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Abstract

A wealth of information is hidden within unstructured text.
This information is often best exploited in structured or re-
lational form, which is suited for sophisticated query pro-
cessing, for integration with relational databases, and for
data mining. Current information extraction techniques ex-
tract relations from a text database by examining every doc-
ument in the database, or use filters to select promising doc-
uments for extraction. The exhaustive scanning approach
is not practical or even feasible for large databases, and
the current filtering techniques require human involvement
to maintain and to adopt to new databases and domains. In
this paper, we develop an automatic query-based technique
to retrieve documents useful for the extraction of user-defined
relations from large text databases, which can be adapted
to new domains, databases, or target relations with minimal
human effort. We report a thorough experimental evaluation
over a large newspaper archive that shows that we signifi-
cantly improve the efficiency of the extraction process by fo-
cusing only on promising documents.

1 Introduction

Text documents often hide valuablestructured data. For
example, a newspaper archive contains data that might be
useful to analysts who want to track mergers and acquisi-
tions, or to government agencies that are interested in mon-
itoring and tracing back infectious disease outbreaks as re-
flected in the news. Information extraction systems produce
a structured representation of the information that is “buried”
in unstructured text documents. Improving the efficiency of
information extraction systems over large text databases is
the focus of this paper.

In general, state-of-the-art extraction systems [16] apply
many rules over each available text segment to determine
whether the segment can be used to fill a value of an at-
tribute in a tuple. Therefore, processing each document is
relatively expensive, and typically involves several steps such
as named-entity tagging (e.g., identifying person names or
dates), syntactic parsing, and finally rule matching. This ap-
proach is not feasible for large databases, or for the web,

when it is not realistic to tag and parse, or even simply
scan, every available document. For example, one highly
optimized state-of-the-art information extraction system re-
quires over 9 seconds to process an average-sized newspa-
per article on a high-end workstation. As a result, over 15
days of processing time are required for a 135K document
archive. With document database size commonly exceeding
millions of documents, processing time is becoming a bot-
tleneck when exploiting information extraction technology
for any time-critical applications or for leveraging extracted
information with relational databases.

Previous approaches for addressing the high computa-
tional cost of information extraction resorted to documentfil-
tering to select the documents that deserve further processing
by the information extraction system. This filtering still re-
quires scanning the complete database to consider every doc-
ument. Alternative approaches used keywords or phrases as
filters (which could be converted to queries) that were man-
ually crafted and tuned by the information extraction system
developers, as we will discuss.

In this paper we address the scalability of information ex-
traction systems in a principled and general manner. We
introduceautomaticquery-based techniques to identify the
database documents that are promising for the extraction of a
relation from text by an arbitrary information extraction sys-
tem, while assuming only a minimalsearchinterface to the
text database. Our techniques make it possible for an infor-
mation extraction system to operate over large text databases,
or even the web, by first retrieving the set of documents worth
analyzing, and then proceeding with the usual extraction pro-
cess over this smaller document set.

Our approach automatically discovers the characteristics
of documents that are useful for extraction of a target re-
lation, starting with only a handful of user-provided exam-
ples of tuples of the relation to extract. Using these tu-
ples, our system retrieves a sample of documents from the
database. By running the information extraction system over
the documents, we identify which documents are useful for
the extraction task at hand. Then, we apply machine learn-
ing and information retrieval techniques to learn queries that
will tend to match additional useful documents. Finally, the
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documents that are retrieved with these learned queries are
processed by the information extraction system to extract the
final relation.

Contributions: The key contribution of this paper is our
unsupervised query-based method for retrieving useful doc-
uments for information extraction from large text databases.
Our method requires the document database to support only
a minimal query interface, and is independent of the choice
of information extraction system. Furthermore, our method
could be used to query a standard web search engine, hence
providing infrastructure for efficient information extraction
from the web at large.

Related Work: Information extraction has long been the
focus of active research. The main emphasis of this research,
notably in the context of the Message Understanding Confer-
ences (MUCs) [1], has been on the quality of the extracted re-
lation. In contrast, our work assumes a given information ex-
traction system, and focuses on retrieving a relatively small
set of documents that would allow the extraction of a close
approximation of the target relation efficiently.

A related problem isquestion answering. Question an-
swering systems attempt to find answers to natural language
questions in collections of text documents. These systems
typically process each question individually [28]. In our
scenario, we are interested in extracting a completerela-
tion (i.e., all tuples in the relation). The extracted relation
can be viewed as a set of prepared “answers” for a partic-
ular class of questions (e.g., “What is the location of the
headquarters ofX?”). While question answering techniques
may be useful for retrieving specific tuples in the target rela-
tion (e.g., [4, 20]), the problem of retrieving documents that
collectively contain the complete relation has not been ad-
dressed in the question-answering literature, to the best of
our knowledge.

Our work is also related to recent research on focused
web crawling (e.g., [6]), which addresses the problem of
fetching web pages relevant to a given topic. Our proposed
technique is tuned for information extraction, and operates
over any searchable text database, whether its contents are
“crawlable” or not. Recent work [23] addresses the problem
of crawling the “hidden web,” the portion of the web hidden
behind search forms. Our goal is different: we attempt to ex-
tract the most completerelation from the text database while
retrievingas few documents as possible.

One subtask of the MUC evaluations,text filtering, is rel-
evant to our work. In that task, each participating system
would judge which of the documents are relevant for the
extraction scenario [1]. Documents can be filtered at vari-
ous stages of the extraction process [21]. Some systems [9]
classified input documents based on single words and word
n-grams prior to doing any further processing, while oth-
ers used manually constructed keywords and phrase filters

to discard documents. The classification-based approach re-
quired manually labeled documents for training the classi-
fiers. Other systems developed filters from the extraction
patterns devised to extract the target relation. In Section 4,
we evaluate a related strategy that uses queries derived from
extraction patterns. In contrast to these techniques, our goal
is to automaticallygenerate standard search-enginequeries
(and not more generalfilters) that would retrieve only the
relevant documents for an extraction task.

The evaluation presented in [12] uses ideas related to our
work. The authors consider 9 manually generated keywords
originally used for compiling the 100 test documents used
in the MUC-6 evaluation. These keywords were submitted
to a web search engine and the resulting documents were
processed by the extraction system and evaluated for rele-
vance for the extraction scenario. In a different setting of
compiling conference “Calls for Papers” extracted from web
documents, [19] uses a combination of focused crawling and
manually generated queries to retrieve promising documents.
In Section 4, we evaluate a related manual query strategy to
compare against our automatic query generation method.

The problem of retrieving documents that are “relevant”
to a user’s information need has been the core focus of the
information retrieval (IR) field [27]. Although our problem is
different in nature, we exploit state-of-the-art term weighting
and query expansion results [24] from IR in the design of
one variant of our system (Section 2.4.2). Alternatively, the
characterization of the useful documents could be viewed as
a traditional classification problem. We explore a number of
machine learning techniques [8, 18] in the design of other
variants of our system (Section 2.4.2).

Several techniques use supervised learning to devise
queries that match documents about a specific category of
interest [15]. [7] constructed topic-specific directories on the
web by training a classifier with a labeled set of documents
and then deriving queries to retrieve additional documents.
Flake et al. [11] extracted category-specific query modifi-
cations from a non-linear SVM classifier. Recently, Ghani
et al. [14] presented a technique that is similar in spirit to
our current work, but for a different task: identifying web
pages in a “minority” language (e.g., Slovenian) by query-
ing a search engine. Their technique starts with a set of web
pages that are fed to a language identifier and labeled as pos-
itive or negative examples. This set of pages is then used to
derive Boolean queries that will tend to identify more pages
in the language of choice, and the process iterates. In our
work, on efficient information extraction, we consider query
generation techniques based on a term weighting scheme that
is related to some of the techniques in [14], as well as other
query generation strategies that exploit machine learning re-
sults.

The rest of the paper is organized as follows. Section 2
presents our new document retrieval method in detail. Then,
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<PERSON>Brent Barlow</PERSON> ,
a software  analyst and beta-tester at
<ORGANIZATION>Apple Computer</ORGANIZATION> 's
headquarters in <LOCATION>Cupertino</LOCATION> , was fired
Monday for "thinking a little too different."

<ORGANIZATION>'s
headquarters in <LOCATION>

<ORGANIZATION>,
based in <LOCATION>
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Brent Barlow, a software  analyst and beta-tester at  Apple
Computer's headquarters in Cupertino, was fired Monday for "thinking
a little too different." doc4
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Figure 1. Extracting tuples for theHeadquartersrelation.

Section 3 summarizes the general experimental setting, in-
cluding the evaluation methodology, metrics, and databases
we used for tuning and evaluating our strategy. Section 4
reports the results of an experimental evaluation of our tech-
nique (and several other strategies) on a large text database.
Finally, Section 5 concludes the paper.

2 Retrieving Promising Text Documents

In this section, we present a new,automaticmethod for
generating queries to match the documents that are useful for
extraction of a target relation. Before describing our idea, we
present a brief overview of how information extraction sys-
tems work (Section 2.1). Then, we define the problem on
which we focus in this paper and the overall architecture of
ourQXtract1 system (Section 2.2).QXtractstarts by retriev-
ing a small sample of documents from a text database and de-
termining those from which the extraction system is able to
extract tuples for the target relation (Section 2.3). This sam-
ple is used to provide examples of useful and useless docu-
ments to our methods of generating queries to retrieve the re-
maining promising documents in the database (Section 2.4).

2.1 Overview of Information Extraction

Information extraction usually refers to identification of
instances of particular events and relationships in unstruc-
tured natural language text documents. The extractedstruc-
tured records can be used to populate a relational table for
answering queries and running data mining tasks. Thus, in-
formation extraction is a crucial step for fully exploiting nat-
ural language documents.

As an example of information extraction, consider ex-
tracting a Headquarters(Organization, Location)relation,
which contains a tuple< o, l > if organizationo has head-
quarters in locationl. Figure 1 shows the basic stages in the
extraction of a tuple from a document fragment. We omit the
more sophisticated post-processing and analysis performed
by many state-of-the-art information extraction systems, as
this is beyond the scope of this discussion. (Refer to [16] for
an in-depth discussion.)

1QXtractstands forQuerying for eXtract ion.

As one of the first stages of extraction, the input docu-
ments are typically passed through anamed-entity tagger,
which is able to recognize entities (e.g., organizations, loca-
tions, and persons). Named-entity tagging is a well studied
problem, with tools publicly available for the more common
entity types [10]. These entities are potential values of at-
tributes in the target relation. To findrelated entities, the
tagged documents are processed by applying extractionpat-
terns in the pattern matchingstep. These patterns may be
manually constructed [30], automatically learned [31, 3], or
created by using a combination of the two methods. Each
pattern is applied to each text fragment, instantiating appro-
priate slots in the pattern with entities from the document.
These entities are combined into candidate tuples, and after
filtering and post-processing are returned as extracted tuples.

In the example in Figure 1, a sample documentdoc4 is
first passed through a named-entity tagger that recognizes
person, organization, and location entities. The text frag-
ment containing entities of interest, namelyorganizationand
location, is matched with one of the extraction patterns,
“<ORGANIZATION>’s headquarters in<LOCATION>”,
instantiating the generic entity types with entitiesApple
Computerand Cupertino, respectively. Finally, the tuple
<Apple Computer, Cupertino> is generated. In Figure 1,
a check-mark next to a document indicates that a tuple was
successfully extracted from the document. We consider such
documentsusefulfor the extraction task. Also note that addi-
tional information may be available from the extraction sys-
tem. For example, the information extraction system may
assign a weight or confidence (W ) to each extracted tuple.

The extraction process outlined above is too expensive to
perform on every document in a large database. By focusing
only on potentially useful documents, we can dramatically
improve the efficiency and scalability of the information ex-
traction process. Next, we introduceQXtract, ourautomatic
technique for retrieving such “promising” documents.

2.2 Problem Statement and Notation

Consider the problem of extracting a relation from a large
database of text documents. Often, only a small fraction of
the documents contain information that is relevant to the ex-
traction task. Hence it is not necessary for extraction com-
pleteness – or desirable from an efficiency viewpoint – to run
the information extraction system over every database docu-
ment. Furthermore, if our database is the set of all web pages
indexed by a search engine such as Google, then it is virtu-
ally impossible to scan every page to extract tuples. For these
reasons, our approach zooms in on the promising documents,
while ignoring the rest. We now state the problem that we
are addressing, and introduce the notation that we will use
in the rest of the paper. For our purpose, a database can be
either local (e.g., a company’s archive of legal documents
or customer e-mails) or remote (e.g., the web-accessible and
searchable archive of a newspaper).
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     Organization   Location

1   Microsoft         Redmond
2   Exxon              Irving
3   Boeing             Seattle
4   IBM                  Armonk
5   Intel                 Santa Clara

Figure 2. The architecture of an efficient information extrac-
tion system that identifies promising documents via query-
ing.

Problem Statement: We are given an information extrac-
tion systemE and a text document databaseDall, together
with a few example tuples of the relation to be extracted.
Let Rall denote the instance of the relation that would be
extracted from the entire databaseDall. Our goal is to con-
struct a close approximation ofRall, R, by retrieving a small
subsetD of the document databaseDall, and then having
the extraction system operate onD rather than on the much
larger original databaseDall. We assume that the user spec-
ifies the maximum fraction ofDall that can be retrieved to
extractR 2. This parameter,MaxFractionRetrieved, would
vary depending on the needs of the user, and on the size of
the original database.

Note thatRall may not containall of the correct tuples
that could be extracted from theDall database by a perfect
extraction system. Rather, we are limited by the best relation
that systemE can extract, and we try to approximate that re-
lation in an efficient manner. We also assume thatE can only
extract a tuplet if all of t’s attributes occur within the same
document. (In other words, we assume that the information
extraction system does not “glue” together pieces of a tuple
from multiple documents.)

Efficient Information Extraction Architecture: The
overall architecture of the efficient information extraction
system that we envision is shown in Figure 2. We interact
with the target information extraction system through a uni-
fied information extraction system interface, which we de-
scribe next. The text database is accessible through a search
engine interface. As we will discuss,QXtract, the promising
document retrieval component, interacts with the extraction
system and the database to retrieve promising documents.

Information Extraction System Interface: To handle a
variety of arbitrary information extraction systems, we treat
them as “black boxes” and interact with them through simple
extraction system wrappers. These wrappers can be easily
built to support the following unified interface:

• Input: A set of documentsD for the extraction system
to process, as shown in Figure 1.

2If the database size is unknown, then an absolute number of documents
can be specified instead to control the efficiency of the extraction process.
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+
+

+
+
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--

company AND based
headquarters AND office

Document Sample
Retrieval

Learning Queries from
Sample Documents

+
+

+
+

- -
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Seed Tuples

Output: Generated
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Information Extraction System
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Useful

headquarters AND office ->
Useful

Search

Seed

? ?
??

? ?

??

QXtract

     Organization   Location
1   Microsoft         Redmond
2   Exxon              Irving
3   Boeing             Seattle
4   IBM                  Armonk
5   Intel                 Santa Clara

Figure 3.QXtract: Promising document retrieval.

• Output: The set of tuples extracted fromD, Tuples,
and for each tupleti ∈ Tuples , the set of identifiersUi

of the “useful” documents from whichti was extracted.
The wrapper returns the identity of all the useful docu-
ments, defined asUseful= U1 ∪U2 ∪ ...∪U|Tuples|. In
the example in Figure 1,Useful = {doc2, doc4}.

• Optional Output: Patterns:An extraction system may
export the set of all the extraction patterns that it has
available for extracting the target relation (e.g., the ex-
traction patterns in Figure 1).

Designing for a minimal, uniform interface to the extraction
system allows us to plug in any information extraction sys-
tem to take advantage of our querying techniques, without
any changes to theQXtractsystem.

Text Database Search Interface: We assume that the
search interface of the database supports simple Boolean
queries such as“data AND mining AND text,”as well as
phrase queries. This query model provides sufficient expres-
siveness, and is widely supported: all of the major available
text indexing tools (e.g., Glimpse [22]) and web search en-
gines support such queries with minor variations in syntax.

The QXtractSystem: In the rest of this section, we will de-
scribeQXtract, whose overall architecture is shown in Fig-
ure 3. Starting with a set of user-provided seed tuples, we
first use the sampling procedure described in Section 2.3
to retrieve a small sample of documents, likely to be use-
ful to the extraction system for extracting the target relation,
as well as other randomly chosen documents, likely to be
useless to the extraction system. The information extraction
system is run over this sample set, producing as output a set
of extracted tuples and the identifiers of useful documents.
The documents in the sample are thus labeled automatically
as either positive or negative examples, where the positive
examples represent the documents in the sample from which
the information extraction system was able to produce tu-
ples. These examples allow us to derive queries targeted to
match –and retrieve– documents similar to the positive ex-
amples (Section 2.4). These queries are used to retrieve a set
of promising documents from the database (Section 2.5), to
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be returned asQXtract’s output and finally processed by the
information extraction system.

2.3 Retrieving Documents for Query Training

At the initial stage of the overall document retrieval pro-
cess, we have no information about the documents that might
be useful for extraction. The only information we require
about the target relation is a set of user-provided example tu-
ples, including a specification of the relation attributes to be
used for document retrieval. Our goal is to retrieve a docu-
ment sample of size specified by theMaxSampleSizeparam-
eter with a good mix of useful and useless documents for the
subsequent query training stage. To accomplish this, we use
the DocumentSamplealgorithm3 shown in Figure 4. After
initialization, each round of sampling consists of two stages:
(1) We retrieve documents for the sample by querying the
search engine with the attribute values of the current seed
tuples, which initially are provided by the user as the input
parameterSeed.
(2) We run the information extraction systemE over the doc-
uments in the current sample, extracting a new set of tuples.
A subset of these tuples is selected as the newSeedtuples to
start a new sampling round.

We initialize the document sample with randomly picked
documents (line 1 in Figure 4), the majority of which are
likely not to be useful for extraction and will be used as “neg-
ative” examples for training. The rest of theSampledoc-
uments will be retrieved using attributes of theSeedtuples,
which results in documents that are likely to be useful for ex-
traction and will be used as “positive” examples for training.

The initial Seedtuples are provided by the user, and are
augmented by the tuples extracted by the extraction system
E from Sample(lines 2 and 3). To retrieve additional sam-
ple documents, we build queries with the attribute values of
each tuplet in the current set ofSeedtuples. Each tuplet
is used to construct a queryq = t.a1 AND t.a2 AND . . .
t.an, wherea1, . . . , an are the searchable attributes in the
relation (line 7). Queryq will retrieve documents where all
attributes oft appear within the same document. In principle,
these are documents from whicht could have been extracted
by the information extraction system. We retrieve the first
MaxSeedResultsmatches returned by the database for each
query (line 8). The query results are added to the set ofLike-
lyUseful documents, retrieved during the current sampling
round.

Clearly, not all documents in theLikelyUsefulset will ac-
tually be useful for extraction. To determine which docu-
ments are indeed useful, we run the information extraction
systemE overLikelyUseful(line 9), returning the extracted
tuplesT and identifiers of useful documentsU from which
the tuples were extracted. In line 10, we choose the most

3Independently, Ghani and Jones [13] have recently introduced a simi-
lar strategy to construct a training corpus for a bootstrapping-based general
entity tagger.

Procedure DocumentSample(Seed, MaxSampleSize)
//Seed is a set of example tuples. MaxSampleSize is the maximum
//number of documents to retrieve as a training sample.

//First, retrieve a random sample of MaxSampleSize / 2 documents,
//that will likely be “negative” examples for training.

1 Sample = RetrieveRandom(MaxSampleSize / 2)
//Identify the minority of useful documents in the random sample.
//Augment the Seed set with the extracted tuples T.

2 (T, Useful) = E.Extract(Sample)
3 Seed = Seed∪ T

//Now, retrieve MaxSampleSize / 2 documents with tuple attributes,
//likely to be “useful”, to provide positive examples for training.

4 while |Sample| < MaxSampleSize
5 LikelyUseful =∅
6 for each t in Seed:
7 q = t.a1 AND t.a2 AND ...t.an

8 LikelyUseful =
LikelyUseful∪ RetrieveSeedDocuments(q, MaxSeedResults)

//Skip to line 9 if MaxSampleSize exceeded.
9 (T, U) = E.Extract(LikelyUseful)

//Set Seed tuples for next iteration.
10 Seed = PickBestTuples(T, U)
11 Useful = Useful∪ U
12 Sample = Sample∪ LikelyUseful

//Sample now consists of MaxSampleSize documents.
13 Useless = Sample - Useful
14 Return(Useful, Useless)

Figure 4. Retrieving sample documents for subsequent query
training.

“robust” tuples inT into Seedfor the next round of sampling:
this choice can be based on the number of documents inU
from which the tuples were extracted, which favors selecting
“popular” tuples that are likely to appear in many documents
in the database4. The total size of the retrieved training set,
MaxSampleSize, is a parameter that we tune during training.

Unfortunately, we cannot simply continue the sampling
process to retrieve all of the useful documents in the
database. As we will show in Section 4, if only a small frac-
tion of the documents contain tuples for the target relation,
or very few tuples tend to appear together in the same docu-
ment,DocumentSamplewould not be able to discover a sig-
nificant fraction of tuples that could otherwise be extracted.

Our key observation is that useful documents share sim-
ilarities in content. For example, useful documents for the
Headquartersrelation may contain combinations of terms or
phrases so that they match queries such as “headquarters of,”
“company AND based”, “area AND companies,” etc. These
combinations of terms are more likely to occur in useful doc-
uments than in useless documents for theHeadquartersre-
lation. Our goal now is to automatically generate queries
to retrieve the documents similar to those that the extraction
system marked asUseful. Hence, theUseful and Useless
documents returned byDocumentSampleserve as the train-

4Alternatively, we could use the extraction confidence associated with
the tuples, if this information is exported by the information extraction sys-
tem.
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ing set to learn queries for promising document retrieval.

2.4 Learning Queries for Promising Document
Retrieval

Given a set of useful and useless documents as the training
set, our goal now is to generate queries that would retrieve
many documents that the information extraction systemE
will find useful, and few thatE will not be able to use. The
process consists of two stages:(1)Convert positive and nega-
tive examples into an appropriate representation for training,
and(2) use the training examples to generate an ordered list
of queries expected to retrieve new useful documents. Later,
in Section 2.5 we will see how to submit the queries to the
database to retrieve promising documents.

2.4.1 Representation Features for Training Examples
For training, we remove any extractedtuple attributesfrom
the documents. For the current experiments, we usewords
as features to represent the training examples, and will not
rely on other more advanced query features such as proxim-
ity operators or word “stems.” Of course, if such advanced
features (or alternative query models) are available, we could
apply our same general approach and tailor it to the query in-
terface of choice. In the future, we plan to experiment further
with alternative document features, such as word phrases or
sets of words within a window.

2.4.2 Generation of Queries from Examples
We now turn to the generation of queries to retrieve use-
ful documents from the database. The problem of retriev-
ing documents similar to a given set of “relevant” examples
has been studied extensively in both the information retrieval
and the machine learning communities. In this section, we
discuss how we adapt well-established solutions from both
communities to our (non-standard) problem. We first con-
sider query generation as an IR automatic query expansion
problem, using a state-of-the-art term weighting scheme. We
then introduce query generation techniques that exploit the
output of two machine-learning text classifiers. Finally, we
present a hybrid query generation technique that combines
the learned queries from all of the above methods.

Okapi: As a first query generation strategy, we exploit
a state-of-the-art term weighting scheme from IR, from the
Okapi retrieval system [24]. While there are many promis-
ing alternatives to this weighting scheme in the IR literature
(e.g., [29, 26]), we chose Okapi because it has been demon-
strated to perform well, is naturally well suited to our task,
and is relatively straightforward to implement. Incorporating
alternative information retrieval techniques into our system
is easy and does not require changes to our model.

To predict which terms are most likely to retrieve use-
ful documents, we compute theterm selection weight[24] of
each term in the training set. The terms with the highest posi-
tive weight are most likely to appear in useful documents and

not in the useless ones. First, each termti in the document is
assigned the Robertson-Spark Jones term weightw

(1)
i [25]:

w
(1)
i = log

(r + 0.5)/(R − r + 0.5)
(n − r + 0.5)/(N − n − R + r + 0.5)

where a document is relevant if it was markedusefulby the
extraction system,r is the number of relevant documents
containingti, N is the number of documents in the document
sample,R is the number of relevant documents, andn is the
number of documents containingti. Intuitively, this weight
is high for terms that tend to occur in many relevant docu-
ments and few non-relevant documents, and is smoothed and
normalized to account for potential sparseness of the train-
ing data. Then, we compute thequery selection weightwi of
each termti as described in [24] for automatic query expan-
sion,wi = r ·w(1)

i , wherer andw
(1)
i are defined above. The

terms are sorted in descending order bywi, and finally we
define one-word queries consisting of each top-ranked term
individually.

Ripper: As a second query generation strategy, we ex-
ploit a highly-efficient rule-based text document classifier,
Ripper [8]. Ripper learns concise rules such as“based AND
company→ Useful,” which indicates that if a document con-
tains both termbasedand termcompany, then it should be
declared “useful.” After Ripper generates classification rules,
we sort the rules in descending order of their expected preci-
sion, calculated as the ratio of positive examples to the total
examples that match the rule. (This information is part of the
Ripper output.) The rules are then translated into conjunctive
queries in the search engine syntax. For example, the rule
above might be translated to query“based AND company.”

Support Vector Machines (SVMs): As a third query
generation strategy, we exploit another family of classifiers,
SVMs, which have been shown to perform well in text clas-
sification [18]. To filter out noise, we prune the set of words
used in training by discarding those that occur in fewer than
1%, or in more than 99% of the training examples5. We use
a freely-available efficient implementation of linear-kernel
SVMs [18]. To generate rules from SVM feature weights, we
compute theminimalsets of words that are collectively suf-
ficient to imply a positive classification of a document [15].
The result of this process is a set of “rules” similar to the
Ripper output.

QCombined: Okapi, Ripper, and SVM all use differ-
ent learning models, and the queries that they generate of-
ten have little overlap across techniques. We can exploit this
observation to improve the robustness ofQXtractby combin-
ing the ranked query sets generated by each query generation
strategy. Specifically, we merge the query ranks generated

5Based on our experiments with linear-kernel SVMs on the training
database, we additionally restrict the document features to the words in the
immediate context (i.e., within the same line in the original document for-
matting) of the extracted tuples.
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by Okapi, Ripper, and SVM in a round-robin fashion: The
first query in the merged rank is the highest-ranked query
generated by Ripper, followed by the highest-ranked query
generated by SVM, and so on6.

2.5 Querying for Promising Documents

We described above how to generate queries that are used
to retrieve the final set of promising documents from which
the information extraction system of choice will extract tu-
ples. The size of this document set has a direct impact on the
quality of the extracted relation.

We assume that, for efficiency considerations, we have a
predefined upper boundMaxFractionRetrieved on the frac-
tion of the databaseDall that we are willing to retrieve. The
higher this upper bound, the more complete the extracted
relation is likely to be. We submit the queries (generated
and ranked as in Section 2.4.2) to the document database,
one at a time. For each query, the database returns the doc-
ument identifiers (e.g., URLs) of the matching documents.
We retrieve the previously unseen documents until the max-
imum number of results per query,MaxSearchResults, is
reached7. We keep the running total of all documents re-
trieved to avoid exceedingMaxFractionRetrieved . After
this bound is reached (or there are no more documents to
retrieve using our queries), all retrieved documents are re-
turned as the output ofQXtract. These promising documents
are then used as input to the information extraction system,
which extracts the final approximation of the target relation.

3 Experimental Setting

We now report the metrics we use to evaluate the alterna-
tive query methods (Section 3.1). Then, we describe the in-
formation extraction systems (Section 3.2) and the two target
relations that we use in our experiments (Section 3.3). Later,
we specify the training and test databases (Section 3.4), and
conclude by describing the various querying techniques that
we compare (Section 3.5).

3.1 Evaluation Methodology and Metrics

As we discussed, our goal is to approximate theRall re-
lation with all tuples that could be extracted through an ex-
haustive scan of the databaseDall (Section 2.2). In contrast
to exhaustive scanning,QXtract retrieves a promising set of
documentsD, from which the information extraction system
obtains a relationR to approximateRall. We then evaluate
the document retrieval method based onR andD. Our eval-
uation focuses on: (1) how closelyR approximatesRall, and

6More sophisticated ways of combining the generated queries are pos-
sible (e.g., to eliminate redundancy across queries), and we plan to explore
some of them in our future work.

7Many search engines have a predefined limit on the maximum number
of results per query that they return.

(2) how “useful” the documents inD are on average8:
Recall: The percentage of theRall tuples that were captured
in R is Recall= |R∩Rall|

|Rall| · 100%. Rall is computed by run-
ning the information extraction system overeverydocument
in theDall database.
Precision: The percentage of documents inD that were use-
ful for extractingR is Precision= |D∩U|

|D| · 100%, whereU is
the subset ofD from which the extraction system managed
to extract tuples.

Note that we are not usingRecall and Precision in a
strictly standard way. Our recall measure is based on the
percentage of thetuples in Rall correctly extracted, while
our precision measures the percentage of usefuldocuments
within the retrieved document set. Intuitively, the document
retrieval method has two purposes: the first is to extract a
close approximation ofRall, while the second is to do so
efficiently, i.e., by retrieving few documents. The most di-
rect measure of success in the first task is the percentage of
Rall tuples that are actually extracted from the documents re-
trieved byQXtract. The success in the latter task is naturally
measured at the document level, as we feed the information
extraction system one document at a time, and gain one or
more tuples forR if the document isuseful. If the docu-
ment isuseless(i.e., no tuples are extracted), the resources
required to retrieve and process the document are wasted.
Therefore, a larger fraction of theusefuldocuments retrieved
translates to a higher efficiency of extraction, as quantified
by our precision measure.

To complement the study of theefficiencyof our tech-
niques, in Section 4 we also report on theactual timere-
quired to extract an approximation ofRall from the docu-
ments retrieved byQXtract, as compared to the time required
to extractRall from the complete database.

3.2 Target Information Extraction Systems

The design ofQXtract is general in that we can use any
information extraction system as long as it supports (through
a wrapper) the simple interface described in Section 2. For
our experiments, we consider three extraction systems:
(1) DIPRE [5], which uses a simple bootstrapping algorithm
starting with a handful of user-provided seed tuples.
(2) Snowball [3], which is an extension ofDIPRE that in-
cludes automatic pattern and tuple evaluation to improve the
quality of the extracted table.
(3) Proteus[17], which is a sophisticated, manually trained
information extraction system from NYU9.

8We do not consider the absolute accuracy or “quality” of the extracted
tuples. Rather, we focus on how closely we approximate the best possible
relation that can be produced by a given information extraction system, if it
had examined every document in the database.

9While theProteussystem is not publicly distributed, we were allowed
to use an instance that was tuned for extracting infectious disease outbreaks,
with kind help and permission from Roman Yangarber, Ralph Grishman,
and Silja Hattunen.
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Headquarters DiseaseOutbreaks
Organization Location DiseaseName Location

Microsoft Redmond Malaria Ethiopia
Exxon Irving Typhus Bergen-Belsen
Boeing Seattle Flu The Midwest
IBM Armonk Mad Cow Disease The U.K.
Intel Santa Clara Pneumonia The U.S.

Figure 5. Initial seed tuples provided toQXtract for extract-
ing theHeadquartersand theDiseaseOutbreaksrelations.

The three systems above are representative of the state of
the art in information extraction, and range from a simple
strategy with minimal manual training (DIPRE) to a highly
sophisticated strategy with extensive manual training (Pro-
teus).

3.3 Target Relations for Extraction

We evaluate the performance ofQXtracton the extraction
of two relations, with the initial seed tuples of Figure 5:
Headquarters(Organization, Location), as defined in Sec-
tion 2.1. The attributesOrganizationandLocationare used
for querying for sample documents. We useDIPRE and
Snowballto extract this relation.

DiseaseOutbreaks(DiseaseName, Location, Country,
Date, . . .). Each tuple<n, l, c, d, . . . > (e.g., <“Mad
Cow Disease”, “The U.K.”, “U.K.”, “3/27/1996”,. . . >)
corresponds to an outbreak of a diseasen in a locationl of
a countryc, on dated, and other attributes that we do not
discuss here for brevity. The attributesDiseaseNameand
Locationare used for querying for sample documents. We
useProteusto extract this relation.

3.4 Training and Test Databases

Our training database consists of 137,893 documents
from the first nine months of the 1996 New York Times
archive10. Thetest database consists of 135,438 documents
from the 1995 New York Times archive. For our experi-
ments, we indexed the training and test databases using the
Glimpse search engine. Glimpse supports a Boolean retrieval
model with no document ranking. Queries specify either
exact phrases (which do not ignore punctuation) or single
words11.

3.5 Alternative Document Retrieval Methods

We experimentally compare a number of alternatives to
retrieve promising documents:
QXtract: This is the technique described in Section 2, whose
parameters (tuned using thetraining database and summa-
rized in Figure 7) includeMaxSampleSize, MaxSeedResults,

10Available as part of theNorth American News Text Corpusfrom the
Linguistic Data Consortium athttp://www.ldc.upenn.edu .

11Glimpse also supports limitedregular expressionmatching, which we
do not exploit.

and thequery generation strategy.
Tuples: This technique uses tuples to retrieve promising
documents.Tuplesproceeds essentially as procedureDoc-
umentSamplein Section 2.3, with the difference thatTuples
does not retrieve the random document sample in Step 1. The
modified version ofDocumentSamplecontinues to extract tu-
ples to use as queries until a fractionMaxFractionRetrieved
of the database has been retrieved. We include this technique
in the experimental evaluation to study the benefits ofQX-
tract’s query generation stage, which is missing inTuples.
Baseline: This simple baseline technique returns a randomly
chosen fractionMaxFractionRetrievedof the database doc-
uments, and processes them using a previously trained ex-
traction system. The document sample, if any, that was used
to train the extraction system, is not counted towards the re-
trieved document quota forBaseline.
Manual: This technique is based on hand-crafted filters.
We implement this strategy only for extraction of theDis-
easeOutbreaksrelation, using manually constructed queries
based on the filters provided to us by the developers of the
Proteussystem. These are the current filters that are applied
to documents before runningProteuson them12. The filters
were converted to the closest phrase and Boolean queries.
In Figure 13 we show a sample of the automatically learned
queries generated byQXtract that were somewhat close to
theManualqueries. We do not apply this technique for the
Headquartersrelation, for which we did not have an exter-
nally provided set of manually constructed queries or filters.
Patterns: This technique exploits the terms in theextrac-
tion patternsgenerated by the information extraction sys-
tem over the training documents, if available. For instance,
one of the example patterns for extracting theHeadquar-
ters relation in Figure 1 is “<ORGANIZATION>, based
in <LOCATION>”. We can construct a query“based in”
from this pattern, since this phrase will have to appear in
any document that matches the extraction pattern. (Note that
we cannot use the named-entity tagsLOCATIONand OR-
GANIZATIONin the queries since such tags are typically not
accepted as query features by standard search engines.) For
Snowball, the extraction patterns are not phrases, but rather
unordered vectors of terms. In this case, each pattern is con-
verted to a conjunctive query with all the terms in the pat-
tern. An advantage of thePatternsstrategy is its simplicity:
queries are readily derived from the extraction patterns, with-
out further training. A disadvantage of this approach is that
the associated queries might be too broad, as in the example
above, or too specific, and retrieve too few useful documents.
Also, extraction patterns vary considerably by information
extraction system (Section 2.2), which makes this approach

12Note that these filters were originally conceived to be applied toev-
ery available news document before runningProteus. The filters were de-
signed primarily to maximize therecall of the extraction system, with less
importance given to precision of the resulting document set (i.e., processing
potentially useless documents was acceptable).
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Relation and Extraction System % |Useful| |Rall| |Dall|
Headquarters: Snowball 23 24,536
Headquarters: DIPRE 22 20,952 135,438
DiseaseOutbreaks: Proteus 4 8,859

Figure 6. Thetest database statistics.

Parameter Value Description
MaxSampleSize 2,000 or 5,000 if MaxFractionRetrieved≤ 5%

then 2,000; otherwise 5,000
MaxSeedResults 50 Max. documents retrieved per

individual seed tuple
NumSeeds 1,000 Max. new seed tuples picked
Query strategy QCombined Query generation strategy
MaxSearchResults 1,000 Max. documents retrieved per

individual query

Figure 7. Final configuration ofQXtractas used for evalua-
tion on thetestdatabase.

not generally applicable. For example, sophisticated infor-
mation extraction systems incorporate syntactic information
into the extraction patterns (e.g., parsing information), which
typically cannot be used for querying. We implemented the
Patternsstrategy only forDIPRE and Snowball: the Pro-
teuspatterns exploit specific syntactic relationships between
terms, so they are not easily converted to regular search en-
gine queries.

4 Experimental Results

In this section, we evaluate our techniques on thetest
database (Section 3.4). The statistics for the occurrence of
tuples in the target relations in these databases are summa-
rized in Figure 6. These statistics were generated by running
each extraction system over the complete database in order
to generateRall. This exhaustive extraction process lasted
for many days for one of the extraction systems. As we can
see, the tuples in theHeadquartersrelation as extracted by
Snowballfrom thetest database are relatively frequent: tu-
ples for this relation occur in approximately 23% of all of
the documents in the database. In contrast, theDiseaseOut-
breakstuples occur in less than 4% of the documents. As
we will see,QXtract exhibits the greatest gains in extrac-
tion efficiency for this kind of sparse relation, where it is
challenging to identify the few documents with useful infor-
mation. However,QXtractsignificantly improves the extrac-
tion performance on both types of relation, demonstrating the
robustness of our techniques. The experiments in this sec-
tion were run using theQXtract configuration summarized
in Figure 7. This configuration was determined by tuning
the system over thetraining database (Section 3.4), and we
do not report further details due to space limitations. Note
that the document sampling and query learning are automat-
ically performed from scratch on thetest database as part of
theQXtractmethod, while the purpose of the system tuning
over thetraining database was solely to set the best values
for the parameters in Figure 7.
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Figure 8. Recall (a) and precision (b) ofQXtract, Patterns,
Tuples, andBaselineover thetestdatabase usingSnowballas
the information extraction system (Headquartersrelation).

Extraction of the Headquartersrelation: Figure 8 shows
the performance of the alternative document retrieval meth-
ods on thetest database withSnowballas the target infor-
mation extraction system. Overall, theQXtract andTuples
strategies have the best recall. For example, Figure 8(a)
shows that whenQXtract returns 10% of the database doc-
uments,Snowballmanages to extract about 21% of the tu-
ples inRall from this reduced document set. Furthermore,
Figure 8(b) shows that 35% of the retrieved documents are
actually useful, meaning thatSnowballmanaged to extract
Headquarterstuples from them. By comparison,Tuplesex-
hibits higher precision of 46%, while the recall remains sim-
ilar to that ofQXtract: many of the tuples used for querying
for new documents byTuplestend to occur inmultipledoc-
uments, causingSnowballto extract these tuples repeatedly
from the retrieved documents. As a result, 2,276 out of the
5,339 tuples extracted from the documents retrieved byTu-
pleswere extracted repeatedly from multiple documents. In
contrast, only 1,292 of the 5,213 tuples extracted from the
documents retrieved byQXtract came from multiple docu-
ments. The reason for the high recall of theTuplesstrategy
is that many of the documents contain multipleHeadquarters
tuples, allowing the tuple-based querying to retrieve many of
the useful documents in the database. However, such tuple
distribution cannot be generally expected and, as we will see,
QXtract is the most robust method overall. Interestingly, the
Patternsstrategy13 is only able to retrieve 11% of the doc-
uments in thetest database, which results in the maximum
recall of 21%.Snowballgenerates about 50 patterns for ex-
tracting theHeadquartersrelation, and approximately half
of these resulted in valid queries. Furthermore, no query was
allowed to retrieve more than 1,000 documents (simulating
a common policy of web search engines), which prevented
some of the potentially productiveSnowball Patternsqueries

13Many automatically generatedSnowballpatterns rely on stopwords and
punctuation to extractHeadquarterstuples, and the words that comprise the
patterns are not ordered, or contiguous. As a result,Snowballpatterns are
not expressible as phrase queries. Since our search engine,Glimpse, does
not support proximity queries, we omit the stopwords and punctuation when
querying forSnowballpatterns.
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Patterns QXtract
office releases

High unit company AND unit AND week
recall headquarters companies AND

largest AND including
High brokerage AND companies AND based AND

precision chatting AND office assets AND rose
Low including AND issues

precision supermarkets

Figure 9. SomeSnowball Patternsand QXtract queries
(Headquartersrelation; MaxFractionRetrieved= 10% of
|Dall|).

to retrieve all matched documents. Figure 9 reports some
PatternsandQXtractqueries.QXtractqueries appear to be
more topical, resulting in higher recall ofSnowballover the
retrieved documents. For this extraction task, theBaseline
strategy performs relatively well, becauseHeadquartersis a
“dense” relation with 23% of the documents in the database
being useful, as discussed.

To evaluate the generality and robustness of our approach,
we run the sameQXtractconfiguration reported in Figure 7,
but now usingDIPREas the underlying information extrac-
tion system. Figure 10 summarizes the recall and precision
results, which are consistent with the results forSnowball.
Figure 11 reports somePatternandQXtract queries. Note
that thePatternsqueries forDIPREwere treated as conjunc-
tions of one or morephrases, requiring exact string equality
(including punctuation) for a successful match. As we see
in Figure 11,DIPRE’s Patternsqueries are highly specific.
This preventsPatterns from retrieving more than 10% of
the database, resulting in relatively low recall (Figure 10(a)),
while maintaining relatively high precision (Figure 10(b)).

To summarize the results for the denseHeadquartersre-
lation,QXtractandTuplesperformed best overall: the docu-
ment sets that they retrieve result in significantly better pre-
cision and recall than random document samples. This holds
for both theSnowballandDIPREinformation extraction sys-
tems. However, the recall values of all techniques seem low
when they retrieve modest fractions of the test database: as
discussed, this low recall is due to the fact that a large fraction
of the documents in the test database are useful for extracting
theHeadquartersrelation.

Extraction of the DiseaseOutbreaksrelation: To further
test the generality of our approach, we evaluated the per-
formance ofQXtract and the other techniques on theDis-
easeOutbreaksrelation (Section 3.3). The results on thetest
database are shown in Figure 12.DiseaseOutbreaksis a
“sparse” relation, with tuples occurring in a much smaller
fraction of the test database than is the case forHeadquar-
ters: less than 4% of the test database documents are useful
for extracting this relation (Figure 6). The performance of
QXtract for this scenario is remarkable: for example, when
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Figure 10. Recall (a) and precision (b) ofQXtract, Patterns,
Tuples, andBaselineover thetest database usingDIPREas
the information extraction system (Headquartersrelation).

Patterns QXtract
“, based in ” releases

High “is based in ” company AND based AND
recall stock AND agreed

“, of ” company AND based AND
acquisition AND buy

High “, a biotechnology company AND based AND
precision company based in” largest AND share AND

buy AND big
Low “, the” reports

precision

Figure 11. SomeDIPRE Patternsand QXtract queries
(Headquartersrelation; MaxFractionRetrieved= 10% of
|Dall|).

QXtract retrieves only 5% of the database documents (i.e.,
MaxFractionRetrieved= 5%), Proteusmanages to extract
48% of the tuples inRall (Figure 12(a)). Figure 12(b) shows
that 29% of the documents retrieved byQXtractare actually
useful, meaning thatProteusmanaged to extractDisease-
Outbreakstuples from them. In contrast, theBaselinestrat-
egy exhibits the expected recall and precision for a random
sample of 5% of the database documents. Unlike the results
for the Headquartersrelation, theTuplesstrategy performs
worse thanQXtract for DiseaseOutbreaks. Using the same
seed tuples as theQXtractstrategy,Tuplesis able to retrieve
less than 5% of the documents in thetestdatabase, resulting
in 31% recall.

QXtract also performs better than theManual strat-
egy, and requires no human involvement to generate these
queries. For example, whenManual retrieves 10% of the
database documents,Proteusmanages to extract 50% of the
tuples inRall (Figure 12(a)). In comparison,Proteusman-
ages to extract 60% of theRall tuples from the document set
of the same size retrieved byQXtract. Figure 13 reports some
Manual andQXtract queries. For this extraction task,QX-
tract approximates closely some of theManualqueries, but
includes more specific words discovered during theDocu-
mentSample procedure(e.g., “ebola”). This results in higher
recall than manually constructed queries, which were devel-
oped without the benefit of analyzing thetestdatabase.
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Figure 12. Recall (a) and precision (b) ofQXtract, Tu-
ples, Manual, Manual+QXtract, andBaselineover thetest
database usingProteusas the target information extraction
system (DiseaseOutbreaksrelation).

The tradeoff between the completeness of the extracted
relation and the number of documents retrieved is apparent
in Figure 12(a): retrieving a larger set of documents allows
Proteusto extract a closer approximation ofRall. For ex-
ample, to extract an additional 12% of theRall tuples af-
ter extracting 48% ofRall from 5% of the database requires
that QXtract retrieve an additional 5% of the database doc-
uments. This tradeoff between relation completeness and
extraction efficiency can be managed by the user to incre-
mentally extract the target relation by increasing the value
of the MaxFractionRetrievedparameter (thereby retrieving
additional documents) until the extracted relation is “suffi-
ciently complete.”

We also explored combining the existingManualqueries
with QXtractqueries, resulting in a hybrid strategy to which
we refer asManual+QXtract. We submit these queries one at
a time, alternating betweenQXtractandManualqueries until
the desired fraction of the database is retrieved. Figure 12(a)
shows that addingManualqueries toQXtractresults in only
a slight improvement in the quality of the retrieved docu-
ments.

In summary, the results for the sparseDiseaseOutbreaks
relation show thatQXtract accurately identifies the useful
documents in thetest database, allowingProteusto extract
the closest approximation ofRall for all fractions of the
database retrieved. Depending on theMaxFractionRetrieved
parameter,QXtract allows Proteusto extract between 48%
and 74% of the tuples inRall, while retrieving only between
5% and 25% of the documents in the test database. Over-
all, QXtractemerges as the most robust technique, perform-
ing well on both the denseHeadquartersrelation and on the
sparseDiseaseOutbreaksrelation.

Actual Running Times: To further illustrate the perfor-
mance advantage of usingQXtract, we computed the actual
running times for extracting tables with and withoutQX-
tract. The experiments were run on 1 GHz Pentium III ma-
chines running Linux RedHat 7.1. The speedup achieved by
QXtract is remarkable: Running theProteussystem to ex-

Manual QXtract
virus disease AND died

High recall infected virus
infection infected

High precision “outbreak had spread” virus AND ebola AND recent
Low precision “new case of” health

Figure 13. SomeManual andQXtractqueries (DiseaseOut-
breaksrelation,MaxFractionRetrieved= 10% of|Dall|).

tract theDiseaseOutbreaksrelation from the completetest
database required over 15 days to finish. In contrast, our
QXtract-based approach required 0.83 and 1.45 days to ex-
tract, respectively, 48% and 60% of theRall tuples from the
5% and 10% retrieved fractions of thetest database. Us-
ing QXtract for extracting theHeadquartersrelation using
SnowballandDIPREalso resulted in efficiency gains. Over-
all, QXtractemerges as a highlyeffectiveandefficienttech-
nique for extracting relations from large text databases.

5 Conclusions

In this paper, we developed an automatic technique for
generating queries to retrieve documents that are promising
for the extraction of a target relation. We demonstrated that
our method is general and efficient through a comprehensive
experimental evaluation over more than 270,000 real docu-
ments. Our techniques allow for significant improvement in
extraction efficiency in the number of documents processed:
for the Headquartersrelation, QXtract retrieves document
sets allowingSnowballandDIPREto approximate the target
relation significantly better thanBaseline. For theDisease-
Outbreaksrelation, the improvement is dramatic:QXtract
allowsProteusto extract 48% of the tuples in the target rela-
tion when retrieving only 5% of the documents in the test
database. HenceQXtract will help deploy existing infor-
mation extraction systems at a larger scale and for a wider
range of applications than previously possible. In addition to
improving efficiency of extraction, our automatic querying
techniques can be used to extract a target relation from an
arbitrary “hidden-web” database accessible only via a search
interface [2]. As another example, our techniques could be
used to exploit information behind a standard web search
engine, hence providing a building block for scalable and
portable information extraction over the web at large. We
plan to evaluateQXtract in these scenarios as part of our fu-
ture work.
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