling,
2009). Most recently, some work has focused on character-
izing aggregate general trend characteristics, for example,
showing a power law distribution of participation for manu-
ally identified terms that correspond to events (Singh & Jain,
2010).

Indeed, SAS systems in general, and Twitter in particular,
reflect an ever-updating live image of our society. However,
the lack of a well-established structure and semantics for this
data limits its utility. Our interest in this article is in charac-
terizing the features that can help identify and differentiate
the types of trends that we can find on Twitter. Better under-
standing of the semantics of SAS trends could provide critical
information for systems that build on this emerging data.
The outcome will be a more robust and nuanced reflection
of emerging trends that captures key aspects of relevance and
importance.

We focus here on content that is produced and shared
within a specific geographic community and trends detected
in that content. The relationship between geography and
neighborhood and community has been long studied
and argued (Campbell, 1990; Hampton & Wellman, 2003;
Tilly, 1974), particularly in view of the Internet’s effect on
local community ties (Hampton & Wellman, 2003; Putnam,
2000). It is clear, though, that social ties are still more
likely between geographically proximate individuals (Mok,
Carrasco, & Wellman, 2010; McPherson, Smith-Lovin, &
Cook, 2001), and those patterns persist in online networks
as well (Scellato, Mascolo, Musolesi, & Latora, 2010). On
Twitter in particular, Scellato et al. (2010) and Takhteyev,
Gruzd, and Wellman (2010) show that a significant propor-
tion of the connections are local, although significant “global”
patterns of connections exist. Beyond the higher likelihood
of connections and ties, people living in the same geographic
area are more similar (McPherson et al., 2001), and likely to
share interests and information needs (Yardi & boyd, 2010).
Therefore, we posit that trends that appear in content pro-
duced by individuals in a geographic community can be
critical and useful to detect or report to others in this com-
munity. On the other hand, this type of information can also
become distracting and meaningless if these interests are not
reported or harvested correctly. In this work, the focus on a
specific geographic community helps us effectively reason
about emerging trends with global and local impact.

This article offers the following contributions:

1. A taxonomy of trends that can be detected from Twitter
for a specific geographic community using popular, widely
accepted methods.

2. A characterization of the data associated with each
trend along a number of key characteristics, includ-
ing social network features, time signatures, and textual
features.

This improved understanding of emerging information
on Twitter in particular, and in SAS in general, will allow
researchers to design and create new tools to enhance the use
of SAS as information systems in different contexts and appli-
cations, including the filtering, search, and visualization of
real-time SAS information as it pertains to local geographic
communities.

To this end, we begin with an introduction to Twitter and
a review of related efforts and background to this work. We
then formally describe our dataset of Twitter trends and their
associated messages. Later, we describe a qualitative study
exposing the types of trends found on Twitter. Finally, in the
bulk of this article we identify and analyze emerging trends
using the unique social, temporal, and textual characteristics
of each trend that can be automatically computed fromTwitter
content.

Twitter

Twitter is a popular SAS service, with tens of millions
of registered users as of June 2010. Twitter’s core function
allows users to post short messages, or tweets, which are up to
140 characters long. Twitter supports posting (and consump-
tion) of messages in a number of different ways, including
through Web services and “third party” applications. Impor-
tantly, a large fraction of the Twitter messages are posted
from mobile devices and services, such as Short Message
Service (SMS) messages. A user’s messages are displayed as
a “stream” on the user’s Twitter page.

In terms of social connectivity, Twitter allows a user to fol-
low any number of other users. The Twitter contact network is
directed: user A can follow user B without requiring approval
or a reciprocal connection from user B. Users can set their
privacy preferences so that their updates are available only
to each user’s followers. By default, the posted messages are
available to anyone. In this work, we only consider messages
posted publicly on Twitter. Users consume messages mostly
by viewing a core page showing a stream of the latest mes-
sages from people they follow, listed in reverse chronological
order.

The conversational aspects of Twitter play a role in our
analysis of the Twitter temporal trends. Twitter allows several
ways for users to directly converse and interact by referenc-
ing each other in messages using the @ symbol. A retweet
is a message from one user that is “forwarded” by a second
user to the second user’s followers, commonly using the “RT
@username” text as prefix to credit the original (or previous)
poster (e.g., “RT @justinbieber Tomorrow morning watch
me on the today show”). A reply is a public message from
one user that is a response to another user’s message, and
is identified by the fact that it starts with the replied-to user
@username (e.g., “@mashable check out our new study on
Twitter trends”). Finally, a mention is a message that includes
some other username in the text of the message (e.g., “attend-
ing a talk by @informor”). Twitter allows users to easily see
all recent messages in which they were retweeted, replied to,
or mentioned.
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Finally, Twitter supports a hashtag annotation format so
that users can indicate what their posted messages are about.
This general “topic” of a tweet is, by convention, indicated
with the hash sign, #. For example, #iranelections was a
popular hashtag with users posting about the Iran election
events.

Related Work and Background

The general topic of studying Twitter trends, as well
as Twitter content related to real-life events, has recently
received considerable research interest. Research efforts
often examined a small number of such trends to produce
some descriptive and comparative characteristics of Twitter
trends or popular terms. Cheong and Lee (2009) looked at
four trending topics and two control terms, and a subset of
the messages associated with each, commenting on features
such as the time-based frequency (volume of messages) for
each term and the category of users and type of devices used
to post the associated messages.Yardi and boyd (2010) exam-
ined the characteristics of content related to three topics on
Twitter, two topics representing geographically local news
events and one control topic. The authors studied the mes-
sages posted for each topic (i.e., messages containing terms
manually selected by the authors to capture related content)
and the users who posted them. Among other findings, the
authors suggest that local topics feature denser social con-
nectivity between the posting users. Similarly, Sakaki et al.
(2010) suggest that the social connectivity for breaking events
is lower, but have only examined content related to two man-
ually chosen events. Singh and Jain (2010) examine Twitter
messages with select hashtags and show that the content for
each such set follows a power-law distribution in terms of
popularity, time, and geo-location. Kwak et al. (2010) show
that different trending terms on Twitter have different charac-
teristics in terms of the number of replies, mentions, retweets,
and “regular” tweets that appear in the set of tweets for each
term, but do not reason about why and how exactly these
trends are different. Some of the metrics we use here for
characterizing trends are similar to those used in these stud-
ies, but we go further and perform a large-scale analysis of
trends according to manual assignments of these trends to
distinct categories.

On a slightly larger scale, Kwak et al. (2010) also exam-
ined the time series volume data of tweets for each trending
term in their dataset, namely, a sample of 4,000 of the trend-
ing terms computed and published by Twitter. The authors
based their analysis on the findings of Crane and Sornette
(2008), which analyzed time series viewing data for indi-
vidual YouTube videos. Crane and Sornette observed that
YouTube videos fall into two categories, based on their view
patterns. When a time series shows an immediate and fast rise
in a video’s views, Crane and Sornette assert that the rise is
likely caused by external factors (i.e., attention was drawn to
the video from outside the YouTube community) and, there-
fore, dub this category of videos “exogenous.” When there
is no such rise, the authors suggest that a video’s popularity

is due to “endogenous” factors. Videos are also classified as
“critical” or “sub critical,” again according to the time series
data. Kwak et al. (2010) use these guidelines to classify the
Twitter trends in each of these two categories, showing how
many trends fit each type of time-series signature. However,
the two groups of authors never verified that the trends or
videos labeled as exogenous or endogenous indeed matched
their labels. Here we use the time series data (among other
characteristics) while manually coding identified trends as
exogenous or endogenous in order to observe whether these
categories show different time series effects.

While trend and event detection in news and blog posts
has been studied in depth (Allan, 2002; Kleinberg, 2003;
Sayyadi, Hurst, & Maykov, 2009), the detection of trends
on Twitter is a topic that is still in its infancy (Petrovic,
Osborne, & Lavrenko, 2010; Sakaki et al., 2010). For
example, Sankaranarayanan et al. (2009) use clustering
methods to identify trending topics—corresponding to news
events—and their associated messages on Twitter. Looking
at social text stream data from blogs and email messages,
Zhao, Mitra, and Chen (2007) detect events using textual,
social, and temporal document characteristics in the context
of clustering with temporal segmentation and information
flow-based graph cuts. Other research considers event and
trend detection in other social media data, such as Flickr pho-
tographs (Becker et al., 2010; Chen & Roy, 2009; Rattenbury
et al., 2007).

The related problem of information dissemination has also
attracted substantial attention. As a notable example, recent
work studies the diffusion of information in news and blogs
(Gruhl, Guha, Liben-Nowell, & Tomkins, 2004; Leskovec,
Backstrom, & Kleinberg, 2009).As another example, Jansen,
Zhang, Sobel, and Chowdury (2009) study word-of-mouth
activity around brands on Twitter. Trends identified in the
Twitter data are, of course, both products and generators of
information dissemination processes.

Several recent efforts attempt to provide analytics for
trends and events detected or tracked on Twitter. Sakaki
et al. (2010) study social, spatial, and temporal charac-
teristics of earthquake-related tweets, and De Longueville,
Smith, and Luraschi (2009) describe a method for using
Twitter to track forest fires and the response to the fires
by Twitter users. Starbird et al. (2010) described the tem-
poral distribution, sources of information, and locations in
tweets from the Red River Valley floods of April 2009.
Nagarajan et al. (2009) downloaded Twitter data for three
events over time and analyzed the topical, geographic, and
temporal importance of descriptors (e.g., different keywords)
that can help visualize the event data. Finally, Shamma et al.
(2010), Diakopolous and Shamma (2010), and Diakopoulos,
Naaman, and Kivran-Swaine (2010) analyze the tweets corre-
sponding to large-scale media events (e.g., the United States
President’s annual State of the Union speech) to improve
event reasoning, visualization, and analytics. These tasks may
all be improved or better automated with the enhanced under-
standing of the Twitter trends that is the result of the work
presented here.
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FIG. 1. Trending terms, on the dark blue (middle) banner, on Twitter’s home page.

Trends on Twitter

Because of the quick and transient nature of its user posts,
Twitter is an information system that provides a “real time”
reflection of the interests and thoughts of its users, as well
as their attention. As a consequence, Twitter serves as a rich
source for exploring the mass attention of millions of its users,
reflected in “trends” that can be extracted from the site.

For the purposes of this work, a trend on Twitter (some-
times referred to as a trending topic) consists of one or more
terms and a time period, such that the volume of messages
posted for the terms in the time period exceeds some expected
level of activity (e.g., in relation to another time period or to
other terms). According to this definition, trends on Twitter
include our examples above, such as Michael Jackson’s death
(with terms “Michael” and “Jackson,” and time period June
25, 2009), the final episode of Lost (with terms “Lost” and
“finale,” and time period May 23, 2010), and the healthcare
reform debate (with term “HCR” and time period May 25,
2010). This definition conveys the observation by Kleinberg
(2003) that the “appearance of a topic in a document stream
is signaled by a burst of activity, with certain features ris-
ing sharply in frequency as the topic emerges” but does
not enforce novelty (i.e., a requirement that the topic was not
previously seen). In Twitter’s own (very informal) definition,
trends “are keywords that happen to be popping up in a whole
bunch of tweets.” Figure 1 captures Twitter’s home page with
several trending topics displayed at the top.

In this article, each trend t is then identified by a set Rt

of one or more terms and a time period pt . For example,
Figure 1 highlights one trend t that is identified by a single

term, iOS4 (referring to the release of Apple’s mobile oper-
ating system). To analyze a trend t, we study the set Mt of
associated messages during the time period that contain the
trend terms (in our example, all messages with the string
“iOS4”). Note that, of course, alternative definitions and rep-
resentations of trends are possible (e.g., based on message
clustering; Sankaranarayanan et al., 2009). However, for this
work we decided to concentrate on the above term-based
formulation, which reflects a model commonly used in other
systems (e.g., by Twitter as well as other commercial engines
such as OneRiot).

While detecting trends is an interesting research problem,
we focus here instead on characterizing the trends that can
be detected on Twitter with existing baseline approaches. For
this, we collect detected trends from two different sources.
First, we collect local trends identified and published hourly
by Twitter; the trends are available via an application pro-
grammer interface (API) from the Twitter service. Second,
to complement and expand the Twitter-provided trends, we
run a simple burst-detection algorithm over a large Twitter
dataset to identify additional trends. We describe these two
trend-collection methods next.

Collecting Trend Data

In this section we describe the two methods we use to
compile trends on Twitter, and also how we select the set of
trends for analysis and how we get the associated messages, or
tweets, for each trend. The set of trends T that we will analyze
in this article consists of the union of the trends compiled
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using both methods below. We use two methods in order
to control, at least to some degree, for bias in the type of
trends that may be detected by one system, but not another.
While other algorithms for trend detection exist, we strongly
believe our selected methods will provide a representative
sample of the type of trends that can be detected. The set of
detected trends might be skewed towards some trend types
in comparison to other methods, but this skewness does not
affect the analysis in this work. We further address this issue
in the limitations discussion below.

In subsequent sections we qualitatively examine a subset
TQual of the trends in T to extract the key types of trends that
are present in Twitter data and develop a set of dimensions
according to which trends can be categorized. We then use
the categories to compare the trends in (a different) subset
of T, TQuant , according to several features computed from
the data associated with each trend, such as the time dynam-
ics of each trend and the interaction between users in the
trend’s tweets. We examine whether trends from different
categories show a significant difference in their computed
features.

Tweets Dataset

The “base” dataset used for our study consists of over
48,000,000 Twitter messages posted by New York City users
of Twitter between September 2009 and March 2010. This
dataset is used in one of our methods described below to
detect trends on Twitter (i.e., to generate part of our trend
set T ). The dataset is also used for identifying the set of
tweets Mt for each trend t in our trend set T. (Recall that
T consists of all the trends that we analyze, compiled using
both methods discussed below.) We collected the tweets via a
script for querying the Twitter API. We used a “whitelisted”
server, allowed to make a larger number of API calls per
day than the default quota, to continuously query the Twit-
ter API for the most recent messages posted by New York
City users (i.e., by Twitter users whose location, as entered
by the users and shown on their profile, is in the New York
City area). This querying method results in a highly signif-
icant set of tweets, but it is only a subsample of the posted
content. First, we do not get content from New York users
who did not identify their home location. Second, the Twitter
search API returns a subsample of matching content for most
queries. Still, we collected over 48,000,000 messages from
more than 855,000 unique users.

For each tweet in our dataset, we record its textual content,
the associated timestamp (i.e., the time at which the tweet
was published), and the user ID of the user who published
the tweet.

Trend Dataset I: Collecting Twitter’s Local Trending Terms

As mentioned above, one of our trend datasets con-
sists of the trends computed by, and made available from,
the Twitter service. Twitter computes these trends hourly,
using an unpublished method. This source of trend data is

commonly used in research efforts related to trends on Twitter
(e.g., Kwak et al., 2010; Cheong & Lee, 2009).

The Twitter-provided trends are computed for various geo-
graphic scales and regions. For example, Twitter computes
and publishes the trends for New York City, as well as for
the United States, and across all the Twitter service (e.g.,
those shown in Figure 1). From the data, we can observe
that location-based trends are not necessarily disjoint: for
example, New York City trends can reflect national trends or
overlap with other cities’ trends.

We collected over 8,500 trends published by Twitter for the
NewYork City area during the months of February and March
of 2010. The data included the one or two terms associated
with each published trend, as well as the trend’s associated
time period, expressed as a date and time of day. We use the
notation Ttw (for “Twitter”) to denote this set of trends.

Trend Dataset II: Collecting Trends With Burst Detection

We derived the second trend dataset using a simple trend-
detection mechanism over our Tweets dataset described
above. This simple approach is similar to those used in other
efforts (Nagarajan et al., 2009) and, as noted by Phelan,
McCarthy, and Smyth (2009), it “does serve to provide a
straightforward and justifiable starting point.” The trend-
detection mechanism relies conceptually on the TF-IDF score
(Salton, 1983) of terms, highlighting terms that appear in a
certain time period much more frequently than expected for
that time of day and day of the week. We tune this approach
so that it does not assign a high score to weekly recurring
events, even if they are quite popular, to ensure that we
include a substantial fraction of trends that represent “one-
time,” nonrecurring events, adding to the diversity of our
analysis.

Specifically, to identify terms that appear more frequently
than expected, we will assign a score to terms according to
their deviation from an expected frequency. Assume that M
is the set of all messages in our Tweets dataset, R is a set of
one or more terms to which we wish to assign a score, and
h, d, and w represent an hour of the day, a day of the week,
and a week, respectively. We then define M(R, h, d, w) as the
set of every Twitter message in M such that (1) the message
contains all the terms in R and (2) the message was posted
during hour h, day d, and week w. With this information, we
can compare the volume in a specific day/hour in a given
week to the same day/hour in other weeks (e.g., 10 am on
Monday, March 15, 2010, vs. the activity for other Mondays
at 10 am).

To define how we score terms precisely, let Mean(R, h,
d) = (

∑
i=1,...,n |M(R, h, d, wi)|)/n be the number of mes-

sages with the terms in R posted each week on hour h and
day d, averaged over the weeks w1 through wn covered by
the Tweets dataset. Correspondingly, SD(R, h, d) is the stan-
dard deviation of the number of messages with the terms
in R posted each week on day d and hour h, over all the
weeks. Then, the score of a set of terms R over a specific
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TABLE 1. Summary of event datasets.

Notation Data source Selection for analysis

Ttw Twitter’s own trends as retrieved from the Twitter API Selected from complete set of trends published by Twitter
Ttf Trends computed from raw Twitter data using term frequency measures Selected from top-scoring terms for each day

TABLE 2. Sample trends and their explanation.

Trend terms Explanation Date # Tweets

#TEDxNYED A New York City conference on media, technology, and education March 6, 2010 556
Sparklehorse The suicide of Mark Linkous, of the band Sparklehorse March 8, 2010 230
Burger Reaction to a tweet by Lady Gaga: “once you kill a cow, you gotta make a burger” March 12, 2010 3,249
Masters Tiger Woods’s announcement of his return to golf at the Masters March 16, 2010 693
itsreallyannoying Twitter meme: users sharing their annoyances March 23, 2010 2,707
Seder Passover-eve meal March 28, 2010 316
iPad Launch of the Apple iPad March 29, 2010 1,714

hour h, day d, and week w is defined as score(R, h, d,
w) = (|M(R, h, d, w)| − Mean(R, h, d))/SD(R, h, d).

Using this definition, we computed the score for every
individual term in our dataset (in other words, we computed
the scores for all R sets where each R is a set with a single
1-gram that appears in M). We computed the score for each
R over all h, d, and w values for the weeks covered by our
Tweets dataset. For each day d and week w, we identified the
R and h pairs such that (1) M(R, h, d, w) contains at least
100 messages and (2) the score(R, h, d, w) value is among
the top-30 scores for day d and week w across all term-hour
pairs. Each selected pair defines a trend with set of terms R
and associated time period specified by h, d, and w. (Note
that certain terms could be repeated if they scored highly
for multiple hours in the same day; such repetition is also
possible for the trend set Ttw. We compute a trend’s “real”
peak after we choose the trends for analysis, as described
below.) We use the notation Ttf (for “term frequency”) to
denote the resulting set of 1,500 trends.

For reference, the sources and properties of the event
datasets are summarized in Table 1.

Selecting Trends for Analysis

After identifying the above two sets of trends, namely, Ttw

and Ttf , our goal is to perform both a quantitative and a quali-
tative analysis of these trends. To be meaningful, this analysis
will rely on a manual coding of the trends, but an exhaustive
manual processing of all trends in Ttw and Ttf would, unfor-
tunately, be prohibitively expensive. Therefore, our analysis
will focus on a carefully selected subset of the two trend
sets (see the Trend Taxonomy and Dimensions section). This
selection of trends should (1) reflect the diversity of trends
in the original sets and (2) include only trends that could be
interpreted and understood by a human, through inspection
of the associated Twitter messages.

For both sets Ttw and Ttf , one of the authors performed
a random selection of trends to serve as an initial dataset.
For each trend in this initial selection we attempted to iden-
tify the topic reflected in the trend by inspecting associated

messages (posted on the corresponding day, and with the
corresponding terms). If we could not identify the topic or
reason for the trend, we removed it from the selected set
to satisfy condition (2). In addition, after the first round of
coding trends according to the categories described below,
we manually inspected the trends from the initial sets Ttw

and Ttf that were not yet selected for analysis. Instead of
randomly choosing among them, we randomly chose a date
and then purposefully selected additional trends from that
date from underrepresented categories, satisfying condition
(1). Note that we attempted to create a comprehensive, but
not necessarily proportional, sample of trends in the data. In
other words, some types of trends may be over- or underrep-
resented in the selected trends dataset. At the same time, the
sample of trends in each category is representative of trends
in the category overall. Our aim here is to provide insight
about the categories of trends and features of trends in each
category, rather than discuss the magnitude of each category
in the data, a figure likely to shift, for example, with changes
to the detection algorithms.

The result of this process was a set of trends T that com-
bines trends from both Ttw and Ttf . We split the set T into
two subsets. The first subset of selected trends, TQual, con-
sisting of trends in T through February 2010, was used for
the qualitative analysis described next. The second subset of
T, TQuant , consisting of trends in T from March 2010, was
used for the quantitative analysis described below. Table 2
lists several of the trends selected for the analysis: for each
trend t, we list its description, time period, and number of
associated messages (i.e., the cardinality of Mt). Next, we
explain how we identify Mt for each trend t.

Table 3 provides a summary of the datasets described in
this section, along with their respective size.

Identifying Tweets Associated with Trends

For our statistical analysis of trend features, for each trend t
in TQuant we need to know the set of tweets Mt associated
with t. Each trend includes the terms that identify the trend
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TABLE 3. Details of the trend datasets produced and used in this work.

Initial set of Twitter trends (Ttw) >8,500*
Initial set of burst detection trends (Ttf ) >1,500*
Selected trends for qualitative analysis (TQual) 50
Selected trends for quantitative analysis (TQuant) 200

*Including duplicate trending terms in different hours.

and the associated time period, as discussed (e.g., a trend
might consist of term “Passover” on March 29, 2010, for the
hour starting at 4 pm). To define Mt , we first collect every
message in our Tweets dataset that contains all of t’s terms
and such that it was posted up to 10 days before or after the
time period for t.We sort these messages according to the time
at which they were posted and we aggregate them into hourly
bins. Since the identifying term(s) may be popular at various
times (e.g., as is the case for a trend that persists for several
hours), we identify the peak time for the trend by selecting the
bin with the largest number of messages. Finally, after anchor-
ing the trend in its new associated time period, we retrieve all
messages posted up to 72 hours before or after the new time
period; this set is Mt , the set of messages associated with trend
t. On average, the set Mt for each trend in TQuant consists of
1,350 tweets, and the median cardinality of Mt is 573.

Note again that other methods exist for trend detection
that may associate content with trends not only by simple
term matching as we do here (Becker et al., 2010). However,
most current systems rely on term matching to identify related
content. In addition, many of the characteristics we extract
for each trend’s content would directly apply, or apply with
minor changes, to sets of content collected via other methods.
We further discuss this issue as part of our limitations below.

Trend Taxonomy and Dimensions

We now describe the qualitative analysis that we per-
formed to characterize the Twitter trends in the TQual set of
trends described above. The analysis was geared to identify
the different types of trends that occur in Twitter data from
one metropolitan area and relies on a taxonomy of the trends.

Many Twitter trends correspond to events that are reflected
on Twitter by its users. The definition and characterization of
“event” has received substantial attention across academic
fields, from philosophy (“Events,” 2002) to cognitive psy-
chology (Zacks and Tversky, 2001). Media events have been
characterized by Dayan and Katz (1992) into three generic
types of scripts that these events tend to follow, namely,
“contest,” “conquest,” and “coronation,” for events such as
a presidential debate, an unfolding visit by a leader to a
foreign state, and a leader’s funeral, respectively. Boll and
Westermann (2003) present discussion of events in the area of
personal multimedia collections. In information retrieval, the
concept of events has prominently been addressed in the area
of topic detection in news events (Allan, 2002; Kleinberg,
2003; Yang, Pierce, & Carbonell, 1998). To summarize, the
aforementioned research from multiple disciplines is closely
related to our work. However, the taxonomies available in
these literatures do not capture the variety of trends that

emerge in a social information system such as Twitter, which
is our focus here.

Our qualitative analysis of trends is based on a varia-
tion of the affinity diagram method, an inductive process
(LeCompte & Schensul, 1999) to extract themes and pat-
terns from qualitative data. For this analysis we used sticky
notes to represent each trend in TQual and recorded the terms
and the explanation of the trend if needed, which happened
when the terms associated with the trend did not immedi-
ately offer an idea of the content. Two of the authors of this
article then put together the different items into groups and
categories in an iterative process of comparing, contrasting,
integrating, and dividing the grouped trends. According to
the affinity process, we considered the relationship between
categories as well as the items that are grouped and linked
together.

Indeed, the categories that emerged could be described and
differentiated according to one key dimension: whether the
trends in the category are exogenous or endogenous. Trends
in exogenous categories capture an activity, interest, or event
that originated outside of the Twitter system (e.g., an earth-
quake). Trends in endogenous categories are Twitter-only
activities that do not correspond to external events (e.g., a
popular post by a celebrity). Having this dimension at the top
level of the taxonomy reflects and highlights the substantial
differences on Twitter between exogenous and endogenous
trends regarding their importance and use scenarios. The
top level of the taxonomy thus separates nonvirtual external
events from activities that only pertain to the Twitter system.

The groups of trends that emerged are described below,
with sample trends to illustrate each category.

Exogenous Trends

• Broadcast-media events:
◦ Broadcast of local media events: “fight” (boxing event),

“Ravens” (football game).
◦ Broadcast of global/national media events: “Kanye”

(Kanye West acts up at the MTV Video Music Awards),
“Lost Finale” (series finale of Lost).

• Global news events:
◦ Breaking news events: “earthquake” (Chile earth-

quake), “Tsunami” (HawaiiTsunami warning), “Beyoncé”
(Beyoncé cancels Malaysia concert).

◦ Nonbreaking news events: “HCR” (health care reform),
“Tiger” (Tiger Woods apologizes), “iPad” (toward the
launch of Apple’s popular device).

• National holidays and memorial days: “Halloween,” “Valen-
tine’s.”

• Local participatory and physical events:
◦ Planned events: “marathon,” “superbowl” (Super Bowl

viewing parties), “patrick’s” (St. Patrick’s Day Parade).
◦ Unplanned events: “rainy,” “snow.”

Endogenous Trends

• Memes: #in2010 (in December 2009, users imagine their
near future), “November” (users marking the beginning of
the month on November 1).
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• Retweets (users “forwarding” en masse a single tweet from a
popular user): “determination” (users retweeting LL Cool J’s
post about said concept).

• Fan community activities: “2pac” (the anniversary of the
death of hip-hop artist Tupac Shakur).

Needless to say, the above set of categories might not be
comprehensive (i.e., other trends that are not in our data might
not comfortably fit in any of these categories). However, we
developed this set of categories after an exhaustive, thorough
analysis of a large-scale set of trends, as described above.
Therefore, we believe that this categorization is both suffi-
ciently broad and, at the same time, simple enough to enable
a meaningful study of the “trends in trend data.”

Our quantitative analysis below focuses on a limited
number of dimensions extracted from the taxonomy that
capture key differences between trends. We identified the
dimensions to focus on according to two criteria: (a) signifi-
cance, or the importance of being able to extract differences
between the selected trend categories, and (b) the likelihood
that these categories will result in measurable differences
between trends.

The first dimension we examine is the high-level exoge-
nous and endogenous categories of trends. Such comparison
will allow us to reason about this most distinguishing aspect
of any Twitter trend.

Within exogenous trends, in this work we chose to concen-
trate on two important dimensions. First, whether the exoge-
nous activity falls into the local participatory and physical
events category above. These “local trends” represent physi-
cal events, located in one geographic area (e.g., the NewYork
marathon) that are currently underrepresented in the detected
trends, but naturally play an important role in local communi-
ties. The second dimension chosen is whether the exogenous
trends are breaking news events, global news events that are
surprising and have not been anticipated (e.g., an earthquake),
as opposed to all other events and trends that are planned
or expected (e.g., a vote in the Senate, or a holiday). This
dimension will allow us to separate “news-worthy” versus
“discussion-worthy” trends, which may lead to a different
manner in which systems use and display these different trend
types.

Similarly, within endogenous trends in this work we chose
to investigate the differences between trends in the two
main categories of this group of events, namely, memes and
retweets, as explained above.

Next, these dimensions help us guide the quantitative study
of the trends detected in Twitter data, as we label each trend
according to categories derived from the dimensions above.

Characterizing Trends

The next step in our analysis is to characterize each Twit-
ter trend using features of its associated messages. These
features are later used to reason about differences between
the various trend dimensions described in the previous sec-
tion. For this analysis, we use the trend set TQuant defined
above. For each trend t we compute features automatically,

based on its associated set of tweets Mt . These features range
from aggregate statistics of the content of each individual
message (e.g., number of hashtags, URLs) to social network
connections between the authors of the messages in Mt and
the temporal characteristics of Mt .

Content Features

Our first set of features (Table 4a) provides descriptive
characteristics for a trend t based on the content of the mes-
sages in Mt . These features include aggregate characteristics
such as the average length of a message in Mt and the per-
centage of messages with URLs or hashtags, or measures of
the textual similarity of the tweets in Mt .

Interaction Features

The interaction features (Table 4b) capture the interac-
tion between users in a trend’s messages as indicated on
Twitter by the use of the @ symbol followed by a user-
name. These interactions have somewhat different semantics
on Twitter, and include “retweets” (forwarding information),
replies (conversation), or mentions of other users.

Time-Based Features

The time-based features (Table 4c) capture different tem-
poral patterns of information spread that might vary across
trends. To capture these features for a trend t, we fit a fam-
ily of functions to the histogram describing the number of
Twitter messages associated with the trend over the time
period spanned by the tweet set Mt (by construction, as dis-
cussed, Mt has the matching messages produced up to 72
hours before and after t’s peak). We aggregate all messages
in Mt into hourly bins. We refer to all bins before the peak as
the head of the time period, while all bins after the peak are
the tail of the time period.

We proceed to fit the bin volume data, for both the head and
the tail of the time period, separately, to exponential and log-
arithmic functions. Using the least squares method, we com-
pute logarithmic and exponential fit parameters for the head
and tail periods for each trend, considering the full time period
of 72 hours, which we refer to as the Log72 fit and the Exp72
fit, respectively. We proceed in the same manner for a lim-
ited time period of 8 hours before and after the peak, which
we refer to as the Log8 fit and the Exp8 fit, respectively. The
focus on the shorter time periods will allow us to better match
rapidly rising or declining trends (Leskovec et al., 2009).

In sum, our features for each trend thus include the fit
parameters for 8-hour and 72-hour spans for both the head and
the tail periods; and for each period and span we calculate the
logarithmic and exponential fit parameters. In addition, for
each combination we also computed the R2 statistic, which
measures the quality of each fit.

Participation Features

Trends can have different patterns of participation, in
terms of authorship of messages related to the trend. The
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TABLE 4. Features for a trend t. As usual, Mt denotes the set of tweets associated with t.

Explanation

(a) Content features

Average number of words/characters Let words(m) be the number of words in a tweet m and let char(m) be the number of characters in tweet m.

Then the average number of words per message is

∑

m∈Mt

words(m)

|Mt | , and the average number of characters per

message is

∑

m∈Mt

char(m)

|Mt | .

Proportion of messages with URLs Let Ut ⊆ Mt be the set of messages with URLs out of all messages for trend t. Then the proportion of messages
with URLs is |Ut |/|Mt |.

Proportion of unique URLs Let URL(m) be the set of URLs that appear in tweet m. The set of unique URLs for t is |UUt |, where
UU t = {u: u ∈ URL(m) for a message m ∈ Mt}, and the proportion of unique URLs is |UUt |/|Mt |
(Note that the set semantics ensures that each unique URL is only counted once.)

Proportion of messages with hashtags Let Ht ⊆ Mt be the set of messages with hashtags in Mt . Then the proportion of messages with hashtags is
|Ht |/|Mt |.

Proportion of messages with hashtags, Let H ′
t ⊆ Mt be the set of messages with hashtags in Mt , excluding messages where the hashtag is a term in

excluding trend terms Rt , the set of terms associated with trend t. Then the proportion of messages with hashtags excluding the trend’s
terms is |H ′

t |/|Mt |.
Top unique hashtag? Whether there is at least one hashtag that appears in at least 10% of the messages in Mt . This measure captures

agreement on the terms most topically related to the trend.

Similarity to centroid We represent each message m ∈ Mt as a TF-IDF vector (Salton, 1983), where the IDF value is computed with
respect to all messages in the Tweets dataset. We compute the average TF-IDF score for each term across
all messages in Mt to define the centroid Ct . Using Ct , we then compute the average cosine similarity

(Salton, 1983)

∑

m∈Mt

sim(Ct ,m)

|Mt | as well as the corresponding standard deviation. These features help indicate
content cohesiveness within a trend.

(b) Interaction features

Proportion of retweets Let RT t ⊆ Mt be the set of messages in Mt that are “retweets” (i.e., these messages include a string of the form
“RT @user”). Then the proportion of retweets is |RTt |/|Mt |.

Proportion of replies Let RPt ⊆ Mt be the set of messages in Mt that are “replies” (i.e., these messages begin with a string of the form
“@user”). Then the proportion of replies is |RPt |/|Mt |.

Proportion of mentions Let MN t ⊆ Mt be the set of messages in Mt that are “mentions” (i.e., these messages include a string of the form
“@user” but are not replies or retweets as defined above). Then the proportion of mentions is |MNt |/|Mt |.

(c) Time-based features

Exponential fit (head) Best fit parameters (p0, p1, p2) and goodness of fit R2 for function M(h) = p1 e−p0 |h| + p2, where M(h)

represents the volume of messages during the h-th hour before the peak. Computed for 72- and 8-hour periods
before the peak.

Logarithmic fit (head) Best fit parameters (p0, p1) and goodness of fit R2 for function M(h) = p0 log(h) + p1, where M(h) represents
the volume of messages during the h-th hour before the peak. Computed for 72- and 8-hour periods before the
peak.

Exponential fit (tail) Similar to above, but over 72- and 8-hour periods after the trend’s peak.

Logarithmic fit (tail) Similar to above, but over 72- and 8-hour periods after the trend’s peak.

(d) Participation features

Messages per author Let At = {a: a is an author of a message m ∈ Mt}. Then the number of messages per author is |Mt |/|At |.
Proportion of messages from top author We designate a′ ∈ At as the top author if a′ produced at least as many messages in Mt as any other author. Then

the proportion of messages from top author is |{m: m ∈ Mt and m was posted by a′}|/|Mt |.
Proportion of messages from top 10% Let A10t be the set of the top 10% of the authors in terms of the number of messages produced in Mt . Then the
of authors proportion of messages from top 10% authors is |{m: m ∈ Mt and m was posted by a ∈ A10t}|/|Mt |.
(e) Social network features

Level of reciprocity The fraction of reciprocal connections out of the total number of connections |Et |, where authors a1, a2 ∈ At

form a reciprocal connection if (a1, a2) ∈ Et and (a2, a1) ∈ Et .

Maximal eigenvector centrality The eigenvector centrality of an author measures the importance of this author in At by computing the
eigenvector of the largest eigenvalue in the adjacency matrix of the network graph. We pick the author with
the highest eigenvector centrality value over all a ∈ At . A high value suggests the existence of a dominant node
in the network.

Maximal degree centrality The degree centrality of an author a ∈ At is the fraction of authors it is connected to. We compute the highest
degree centrality value over all a ∈ At . A high value suggests the existence of a dominant node in the network.

(Continued)
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TABLE 4. (Continued)

Explanation

Transitivity Authors a1, a2, a3 ∈ At form a triad if one of them shares an edge with the other two authors. If each author
shares an edge with both remaining authors, then they also form a triangle. The transitivity of the graph is
computed as 3·triangles(Gt)/triads(Gt ), and is a measure of the connectivity of the authors in the network.

Density The ratio of the number of edges |Et | in the author social network, out of the total number of possible edges
|At | · (|At | − 1). This is an indication of how closely-knit the group of authors At is.

Average component size A strongly connected component of Gt is a maximal set of authors AC ⊆ At such that for each a1, a2 ∈ AC

there exists a directed path from a1 to a2 and vice versa. The average component size is the number of authors
(i.e., nodes in the network) divided by the number of strongly connected components. This is a normalized
measure of how “broken apart” the network of authors is.

Proportion of largest component Let AC’ be the largest connected component. Then, |AC’|/|At | is a measure of how
connected the network of authors is.

participation features (Table 4d) characterize a trend using
statistics about the participation of authors that produced
the trend’s associated messages; in particular, we capture the
skew in participation (i.e., to which extent a small portion of
authors produced most of the content).

Social Network Features

Our final group of features for a trend t focuses on the
set At of the authors of the messages in Mt . Specifically,
the social network features (Table 4e) capture the properties
of the social network Gt of authors. To model this network,
we used the Twitter API to collect the list of followers for
each author, consisting of other Twitter users in At that sub-
scribe to the author’s message feed. (We ignore followers
that are not among the At authors. We also ignore followers
of authors who restrict access to this information and those
who have suspended Twitter accounts.) In other words, our
social network graph is a directed graph Gt(At, Et), such that
there exists an edge e ∈ Et from a1 to a2 if and only if a1 is
a follower of a2 on Twitter. We computed various features
of the social network graph Gt for each trend t, capturing
the connectivity and structure of connections in the graph
(Wasserman and Faust, 1994).

Categorizing Trends in Different Dimensions

In addition to the automatically extracted features, we
manually categorized the trends in TQuant according to
the dimensions picked for analysis (e.g., whether the trend
belongs to the “exogenous” or “endogenous” category). We
manually associated every trend with one category in each
dimension. Later, we examined how the categories differ
according to the automatically computed features described
above.

We required a content description of each trend in order to
properly label it according to the categories introduced in the
previous section. The trend detection methods only output
the trend terms and a time period. This type of output (e.g.,
“Bacall on March 8th”) was often not enough to discern the

content of the trend to correctly assign it to different cate-
gories. One of the authors examined each of the trends to
generate a short description. The sources used for this exam-
ination were, first, the actual Twitter messages associated
with the trend. If that examination did not prove informa-
tive enough, we used news search tools (e.g., Google News)
to inspect corresponding news reports for that day and those
terms. At the end of the process we had a description for
200 of the trends in our trend dataset TQuant , after removing
29 trends that could not be resolved (e.g., “challenging” on
March 14, 2010) from our dataset. We computed these fea-
tures for the 200 resolved trends in our trend dataset TQuant .
This data is the basis for our analysis, described below.

We mapped each of the trends into categories based on the
dimensions for analysis. Two of the authors independently
annotated each of the trends. If an annotator could not assign
a value for some dimension, either a “not applicable” or an
“unknown” label was used. In each dimension, after remov-
ing trends marked “not applicable” or “unknown” by at least
one of the annotators, the inter-annotator agreement of the
labeled trends in each dimension was very high (the remain-
ing number of trends for each dimension is reported below,
in the analysis). For the final analysis in each dimension we
removed all “not applicable” and “unknown” entries for that
dimension, as well as any remaining disagreements between
the annotators. In other words, we ignored those trends for
which we had reason to doubt the assignment to a category.

Quantitative Analysis of Trends

The main drivers for our analysis are the coded categories
of trends, as detailed above. In other words, we compared
the samples of trends according to their categorization in
different dimensions (e.g., exogenous vs. endogenous) and
according to the features we computed from the data (e.g.,
the percentage of messages with URLs). Our hypotheses,
listed below, are guided by intuitions about deviations in the
characteristics of trends in different categories, and are geared
towards confirming the expected deviations between the trend
categories. Such confirmation would allow, later on, for the
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development of automated systems to detect the trend type
or provide better visualizations or presentation of the trend
data. We continue by listing the key hypotheses that guided
our analysis.

Exogenous vs. Endogenous Trends

H1. We hypothesize that exogenous and endogenous trends
will have different quantitative characteristics. In particular:

H1.1: Content features of exogenous trends will be differ-
ent than those of endogenous trends; in particular, they
will have a higher proportion of URLs and a smaller
proportion of hashtags in tweets.

H1.2: Interaction features of exogenous trends will be different
than those of endogenous trends; in particular, exoge-
nous trends will have fewer retweets (forwarding), and
a similar number of replies (conversation).

H1.3: Time features of exogenous trends will be different for
the head period before the trend peak but will exhibit
similar time features in the tail period after the trend
peak, compared to endogenous trends.

H1.4: Social network features of exogenous trends will be
different than those of endogenous trends, with fewer
connections (and less reciprocity) in the social network
of the trend authors.

Breaking News vs. Other Exogenous Trends

H2. We hypothesize that breaking news events will have
different quantitative characteristics compared to other
exogenous trends. In particular:

H2.1: Interaction features of breaking events will be different
than those of other exogenous trends, with more retweets
(forwarding), but fewer replies (conversation).

H2.2: Time features of breaking events will be different for the
head period, showing more rapid growth, and a better
fit to the functions’ curve (i.e., less noise) compared to
other exogenous trends.

H2.3: Social network features of breaking events will be
different than those of other exogenous trends.

Local Events vs. Other Exogenous Trends

H3. We hypothesize that local participatory and physi-
cal events will have different quantitative characteristics
compared to other exogenous trends. In particular:

H3.1: Content features of local events will be different than
those of other exogenous trends.

H3.2: Interaction features of local events will be different than
those of other exogenous trends; in particular, local
events will have more replies (conversation).

H3.3: Time features of local events will be different than those
of other exogenous trends.

H3.4: Social network features of local events will be different
than those of other exogenous trends; in particular, local
events will have denser networks, more connectivity, and
higher reciprocity.

Memes vs. Retweet Endogenous Trends

H4. We hypothesize that memes will have different quanti-
tative characteristics compared to retweet trends. In particu-
lar:

H4.1: Content features of memes will be different than those
of retweet trends.

H4.2: Interaction features of memes will be different than those
of retweet trends; in particular, retweet trends will have
significantly more retweet (forwarding) messages (this
hypothesis is included as a “sanity check” since the
retweet trends are defined by having a large proportion
of retweets).

H4.3: Time features of memes will be different than those of
retweet trends.

H4.4: Participation features of memes will be different than
those of retweet trends.

H4.5: Social network features of memes will be different
than those of retweet trends; in particular, meme trends
will have more connectivity and higher reciprocity than
retweet trends.

Method

We performed our analysis on the 200 resolved trends in
TQuant . The analysis was based on a pairwise comparison
of trends according to the trends categorization in differ-
ent dimensions, following our hypotheses above. For each
such pair we performed a set of two-tailed t-tests to show
whether there are differences between the two sets of trends in
terms of the dependent variables, namely, our automatically
extracted trend features. However, since each sub-hypothesis
involved multiple dependent variables (e.g., we computed
seven different social network features), we controlled for
the multiple t-tests by using the Bonferroni correction, which
asks for a significance level of α/n when conducting n tests at
once. We thus only report here results with significance level
of p < 0.008.

As is common in studies of social-computing activities,
many of our dependent variables were not normally dis-
tributed, but rather they were most often skewed to the right.
Following Osborne (2002), we used logarithms (adding a
small constant to handle zero values as needed) or square root
functions to transform these variables in order to improve
their normality. For most variables, such transformation
indeed generated a normal distribution. In the cases where
we performed a variable transformation, whenever we find
significant differences between the transformed means in
the analysis we also report here the original variable means
and medians. For variables that were still skewed after the
transformation, we performed the Mann–Whitney test for
nonnormal distributions, and note when that is the case. For
the one dependent variable in our data that was nominal, we
used the CHI-square test.

Finally, following Asur and Huberman (2010), in the anal-
ysis we considered the temporal features only for trends that
peaked on a US weekday (Monday through Friday), as the
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TABLE 5. Summary of results.

Categories compared

Content Interaction Time Participation Social

Exogenous vs. endogenous
Hypothesis: H1.1 H1.2 H1.3 None H1.4
Found: Yes∗ ✔ Yes∗ ✔ No ✗ No Yes ✔

Breaking news vs. other exogenous
Hypothesis: None H2.1 H2.2 None H2.3
Found: No Yes ✔ No ✗ No No ✗

Local vs. other exogenous
Hypothesis: H3.1 H3.2 H3.3 None H3.4
Found: No ✗ Yes∗ ✔ No ✗ No No ✗

Memes vs. retweets (endogenous)
Hypothesis: H4.1 H4.2 H4.3 H4.4 H4.5
Found: Yes ✔ Yes ✔ Yes∗ ✔ Yes ✔ Yes ✔

∗Starred entries represent partial findings or findings that diverged somewhat from the detailed hypothesis.

temporal aspects in particular might be influenced by the
different patterns of Twitter usage during weekends.

Results and Discussion

We report below the results from our analysis. For conve-
nience, an overview of the results and findings as they related
to the hypothesis is provided in Table 5.

Exogenous vs. Endogenous Trends

Exogenous trends were found to be different than endoge-
nous trends in content, interaction, and social features,
supporting most of the hypotheses under H1 as shown in
Table 5. In our dataset we had 115 exogenous trends and 55
endogenous trends (for some parts of the analysis the numbers
are lower due to missing data). The detailed numerical results
are shown in Table 6a,b. In terms of content features (H1.1),
exogenous trends had a higher proportion of messages with
URLs than endogenous trends (results were similar for the
proportion of unique URLs appearing in the trend’s content).
In addition, the average term length for exogenous trends was
somewhat shorter than the length of terms used in endoge-
nous trends. We found only some differences in the presence
of hashtags in the content: exogenous trends did not have
a higher proportion of messages with hashtags, even when
excluding the trending terms. However, fewer exogenous
trends had a unique hashtag appearing in at least 10% of the
messages compared to endogenous trends. This finding indi-
cates less agreement between authors of exogenous trends on
the ad-hoc “semantics” of the trend (in other words, the cho-
sen community representation for what that trend content is
about), which may stem from the fact that exogenous trends
are seeded at once from many users who choose different
hashtags to represent the trend.

In terms of interaction features (H1.2), we found that
exogenous trends had a smaller proportion of retweets in the
trend’s tweets compared to endogenous trends. This finding

suggests that users created more original content based on
exogenous sources, rather than retransmit and forward con-
tent that was already in the “system” as often happens for
endogenous trends. Interestingly, we also found that exoge-
nous trends tend to have more “conversation”: the proportion
of replies in exogenous trends was higher than endogenous
ones.

In terms of time features (H1.3), the hypothesis was not
supported: our data did not show exogenous trends to have
different time features for the head period. The tail period
time parameters were, as we hypothesized, not found to be
different for exogenous and endogenous trends.

Finally, in terms of social network features (H1.4), we
found differences in the level of reciprocity between exoge-
nous and endogenous trends. Social network connections in
exogenous trends had less reciprocity than those of endoge-
nous trends. Other differences were found but with marginal
significance.

Breaking News vs. Other Exogenous Trends

Trends corresponding to breaking events were found to
have different interaction characteristics from other exoge-
nous trends, but no other differences were found, giving only
partial support to hypothesis H2 (Table 5). In our dataset,
we had 33 breaking events and 63 other exogenous events
(for some parts of the analysis the numbers are lower due to
missing data). The detailed numerical results are shown in
Table 6c.

In terms of interaction features (H2.1), we found that
breaking exogenous trends have a larger proportion of retweet
messages than other exogenous events. Breaking trends also
have a smaller proportion of reply messages than other exoge-
nous events. These findings show the informational nature of
breaking events, which focus on information transmission
rather than conversation.

Hypotheses H2.2 and H2.3 were not confirmed, how-
ever, finding no significant differences in time features
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TABLE 6a. Quantitative analysis results of exogenous/endogenous categories.

URL Proportion∗ Top Unique Hashtag Term Length (chars)† Retweet Proportion‡ Reply Proportion§

Exo Endo Exo (Y/N) Endo (Y/N) Exo Endo Exo Endo Exo Endo

N 115 55 47/68 36/19 115 55 115 55 115 55
Mean 0.34 0.144 – – 5.31 6.13 0.32 0.47 0.094 0.083
Median 0.307 0.058 – – – – 0.26 0.38 0.081 0.028

∗log-transformed, t = 6.117, p < 0.001. χ2 = 9, p < 0.002. †t = −5.119, p < 0.001. ‡sqrt-transformed, t = −3.865, p < 0.001. §log-transformed, t = 2.98,
p < 0.003.

TABLE 6b. Quantitative analysis results of exogenous/endogenous cate-
gories.

Reciprocity†

Exo Endo

N 114 54
Mean 0.26 0.33
Median – –

†t = −6.87, p < 0.001.

between breaking exogenous events and other exogenous
events. It is noted, however, that we found that the R2

quality of fit on the Exp72 time fit parameters for the tail
period was significantly different between breaking and other
events, with breaking events having better fit on average
than other events. Similar yet marginal differences were
found for Log72 fit parameters. This difference might sug-
gest that the breaking events, after the peak, are less noisy
than other exogenous events with discussion levels dropping
more “smoothly.”

Local Events vs. Other Exogenous Trends

We found limited support that local events have different
characteristics than other exogenous trends (H3). In particu-
lar, our data surfaced differences between interaction features
of local events and other exogenous trends (Table 5). In our
dataset we had 12 local events and 96 other exogenous trends
(for some parts of the analysis the numbers are lower due
to missing data). We note that the analysis was limited by
the small number of local events in our trends dataset. The
detailed numerical results are shown in Table 6d.

We could confirm only one difference in terms of inter-
action features between local and other exogenous trends
(H3.2), where local events have a smaller proportion of
messages that are retweets than other exogenous trends. In
addition, our analysis suggests that local events might be
more conversational, in terms of the proportion of messages
that are replies, than other exogenous trends; however, the
result for replies is not significant at the level we require for
reporting in this paper, and thus cannot be fully confirmed.
We thus can provide only partial support to H3.2.

Finally, we found no support for H3.3, as the differences
in time features between local events and other exogenous
trends could not be confirmed.

Memes vs. Retweet Endogenous Trends

Looking at endogenous trends, “retweet” trends were
found to be different than “meme” trends (H4) in content,
interaction, time, participation, and social network features
(Table 5). In our dataset, we had 29 memes and 27 retweet
trends (for some parts of the analysis the numbers are lower
due to missing data). The detailed numerical results are shown
in Table 6e–g.

In terms of content (H4.1), we found several differences
between the retweet trends and meme trends. Retweet trends
have a larger proportion of messages with URLs than meme
trends, and a higher proportion of unique URLs. More meme
trends have a single hashtag that appears in more than 10%
of the trend’s messages. Accordingly, meme trends have
a larger proportion of hashtags per message than retweet
trends, but are not different when we remove the trending
terms from consideration (indeed, memes are often identified
by the hashtag that the relevant messages contain). Finally,
retweet trends have more textual terms in the tweets than
meme trends, and the retweet trend tweets are longer on
average than meme trend tweets, and are even longer when
counting characters in URLs (not reported here). However,
these differences may be attributed to the “RT @username”
phrase added to individual retweet messages, which were
more common, of course, for retweet trends (this obser-
vation was true at the time the data was collected; since
then, Twitter has changed its format for retweet messages,
so that “RT @username” does not always appear in the
data).

Supporting H4.2, retweet trends naturally have a signifi-
cantly greater proportion of messages that are retweets than
meme trends. Retweet trends also have a greater portion of
replies, showing that they are slightly more conversational
than meme trends. The retweet and meme trend categories
are not different in their proportions of mentions.

Regarding time features, addressing H4.3, we found one
difference between the time fit parameters: the head fit param-
eter Log8 head p1, indicating different growth for the retweet
trends. This finding may suggest that retweet trends develop
in a different manner than meme trends.
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TABLE 6c. Quantitative analysis results of breaking/other categories.

Retweet Proportion∗ Reply Proportion¶ Exp72 tail R2† Log72 tail R2§

Breaking Other Breaking Other Breaking Other Breaking Other

N 33 63 33 63 26 37 26 39
Mean 0.39 0.28 0.058 0.11 0.0119 0.0041 0.589 0.386
Median 0.35 0.21 0.049 0.101 – – – –

∗sqrt-transformed, t = 3.2, p < 0.002. ¶log-transformed, t = −2.7, p < 0.008. †t = 3.554, p < 0.001. §t = 4.508, p < 0.001.

TABLE 6d. Quantitative analysis results of local/other categories.

Retweet Proportion∗

Local Other

N 12 96
Mean 0.18 0.345
Median 0.148 0.2

∗sqrt-transformed, t = −4.82, p < 0.001.

Looking at the participation features (H4.4), we found a
number of significant differences between retweet and meme
trends, supporting the hypothesis. Meme trends have more
messages per author on average than retweet trends in a statis-
tically significant manner (we performed the Mann–Whitney
test due to the nonnormal distribution of this parameter). In
addition, meme trends have a higher proportion of messages
from the single top author than retweet trends, as well as a
higher proportion of messages from the top 10% of authors
than retweet trends. These results show a significant differ-
ence in participation between these types of trends, where
meme trends are more skewed, and a limited number of users
are responsible for a fairly significant part of the content, and
retweet trends are more “democratic” and participatory.

Finally, retweet trends were significantly different than
meme trends in a number of social network features, con-
firming H4.5. In terms of the proportion of reciprocation in
the trends’authors social network, retweet trends had a lower
level of reciprocated ties than meme trends. Meme trends
also had a higher average size of strongly connected compo-
nents than retweet trends. These findings suggest that retweet
trends are supported by a network that, while showing the
same density, builds on directional, informational ties more
than meme trends that are supported by communication and
reciprocity.

Discussion

The results of our quantitative analysis provide a strong
indication that we can use the characteristics of the messages
associated with a trend to reason about the trend, for example,
to better understand the trend’s origin and context.

In particular, we found that exogenous trends, originating
from outside the Twitter system but reflected in the activity

of users in the system, are different in a number of important
features from endogenous trends, which start and develop in
the Twitter “universe.” Connections between the authors of
messages in endogenous trends tend to be more symmetri-
cal (i.e., with higher reciprocity) than in exogenous trends,
suggesting perhaps that endogenous trends require stronger
ties to be “transmitted.” However, we also expected the den-
sity of the endogenous trend networks and the average degree
of their nodes to be higher, but did not find any such differ-
ences. Differences between these two categories of trends
were not evident in the temporal features, where the results
did not support our hypothesis of more rapid curve leading
to the peaks of the exogenous trends. However, the differ-
ences between these categories are further supported by the
deviations in content and interaction features between the
categories: more URLs, unique URLs, and unique hashtags,
as well as a smaller proportion of retweets, show that exoge-
nous trends generate more independent contributions than
endogenous trends do.

In a deeper examination of the differences between cat-
egories of exogenous trends, we found only interaction
differences between trends representing “breaking” events
and other type of exogenous trends—breaking events are,
naturally perhaps, more “informational” and less “conversa-
tional” in nature than other trends. Significantly, we could not
confirm the hypothesis from Sakaki et al. (2010) that breaking
events will be more disconnected, as multiple contributors
will independently contribute messages with less in-network
coordination. However, one possible reason for not seeing
this effect in the data is the long period of content (72 hours
before and after a trend’s peak) over which we calculate the
author networks. Perhaps focusing on the connection between
authors in the first hours of a trend would capture these
differences between breaking events and other trends.

Trends capturing local events were found to be only
slightly different than other exogenous trends mainly with
respect to the interaction features. People discuss more, and
forward information less, in the context of local events as
compared to other exogenous trends. Note again that we
have a low number of local events represented in our trend
dataset and these findings should be considered tentative.Yet,
it is possible that differences between local events and other
trends would be even more pronounced when more data is
available.

Finally, we have shown that even endogenous trends,
which grow and develop from within the Twitter system
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TABLE 6e. Quantitative analysis results of meme/retweet categories.

URL Proportion∗ Unique URL Proportion¶ Hashtag Proportion† Length (term)‡ Length (chars)§

Memes RTs Memes RTs Memes RTs Memes RTs Memes RTs

N 27 22 27 22 27 22 27 22 27 22
Mean 0.044 0.24 0.035 0.064 0.989 0.275 13.19 17.83 80.3 106.1
Median 0.032 0.103 0.029 0.06 0.998 0.092 – – – –

∗log-transformed, t = −4.231, p < 0.001. ¶log-transformed, t = −2.759, p < 0.008. †t = 5.552, p < 0.001. ‡t = −5.156, p < 0.001. §t = −4.621,
p < 0.001.

TABLE 6f. Quantitative analysis results of meme/retweet categories.

Term Lengths (chars)∗ Top Unique Hashtag¶ Retweet Proportion† Reply Proportion ‡ Log8 head p1
§

Memes RTs Memes (Y/N) RTs (Y/N) Memes RTs Memes RTs Memes RTs

N 27 22 27/0 7/15 27 22 27 22 7 15
Mean 6.65 5.57 – – 0.309 0.692 0.029 0.079 0.055 −0.109
Median – – – – 0.277 0.739 0.018 0.0565 – –

∗t = 4.017, p < 0.001. ¶χ2 = 27.99, p < 0.001. †sqrt-transformed, t = −8.633, p < 0.001. ‡log-transformed, t = −3.704, p < 0.001. §t = 3.549, p < 0.002.

TABLE 6g. Quantitative analysis results of meme/retweet categories.

Messages/author∗ Messages/top author¶ Messages/top-10% author† SCC size (avg)‡ Reciprocated Ties§

Memes RTs Memes RTs Memes RTs Memes RTs Memes RTs

N 27 22 27 22 27 22 27 22 27 22
Mean 2.067 1.171 0.042 0.019 0.382 0.182 1.861 1.332 0.363 0.3
Median – – 0.018 0.01 0.383 0.157 1.582 1.239 – –

∗Mann-Whitney Z = 5.44, p < 0.001. ¶log-transformed, t = 2.793, p < 0.008. †sqrt-transformed, t = 8.814, p < 0.001. ‡log-transformed, t = 3.53,
p < 0.001. §t = 3.936, p < 0.001.

and are not a reflection of external events, could have
different categories that are different in a number of key
features. Retweet trends, where users respond and forward
a message from a single popular user, are different in
many characteristics (including content, interaction, time,
participation, and social characteristics) than meme trends.

Limitations and Other Considerations

Before we conclude, we list several important considera-
tions about our study, acknowledging a few limitations and
biases in the work. One limitation is in the dataset used in
this work, which is incomplete for two reasons. First, we
generated the initial set of trends to analyze using two spe-
cific, albeit well-established methods. (As we discussed, the
focus of this article is not on the trend detection but rather
on the analysis of the trends.) However, better methods for
trend detection and identification of related content, exploit-
ing both textual and nontextual information (Becker et al.,
2010), might assist in capturing additional trends.At the same
time, we believe that the sample of trends reflects the span
of trend categories that can reasonably be detected by any

method. The second reason why our dataset is incomplete
relates to the selection of the tweets that we used for both
trend extraction and characterization: specifically, we only
included content from New York City users who disclosed
their hometown location in their profile and hence excluded
content from other local users without an explicit profile loca-
tion. (Automatically matching locations and users with no
explicit geographical information in their profiles is the sub-
ject of interesting future work.) In addition, we defined each
trend using terms, and we retrieved the messages associated
with each trend via simple keyword search. In the future,
more complete message sets for each trend could be assem-
bled by using clustering, so that we could associate a message
with a trend even if the message and the trend do not include
the same terms (Becker et al., 2010).

Furthermore, our analysis focuses on a single system
(i.e., Twitter) and a single location (i.e., New York City).
Other dynamics and trend characteristics may exist in other
systems and locations (e.g., involving Facebook data and con-
cerning users based in Paris, France). Indeed, the dynamics
we observed, and some of the characteristics we extracted,
are unique to Twitter. However, Twitter is an important
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communication and information service that has already
made considerable impact on our society, and is important
to study regardless of generalization to other SAS systems.
Moreover, we have no reason to believe that, other than
message volume, trends involving New York City users are
significantly different from trends for other locations.

The metrics that we have used to characterize trends can
be extended or further developed. For example, for the time-
based characterization, one could experiment with different
fitting functions, identifying peaks in different ways (e.g.,
considering the expected volume of tweets for each time of
the day), using different time periods before and after the
peak, and so forth. In another example, the social network
characteristics could consider the social network of authors
that appeared in the first 24 hours of the trends, following
Yardi and boyd (2010), which might produce networks of dif-
ferent characteristics. These different methods could expose
more pronounced differences between trend categories. How-
ever, we believe the wide-ranging set of metrics presented
here can serve as a good starting point for analysis, and
has already helped identify key differences between types
of trends.

Conclusions

“If Twitter had trending topics for Portland, #rain would be
our Justin Bieber.”

—@waxpancake on Twitter

Temporal patterns in data on social awareness streams
such as Twitter are becoming increasingly important to
our society’s information and communication landscape
(Yardi & boyd, 2010; Takhteyev et al., 2010). These temporal
patterns—for example, emerging trends in SAS data for local
communities—are thus deserving of in-depth understanding
and analysis. In this work we categorized and character-
ized Twitter trends (or “trending topics”) for one geographic
area, New York City, and showed that not all trends are
created equal. There are different types and categories of
trends that are reflected in the data for this local commu-
nity, and these trends are different in a number of ways that
can be automatically computed. Our findings suggest direc-
tions for automatically distinguishing between different types
of trends, perhaps using machine learning or model-based
approaches, utilizing the trend characteristics we propose
above as well as others. In particular, perhaps most inter-
esting to us is the identification of local happenings and
events that might be underrepresented in other sources, such
as traditional news media, but which are of great interest to
local communities. Given a robust classification of trends,
which could follow from the work described above, we can
improve prioritization, ranking, and filtering of extracted
trends on Twitter and other SAS, as well as provide a more
targeted and specialized visualization of content associated
with each trend. Such a set of automated tools will signif-
icantly increase the utility of social awareness streams for
individuals, organizations, and communities.
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