
SQL Queries Over Unstructured Text Databases

Alpa Jain
Columbia University

AnHai Doan
University of Wisconsin-Madison

Luis Gravano
Columbia University

Abstract

Text documents often embed data that is structured in na-
ture. By processing a text database with information extrac-
tion systems, we can define a variety of structured “rela-
tions,” over which we can then issue SQL queries. Process-
ing SQL queries in this text-based scenario presents multi-
ple challenges. One key challenge is efficiency: information
extraction is a time-consuming process, so query process-
ing strategies should pick efficient extraction systems when-
ever possible, and also minimize the number of documents
that they process. Another key challenge is result quality:
extraction systems might output erroneous information or
miss information that they should capture; also, efficiency-
related query processing decisions (e.g., to avoid process-
ing large numbers of useless documents) may compromise
result completeness. To address these challenges, we char-
acterize SQL query processing strategies in terms of their
efficiency and result quality, and discuss the (user-specific)
tradeoff between these two properties.

1 Introduction

Text often embeds valuable structured data, such as who
recommends selling which stocks or how many people were
affected by a disease outbreak. To make use of this intrin-
sically structured data that is embedded in natural-language
text, we can leverage information extraction systems and
follow an “extract-then-query” paradigm: we first apply ex-
traction systems to the available documents, in an offline
step, to uncover structured data. For example, we can use an
extraction system trained for identifying disease outbreaks
to extract a tuple 〈Ebola, Zaire, 1976〉 from a news arti-
cle, meaning that an outbreak of Ebola occurred in Zaire in
1976. We can then load such structured data into a DBMS
(perhaps after a data cleaning step) so that we can later an-
swer structured queries (e.g., written in SQL) as they arrive.

In some situations, the fully offline extraction approach,
where all text documents in a database are processed with
extraction systems in a lengthy offline step, may be unde-
sirable or simply impossible, because the underlying data

is vast or evolves quickly, or because the target information
to extract is not known in advance. As an alternative, we
explore a fully online extraction approach (Section 2): to
process a SQL query, we define candidate execution strate-
gies to retrieve text documents at query time and feed them
to appropriate extraction systems. The choice of document
retrieval strategies and extraction systems for a SQL query
affects both the efficiency and the result quality of a query
execution, as we will see. So we consider the user-specified
desired balance between query execution efficiency and re-
sult quality, and choose query execution strategies accord-
ingly, in a principled, cost-based manner (Section 3).

2 SQL Queries over Text Databases

Consider an archive of newspaper articles, together with
an information extraction system trained to extract a Head-
quarters(Company, Location) relation, where a tuple 〈c, `〉
indicates that c is a company whose headquarters are lo-
cated in `, as well as another system trained for an Execu-
tives(Company, CEO) relation, where a tuple 〈c,e〉 indicates
that person e is the CEO of company c. We can then define
a view CompanyInfo(Company, Location, CEO) by joining
the two “base” relations, and express SQL queries such as:
Q1: SELECT Company, CEO FROM CompanyInfo

WHERE Location = ‘Redmond’

To process the above query, we could sequentially feed
each database document to the extraction systems, then join
the extracted Headquarters and Executives relations, and fi-
nally return only those tuples that satisfy the query condi-
tion. This exhaustive query execution might be unnecessar-
ily inefficient if only a small fraction of the documents in
the database contribute to our extraction tasks.

Beyond efficiency considerations, we should also an-
alyze the query result quality for the different execution
strategies. Unlike in the relational world, where all correct
plans for a query produce the same results, different strate-
gies for a query over a text database might indeed produce
different results. The exhaustive approach above, which
processes all the database documents, is time-consuming
but has the advantage of producing “complete” results rela-
tive to the extraction systems of choice. Faster alternatives

that process fewer documents may result in the loss of some
result tuples, hence hurting result completeness. Another
important consideration is the characteristics of the relevant
extraction systems, which often differ in their output quality
and extraction efficiency. Overall, which plan is best for a
query depends on the efficiency and result quality require-
ments for the query. Sometimes users are after receiving a
few result tuples quickly; some other times, users prefer to
receive query results that are as complete as possible, even
if it takes a relatively long time to produce the results. Our
SQL query processing problem is then as follows.

Problem Statement. Consider a text database D and n
“base” relations R1, . . ., Rn defined over D. Each base
relation Ri can be extracted from D using one or more in-
formation extraction systems. We assume that all base re-
lations R1, . . ., Rn share the same primary key K and no
other attributes, and define a view V = K 1n

i=1 Ri as the
natural outerjoin of R1, . . ., Rn over the K attributes. We
consider SQL selection-projection queries over V with se-
lection condition conjuncts of the form A = t, where A is
a textual attribute and t is a constant. Then, given such a
SQL query, our goal is to identify an execution strategy that
meets the desired efficiency and result quality requirements
as closely as possible.

To evaluate a query Q over a text database D, we need to:

(1) Select an extraction system Eij for each base relation Ri, as
well as a document retrieval strategy Xi for Eij .

(2) Use strategy Xi to retrieve from database D the set of text
documents Pi that Eij will process.

(3) Process the documents in Pi with extraction system Eij to
obtain a relation instance ri.

(4) Apply data cleaning techniques to the extracted relations, for
record linkage, and eliminate data inconsistencies.

(5) Generate a candidate view v = K 1n
i=1 ri

′, where ri
′ is a

“clean” version of ri.
(6) Execute Q over v and return the execution results.

The execution strategies for a SQL query differ in the Step
(1) choices on how to execute Steps (2) and (3). In some
scenarios, we might have more than one extraction system
available for a relation; the choice of extraction systems for
Step (3) will depend on their efficiency and output quality.
For Step (2), we consider the following document retrieval
strategies, which lead to SQL query executions with differ-
ent efficiency and result quality characteristics:

Scan: We can sequentially scan the database and feed each
document to an extraction system E. This strategy yields
complete query results for E, at the expense of efficiency.

PromD: Alternatively, we could avoid processing all doc-
uments by identifying just the “promising” ones via query-
ing, using QXtract [2] to derive keyword queries for each
extraction system via machine learning. This query-based

Search Interface

Company Location
Microsoft

IBM

Microsoft Corp.

Microsoft Corp.

Sybase Corp.

Redmond

Armonk

New York

Redmond

Mountain View

[based AND shares

AND Redmond]

Headquarters

<Company, Location>
Executives

<Company, CEO>

Company CEO
Microsoft Corp.

Apple

Kmart Corp.

Bill Gates

Amelio

Floyd Hall

Company Location
Microsoft Corp.

IBM

Sybase Corp.

Redmond

Armonk

Mountain View

Company Location
Microsoft Corp.

IBM

Sybase Corp.

Apple Inc.

Kmart Corp.

Redmond

Armonk

Mountain View

CEO
Bill Gates

Amelio

Floyd Hall

Company
Microsoft Corp.

CEO
Bill Gates

Company CEO
Microsoft Corp.

Apple Inc.

Kmart Corp.

Bill Gates

Amelio

Floyd Hall

Scan
Retrieved

documents

Extracted

tuples

Normalized

and consistent

relations

View

instance

Query

results

Figure 1. Stages in the execution of query Q1.

document retrieval strategy reduces the SQL query execu-
tion time, at the expense of answer completeness.

Const: As another alternative to reduce the number of doc-
uments that we process, we can exploit any SQL query con-
stants to construct keyword queries. For example, the key-
word “Redmond” in query Q1 can be used to retrieve only
those documents with this word for the extraction of Head-
quarters (documents without the word “Redmond” could
not contribute useful tuples for this query). The selectivity
associated with the constants in the query determines the
efficiency of this retrieval strategy.

PromC: We can naturally combine the PromD and Const
strategies by ANDing their queries. For example, for Q1 we
combine query [based AND shares] from PromD with query
[Redmond] from Const to obtain query [based AND shares
AND Redmond]. Similar to PromD, this strategy also has
the advantage of reducing the SQL query execution time,
but at the expense of answer completeness.

Figure 1 shows a possible execution for query Q1, with
two document retrieval strategies, PromC for Headquar-
ters and Scan for Executives, chosen in Step (1). PromC
issues keyword queries such as [based AND shares AND
Redmond] to the text database to retrieve promising docu-
ments (Step (2)). After feeding each of these documents
to the extraction system for Headquarters, we obtain tuples
such as 〈Microsoft, Redmond〉 (Step (3)). To extract Exec-
utives, Scan retrieves all documents exhaustively, one at a
time (Step (2)), and feeds them to the extraction system for
this relation (Step (3)), to extract tuples such as 〈Microsoft
Corp., Bill Gates〉. After extraction, we use record link-
age techniques to conclude that “Microsoft” and “Microsoft
Corp.” refer to the same company in the two base rela-

tions, and further data cleaning resolves inconsistencies in
the extracted relations, to eliminate erroneous tuples such
as 〈Microsoft Corp., New York〉 (Step (4)). As a final step,
we generate the query results (Steps (5) and (6)).

3 Query Execution Properties

To compare alternate execution strategies for a query Q
over a database D, we define efficiency as follows:
Definition 3.1. (Efficiency) The efficiency of a query exe-
cution S over a text database D, E(S, D), is the inverse of
the execution time of S, in seconds, over D. 2

We also compare execution strategies based on their
query result quality, for which we need to characterize the
“ideal” result for Q over D, Ideal(Q ,D). This hypothet-
ical ideal result consists of all the correct query results
for Q that could be derived from database D. Of course,
Ideal(Q ,D) would be prohibitively expensive to compute
for any large database D, since this “computation” would
necessarily involve substantial human effort (e.g., no “per-
fect” extraction systems exist). However, the ideal results
are conceptually helpful to characterize the precision and
recall of query execution strategies, as follows:
Definition 3.2. (Precision and Recall) Consider an execu-
tion strategy S for a query Q over a text database D, and let
R be the results that S produces. We define the precision
of S over D as P (S, D) = |R∩Ideal(Q,D)|

|R| and the recall of

S over D as R(S, D) = |R∩Ideal(Q,D)|
|Ideal(Q,D)| . 2

We combine precision and recall into a single metric by
computing their geometric mean, as follows:
Definition 3.3. (Quality) Consider an execution strategy S
for a query Q over a text database D. We define the quality
of S over D as Q(S, D) = (P (S, D) · R(S, D))1/2. 2

As discussed above, query execution strategies over text
databases exhibit a tradeoff between efficiency and result
quality. Ultimately, the right balance between efficiency
and quality is user-specific, and we capture it with a (user-
specified) query processing parameter w, ranging in value
from 0, to privilege efficiency, to 1, to privilege result qual-
ity. In turn, we use parameter w to characterize the overall
goodness of a query execution, as follows:
Definition 3.4. (Goodness) The goodness of a query exe-
cution S over a text database D for user-specified parameter
w is Gw(S, D) = Q(S, D)w · E(S, D)(1−w). 2

Putting everything together, to process a SQL query we con-
sider the strategies derived from instantiating the general al-
gorithm with the different extraction systems and document
retrieval strategies. We estimate the goodness of each in-
stantiation and choose the best option. We omit the details
on our (sampling-based) methods to derive these estimates
because of space limitations.

4 Related Work

The problem of information extraction from text has re-
ceived significant attention (see [4, 7] for surveys). Earlier
approaches rely on hand-crafted extraction rules, but many
recent efforts (e.g., [1, 3, 6]) have developed unsupervised
or learning-based extraction techniques. Recent work has
started to address efficiency issues, including the QXtract
system [2], which we used in this paper.

Closest to this paper is the analysis in [5], which con-
siders (among others) the problem of identifying the docu-
ment retrieval strategy for a single extraction system S that
reaches a pre-specified target recall in minimum time. [5]
assumes that S is perfect in that it produces all—and only—
correct tuples. Our current work is related to [5], but differs
from it in several crucial aspects. First, we consider the
more general problem of optimizing the combined execu-
tion of multiple information extraction systems and mul-
tiple document retrieval strategies, all towards the goal of
efficiently answering a SQL query. Second, we remove the
assumption of perfect extraction systems, and model extrac-
tion errors. Finally, we do not optimize for a pre-specified
target recall, but consider the goal of balancing recall, pre-
cision, and execution time in a flexible manner.

5 Discussion

We performed an extensive evaluation of our query pro-
cessing approach, which relies on document sampling to es-
timate the goodness of the candidate query execution strate-
gies. We do not report our results because of space con-
straints. As a summary of our conclusions, our query pro-
cessing approach produced high goodness executions for
both selection and projection queries and for all values of
user-specified parameter w (see Definition 3.4). As ex-
pected, our approach privileges efficiency for low values of
w and result quality for high values of w, and dynamically
adapts to the user-specified efficiency-quality balance.

References
[1] E. Agichtein and L. Gravano. Snowball: Extracting relations

from large plain-text collections. In DL, 2000.
[2] E. Agichtein and L. Gravano. Querying text databases for

efficient information extraction. In ICDE, 2003.
[3] S. Brin. Extracting patterns and relations from the world wide

web. In WebDB, 1998.
[4] R. Grishman. Information extraction: Techniques and chal-

lenges. In SCIE, 1997.
[5] P. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano. To search

or to crawl? Towards a query optimizer for text-centric tasks.
In SIGMOD, 2006.

[6] I. Mansuri and S. Sarawagi. A system for integrating unstruc-
tured data into relational databases. In ICDE, 2006.

[7] A. McCallum. Information extraction: distilling structured
data from unstructured text. ACM Queue, 2005.

