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Abstract

Consider linear regression where the exam-
ples are generated by an unknown distribu-
tion on Rd ⇥ R. Without any assumptions
on the noise, the linear least squares solu-
tion for any i.i.d. sample will typically be bi-
ased w.r.t. the least squares optimum over
the entire distribution. However, we show
that if an i.i.d. sample of any size k is aug-
mented by a certain small additional sam-
ple, then the solution of the combined sam-
ple becomes unbiased. We show this when
the additional sample consists of d points
drawn jointly according to the input distri-
bution that is rescaled by the squared volume
spanned by the points. Furthermore, we pro-
pose algorithms to sample from this volume-
rescaled distribution when the data distribu-
tion is only known through an i.i.d sample.

1 INTRODUCTION

Unbiased estimators for linear regression are useful be-
cause averaging such estimators gives an unbiased esti-
mator whose prediction variance vanishes as the num-
ber of averaged estimators increases. Such estimators
might for example be produced in a distributed fashion
from multiple small samples. In this paper we develop
a unique method for correcting the bias of linear least
squares estimators. Our main methodology for pro-
ducing an unbiased estimator is volume sampling. For
a fixed design matrix X 2 Rn⇥d, the most basic vari-
ant of volume sampling chooses a subset S ✓ {1..n}
of dimension many rows (i.e. |S| = d) with proba-
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bility proportional to the squared volume spanned by
the rows, i.e. det(XS)2, where XS is the sub-matrix
of rows indexed by S. This procedure generalizes to
sampling sets of any fixed size k � d [2]:

P (S)
def
=

det(X>
SXS)�n�d

k�d

�
det(X>X)

. (1)

Volume sampling has the property that for any de-
sign matrix X with n rows and any real response vec-
tor y 2 Rn, the linear least squares solution for the
subproblem (XS ,yS) is an unbiased estimator for the
solution of the full problem (X,y) [8].

We propose the following previously unobserved alter-
nate sampling method for size k > d volume sampling:
First volume sample a set S� of size d and then pad
the sample with a uniform subset R of k� d rows out-
side of S�. Now the probability of the combined size
k sample S = S� [R is again volume sampling (1):

P (S)=
X

S�✓S
|S�|=d

P
�
R=S\S� |S�

�
| {z }

1

(n�d
k�d)

P (S�)| {z }
det(XS�)

2

det(X>X)

=
det(X>

SXS)�n�d
k�d

�
det(X>X)

,

where the equality is the Cauchy-Binet formula for de-
terminants. Furthermore, we study a more general sta-
tistical learning model where the points come from an
unknown probability distribution over Rd⇥R, and the
goal is to recover the least squares solution w.r.t. the
distribution. In this paper we generalize volume sam-
pling to this case by rescaling the i.i.d. sampling distri-
bution by the squared volume of the sampled points.

The simplest way to obtain a linear least squares es-
timator in the statistical learning model is to find the
linear least squares solution for a size k i.i.d. sam-
ple. Unfortunately such estimators are generally bi-
ased. Note that this is not the kind of bias that we
deliberately impose with regularization to reduce the
variance of the estimator. Rather, due to the random
design, the least squares estimator is typically biased
even when it is not regularized at all [16], and we have
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limited control over how large that bias may be (see
Section 1.2 for a motivating example). However our al-
ternate sampling procedure for volume sampling (dis-
cussed in the previous paragraph) implies the follow-
ing strategy for correcting the bias: We show that if
an i.i.d. sample of any size k is augmented with a size d
volume-rescaled sample for this distribution, then the
combined sample is a volume-rescaled sample of size
k + d, and its linear least squares solution is an unbi-
ased estimator of the optimum. In one dimension, this
means that if an i.i.d. sample is augmented with just
one example, where this additional example is drawn
from a distribution whose marginal distribution on x is
proportional to the original (unknown) marginal den-
sity times x2, then the resulting least squares estimator
becomes unbiased. Curiously enough, for the purpose
of correcting the bias it does not matter whether the
size d volume-rescaled sample was generated before or
after the original size k i.i.d. sample was drawn, since
they are independent of each other.

In addition to generalizing volume sampling to the con-
tinuous domain and showing that only a subsample of
size d needs to be rescaled by the squared volume,
we study the time and sample complexity of volume-
rescaled sampling when the data distribution is only
known through an i.i.d. sample. Specifically:

1. We extend determinantal rejection sampling [9]
to arbitrary data distributions with bounded sup-
port, and our improved analysis reduces its time
and sample complexity by a factor of d.

2. When the data distribution is Gaussian with un-
known covariance, we propose a new algorithm
with O(d) sample complexity.

Related work. Discrete volume sampling of size
k  d was introduced to computer science literature
by [11], with later algorithms by [10, 14]. The ex-
tension to sets of size k > d is due to [2], with al-
gorithms by [21, 8, 9], and additional applications in
experimental design explored by [1, 24, 22]. Our al-
ternate volume sampling procedure implies that the
algorithms by [10, 14] can be used to volume sample
larger sets at no additional cost. The unbiasedness of
least squares estimators under volume sampling was
explored by [8, 9], drawing on observations of [4].

For arbitrary data distributions, volume-rescaled sam-
pling of size d is a special case of a determinantal point
process (DPP) (see, e.g. [3, 15]). However for k > d
and arbitrary distributions, we are not aware of such
sampling appearing in the literature. Related variants
of discrete DPPs have been extensively explored in the
machine learning community [19, 18, 20, 12, 5, 6].

Notations and assumptions. Throughout the pa-
per, (x, y) 2 Rd ⇥R is a random example drawn from
some distribution D. We assume that the point x and
the response y both have finite second moments, i.e.
E[kxk2]<1 and E[y2]<1. The marginal probability
measure of x is denoted as DX , while Dk

X is the proba-
bility measure over (Rd)k of k i.i.d. samples (x1, . . . ,xk)

drawn from DX . We define ⌃DX
def
= E[xx>] 2 Rd⇥d

and w.l.o.g. assume that it is invertible. Given a data
sample S={(x1, y1), . . . , (xk, yk)}, we denote the least
squares estimators for S and D, respectively, as

w
⇤(S) def

= argmin
w

X

(xi,yi)2S
(x>

i w � yi)
2 and

w
⇤
D

def
= argmin

w
ED

⇥
(x>

w � y)2
⇤
= ⌃

�1
DX

ED[x y].

1.1 Statistical Results

Our results are centered around the following size k
joint sampling distribution.

Definition 1 Given distribution DX and any k � d,
we define volume-rescaled size k sampling from DX as

the following probability measure: For any event A ✓
(Rd)k measurable w.r.t. Dk

X , its probability is

VSkDX (A)
def
=

EDk
X

h
1A

rescaling factorz }| {
det

⇣Xk

i=1
xix

>
i

⌘ i

d!
�k
d

�
det

�
⌃DX

� ,

where 1A is the indicator variable of event A.

This distribution integrates to 1 over its domain (Rd)k

as a consequence of a continuous version of the clas-
sic Cauchy-Binet formula, which has appeared in the
literature in various contexts (Lemma 7).

Although we define volume-rescaled sampling for any
sample size k � d, we focus primarily on the special
case of k = d in the main results below. This is because
we show that any VSkDX can be decomposed into VSdDX

and Dk�d
X , the latter being the distribution of a size

k�d i.i.d. sample from DX .

Theorem 1 Let S ⇠ Dk�d
X and S� ⇠ VSdDX . Let eS 2

Rk⇥d
denote a random permutation of the points from

S concatenated with S�, i.e. eS = �(hS, S�i), where � is

a random permutation. Then eS ⇠ VSkDX .

Given the above decomposition, one may wonder what
is the purpose of defining volume-rescaled sampling for
any size k > d. In fact, we will see in the following
sections that both in the proofs and in algorithms it
is sometimes easier to work with VSkDX rather than its
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decomposed version. For example in the theorem be-
low, we show that for any k, the least squares estima-
tor computed on a volume-rescaled sample is unbiased.
Despite the fact that continuous determinantal point
processes have been studied extensively in the past, we
were not able to find this result for arbitrary DX in the
literature.

Theorem 2 Consider the following distribution VSkD
on samples S = {(x1, y1), . . . , (xk, yk)} of size k:

Sample x1, . . . ,xk ⇠ VSkDX ,

Query yi ⇠ DY|x=xi
8i=1..k.

Then EVSk
D
[w⇤(S)] = w

⇤
D.

Combining Theorems 1 and 2, we conclude that
an i.i.d. sample only needs to be augmented by a
dimension-size volume-rescaled sample (i.e., k = d)
so that the least squares estimator becomes unbiased.

Corollary 3 Let S = {(x1, y1), . . . , (xk, yk)}
i.i.d.⇠ Dk

,

for any k � 0. Consider the following procedure:

Sample ex1, . . . , exd ⇠ VSdDX ,

Query eyi ⇠ DY|x=exi
8i=1..d.

Then for S� = {(ex1, ey1), . . . , (exd, eyd)},

E
⇥
w

⇤(hS, S�i)
⇤
= ES⇠Dk

⇥
ES�⇠VSd

D
[w⇤(hS, S�i) ]

⇤

(Theorem 1) = EeS⇠VSk+d
D

⇥
w

⇤� eS
� ⇤

(Theorem 2) = w
⇤
D.

To put the above result in context, we note that in the
fixed design case it was known that a single volume
sampled subset S of any size k � d produces an unbi-
ased least squares estimator (see, e.g., [8]). However
this required that all k points be sampled jointly from
this special distribution. Thus, Corollary 3 says that
volume sampling can be used to correct the bias in ex-
isting i.i.d. samples via sample augmentation (requir-
ing labels/responses for only d additional points from
VSdDX ). This is important in active learning scenarios,
where samples from DX (unlabeled data) are cheaper
than draws from DY|x (label queries). We also develop

methods for generating the small sample from VSdDX
only using additional unlabeled samples from DX (see
Section 1.3). Indeed, active learning was a motivation
for volume sampling in previous works [8, 9].

1.2 A Simple Gaussian Experiment

The bias in least squares estimators is present even
when input is a standard Gaussian. As an example,
we let d = 5 and set:

x
>= (x1, . . . , xd)

i.i.d.⇠ N (0, 1), y = ⇠(x)+✏,
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i.i.d. samples  k=10
i.i.d. + volume k=10
i.i.d. samples  k=20
i.i.d. + volume k=20
i.i.d. samples  k=40
i.i.d. + volume k=40

Figure 1: Averaging least squares estimators for Gaus-
sian inputs with dimension d = 5.

where the response y is a non-linear function ⇠(x) plus
independent white noise ✏. Note that it is crucial
that the response contains some non-linearity, and it is
something that one would expect in real datasets. For
the purposes of the experiment, we wish to make the
least squares solution easy to compute algebraically,
so we choose the following response model:

⇠(x) =
dX

i=1

xi +
x3
i

3
, ✏ ⇠ N (0, 1).

We stress that there is nothing special about the choice
of this response model other than the fact that it con-
tains a non-linearity and it is easy to solve algebraically
for w⇤

D. We now compare the bias of the least squares
estimator produced for this problem by i.i.d. sampling
of k points, with that of an estimator computed from
k�d i.i.d. samples augmented by d volume samples (so
that the total number of samples is the same in both
cases). We used a special formula (Theorem 6 below)
to produce the volume-rescaled samples when DX is
Gaussian. Our strategy is to produce many such esti-
mators bw1, . . . , bwT independently (e.g. by computing
them in parallel on separate machines), and look at es-
timation error of the average of those estimators, i.e.

estimation error:

����
⇣ 1

T

TX

t=1

bwt

⌘
�w

⇤
D

����
2

.

Figure 1 shows the above experiment for several values
of k and a range of values of T (each presented data
point is an average over 50 runs). Since the corrected
estimator “i.i.d. + volume” is unbiased, the estimation
error of the average estimator exhibits 1

T convergence
to zero (regardless of k). This type of convergence ap-
pears as a straight line on the log-log plot. In contrast,
the i.i.d. sampled estimator is biased for any sample
size (although the bias decreases with k), and there-
fore the averaged estimator does not converge to the
optimum.

1.3 Sampling Algorithms

To our knowledge, existing literature on algorithms
for DPPs and volume sampling (other than the excep-
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tions discussed below) generally assumes full or consid-
erable knowledge of the distribution DX , which often
may not be the case in practice, for example when the
data is coming in a stream, or is drawn from a larger
population. In this work, we are primarily interested
in the setting where access to distribution DX is lim-
ited to some approximate statistics plus the ability to
draw i.i.d. samples from it. Two key concerns in this
model are the time and sample complexities of volume-
rescaled sampling for a given distribution DX .

We first consider distributions DX with bounded sup-
port. We use a standard notion of conditioning number

for multivariate distributions (see, e.g., [7]):

KDX
def
= sup

ex2supp(DX )
ex>

⌃
�1
DX

ex.

When KDX is known to be bounded and we are given
the exact knowledge of the covariance matrix ⌃DX ,
then it is possible to produce a volume-rescaled sample
VSdDX using a classical algorithm from the DPP litera-
ture described in [15] by employing rejection sampling
(see also [3]). This approach requires O(KDX log(d))
draws from DX and runs in time O(KDX d

2 log(d)).
However, sampled sets produced by that algorithm di-
verge from the desired distribution unless the given
covariance matrix matches the true one exactly. This
may be unrealistic when we do not have full access
to the distribution DX . Is it possible to sample from
VSdDX without the exact knowledge of ⌃DX ?

We answer the question a�rmatively. We show that
a recently proposed algorithm from [9] for fixed de-
sign volume sampling can be adapted to arbitrary DX
in such a way that it only requires an approximation
of the covariance matrix ⌃DX , while still returning
samples exactly from VSdDX . The original algorithm,
called determinantal rejection sampling, samples from
a given finite design matrix (i.e., a discrete distribution
DX which is fully-known), but it was shown in [9] that
the procedure only requires an approximation of the
covariance matrix b⌃ = (1 ± ✏)⌃DX , where ✏ = O( 1d ).
We extend this algorithm to handle arbitrary distri-
butions DX , and also improve the analysis by reducing
the required approximation quality to ✏ = O( 1p

d
).

Theorem 4 Given any b⌃ 2 Rd⇥d
s.t.

(1� ✏)⌃DX � b⌃ � (1 + ✏)⌃DX ,

where ✏ =
1p
2d

and K� KDX

1� ✏
,

there is an algorithm which returns ex1, . . . , exd ⇠ VSdDX ,

and with probability at least 1� � its sample and time

complexity is O(Kd(ln( 1� ))
2) and O(Kd3(ln( 1� ))

2), re-
spectively.

Remark 5 Our ✏ = 1p
2d

condition improves the result

from [9] (where ✏ = 1
16d was used). When DX is given

as a finite set of n vectors in Rd
, the main cost of vol-

ume sampling is an eO(nd+d3/✏2) preprocessing step of

computing b⌃, where eO(·) hides polylog(n, d, 1/✏, 1/�).
Setting ✏= 1p

2d
in Appendix F of [9], we reduce that

cost from eO(nd+ d5) to eO(nd+ d4).

In Section 4, we discuss how b⌃ can be obtained just
by sampling from the distribution DX , which requires
m = O(KDX d ln(d)) samples with high probability and
time O(md2) = O(KDX d

3 ln(d)), nearly the same (up
to log terms) as for the algorithm of Theorem 4 (here,
the improved ✏ also plays a key role). An upper bound
on the conditioning number KDX is again needed.

The conditioning numberKDX can be much larger than
the dimension d of the distribution DX , so obtaining
an appropriate estimate of ⌃DX required for Theorem 4
may still be prohibitively expensive. Thus, it is nat-
ural to ask if there are some structural assumptions
on distribution DX which can allow us to sample from
VSdDX without any estimate of the covariance matrix.
In the following result, we exploit a connection be-
tween volume-rescaled sampling and the Wishart dis-
tribution to show that when x is a centered multivari-
ate normal, then without any knowledge of ⌃DX , we
can produce a volume-rescaled sample from only 2d+2
samples of DX and in O(d3) running time.

Theorem 6 Suppose that the point distribution DX is

a Gaussian N (0,⌃DX ) and let x1, . . . ,x2d+2⇠D2d+2
X .

Then ex1, . . . , exd ⇠ VSdDX , where

exi
def
=

✓ 2d+2X

j=d+1

xjx
>
j

◆ 1
2
✓ dX

j=1

xjx
>
j

◆� 1
2

xi.

Note. For a positive definite matrix A, we define A
1
2

as the unique lower triangular matrix with positive
diagonal entries s.t. A

1
2 (A

1
2 )> = A.

Finding other distribution families which allow for
volume-rescaled sampling with bounded sample com-
plexity is an interesting future research direction.

2 SAMPLE AUGMENTATION

Let a>
i denote the ith row of a matrix A. First, we ex-

tend a classic lemma by [26], which was originally used
to show the expected value of a metric in multivariate
statistics known as “generalized variance”.

Lemma 7 (based on [26]) If the (transposed) rows

of the random matrices A,B 2 Rk⇥d
are sampled as

pairs of vectors (a1,b1), . . . , (ak,bk) i.i.d. from a dis-

tribution over random vectors (a,b)2Rd⇥2
such that



Micha l Dereziński, Manfred K. Warmuth, Daniel Hsu

E[ab>] exists, then

E
⇥
det(A>

B)
⇤
= d!

✓
k

d

◆
det

�
E[ab>]

�
.

The above result is slightly di↵erent than what was
presented in [26] (the original one had A = B, and
the sample mean was subtracted from the vectors be-
fore constructing the matrix A

>
A), but the analysis

is similar (see proof in Appendix A). Note that for
a = b = x, Lemma 7 shows that VSkDX integrates to 1,
making it a well-defined probability distribution:

EDk
X


det

⇣ kX

i=1

xix
>
i

⌘�
= d!

✓
k

d

◆
det(⌃DX ).

The asymmetry of Lemma 7 is crucial for showing the
unbiasedness property of volume-rescaled sampling.

Proof of Theorem 2 For k = d, the least squares
estimator is simply the unique solution to a system of
linear equations1, so Cramer’s rule states that the ith
component of that solution is given by:

�
w

⇤(S)
�
i
=

det(X
i y)

det(X)
,

where X
i y is matrix X with column i replaced by

y. We first prove unbiasedness of w⇤(S) for samples
of size d:

EVSd
D

⇥�
w

⇤(S)
�
i

⇤
=

EDd [det(X)2
�
w

⇤(S)
�
i
]

d! det(⌃DX )

=
EDd

⇥
det(X) det(X

i y)
⇤

d! det(⌃DX )

(Lemma 7) =
det

�
ED[x (x

i y)>]
�

det(⌃DX )

=
det

�
⌃DX

i ED[x y]
�

det(⌃DX )
=
�
w

⇤
D

�
i
,

where we applied Lemma 7 to the pair of d⇥dmatrices

A = X and B = X
i y. The case of k > d follows by

induction based on a formula shown in [8]:

EVSk
D

⇥
w

⇤(S)
⇤
=

EDk

⇥
det(X>

X)w⇤(S)
⇤

d!
�k
d

�
det(⌃DX )

(1)
=

EDk

h
1

k�d

Pk
i=1 det(X

>
�iX�i)w⇤�S\{(xi, yi)}

�i

d!
�k
d

�
det(⌃DX )

=
1

k � d

Pk
i=1 EDk

⇥
det(X>

�iX�i)w⇤�S\{(xi, yi)}
�⇤

d!
�k
d

�
det(⌃DX )

(2)
=

k

k � d

d!
�k�1

d

�

d!
�k
d

� EVSk�1
D

⇥
w

⇤(S)
⇤
= EVSk�1

D

⇥
w

⇤(S)
⇤
,

1
Unless det(X) = 0, in which case we let w

⇤
(S) = X

+
y.

where X�i denotes matrix X without the ith row,
(1) follows from the formula shown in [8] (given in
Lemma 15 of Appendix A), while (2) follows because
the samples x1, . . . ,xk ⇠ Dk

X are exchangeable,
i.e. x1, . . . ,⇢⇢xi, . . . ,xk is distributed identically to
x1, . . . ,xk�1.

Finally, our key observation given in Theorem 1 is that
size k volume-rescaled sampling can be decomposed
into size d volume-rescaled sampling plus i.i.d. sam-
pling of k � d points. Note that a version of this al-
ready occurs for discrete volume sampling (see Sec-
tion 1). However it was not previously known even in
that case.

Proof of Theorem 1 Let DVSkDX denote the distri-
bution of a matrix X 2 Rk⇥d whose transposed rows
are {x1, . . . ,xk} = �(hS, S�i). The probability of a
measurable event A w.r.t. DVSkDX is:

EDVSk
DX

⇥
1A

⇤
=

1
�k
d

�
X

T✓[k]: |T |=d

EDk
X
[1A det(X>

TXT )]

d! det(⌃DX )

=
1

d!
�k
d

�
det(⌃DX )

EDk
X


1A

X

T✓[k]: |T |=d

det(X>
TXT )

�

(⇤)
=

1

d!
�k
d

�
det(⌃DX )

EDk
X

⇥
1A det(X>

X)
⇤

= EVSk
DX
[1A],

where [k] = {1..k}, matrix XT consists of the rows
of X indexed by set T , and (⇤) follows from the
Cauchy-Binet formula.

3 VOLUME-RESCALED GAUSSIAN

In this section, we obtain a simple formula for produc-
ing volume-rescaled samples when DX is a centered
multivariate Gaussian with any (non-singular) covari-
ance matrix. We achieve this by making a connection
to the Wishart distribution. Thus, for this section, as-
sume that x ⇠ N (0,⌃DX ), and let x1, . . . ,xk ⇠ Dk

X
be the transposed rows of matrix X. Then matrix
⌃ = X

>
X 2 Rd⇥d is distributed according to Wishart

distribution Wd(k,⌃DX ) with k degrees of freedom.
The density function of this random matrix is propor-
tional to det(⌃)(k�d�1)/2 exp(� 1

2 tr(⌃
�1
DX

⌃)). On the

other hand, if e⌃ = eX> eX is constructed from vectors
ex1, . . . , exk ⇠ VSkDX , then its density function is mul-

tiplied by an additional det(e⌃), thus increasing the
value of k in the exponent of the determinant. This
observation leads to the following result:
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Theorem 8 If DX ⇠ N (0,⌃DX ) and ex1, . . . , exk ⇠
VSkDX are rows of a random matrix eX 2 Rk⇥d

, then

eX> eX ⇠Wd(k + 2,⌃DX ).

Proof Let ⌃ = X
>
X ⇠Wd(k,⌃DX ) and e⌃ ⇠Wd(k+

2,⌃DX ). For any measurable event A over the random

matrix eX> eX, we have

Pr
� eX> eX2A

�
=

E[1[X>X2A] det(X
>
X)]

E[det(X>X)]

=
E[1[⌃2A] det(⌃)]

E[det(⌃)]

(⇤)
= Pr

�e⌃2A
�
,

where (⇤) follows because the density function of

Wishart distribution e⌃ ⇠ Wd(k + 2,⌃DX ) is propor-

tional to det(e⌃) det(e⌃)(k�d�1)/2 exp(� 1
2 tr(⌃

�1
DX

e⌃)).

This gives us an easy way to produce the total co-
variance matrix eX> eX of volume-rescaled samples in
the Gaussian case. We next show that the individual
vectors can also be recovered easily.

Proof of Theorem 6 The proof relies on the follow-
ing two lemmas.

Lemma 9 For any ⌃ 2 Rd⇥d
, the conditional distri-

bution of eX ⇠ VSkDX given eX> eX = ⌃ is the same as

the conditional distribution of X ⇠ Dk
X given X

>
X =

⌃.

While this lemma (proven in Appendix B) relies pri-
marily on the definition of conditional probability, the
second one uses properties of the matrix variate Beta
and Dirichlet distributions.

Lemma 10 For ⌃ 2 Rd⇥d
and vectors x1, . . . ,xk ⇠

N (0,⌃DX ) forming the transposed rows of a matrix X,

let

exi = ⌃
1
2 (X>

X)�
1
2xi.

Then ex1, . . . , exk are jointly distributed as k Gaussians

N (0,⌃DX ) conditioned on eX> eX = ⌃.

Putting Theorem 8 together with the two lemmas,
we observe that for any k � d, constructing ⌃ ⇠
Wd(k + 2,⌃DX ), and plugging it into Lemma 10, we
obtain that ex1, . . . exk ⇠ VSkDX , completing the proof of
Theorem 6.

We conclude this section with the proof of Lemma 10,
which demonstrates an interesting application for clas-
sical results in matrix variate statistics.

Proof of Lemma 10 Let ⌃1 ⇠ Wd(k1,⌃DX ) and
⌃2 ⇠ Wd(k2,⌃DX ) be independent Wishart matrices

(where k1 + k2 � d). Then matrix

U = (⌃1+⌃2)
� 1

2 ⌃1

�
(⌃1+⌃2)

� 1
2
�>

is matrix variate beta distributed, written as U ⇠
Bd(k1, k2). The following was shown by [23]:

Lemma 11 ([23], Lemma 3.5) If ⌃ ⇠ Wd(k,⌃DX )
is distributed independently of U ⇠ Bd(k1, k2), and if

k = k1 + k2, then

B = ⌃
1
2U

�
⌃

1
2
�>

and C = ⌃
1
2 (I�U)

�
⌃

1
2
�>

are independently distributed and B ⇠ Wd(k1,⌃DX ),
C ⇠Wd(k2,⌃DX ).

Now, suppose that we are given a matrix ⌃ ⇠
Wd(k,⌃DX ). We can decompose it into components
of degree one via a splitting procedure described in
[23], namely taking U1 ⇠ Bd(1, k�1) and computing
B1 ⇠ ⌃

1
2U1

�
⌃

1
2

�>
, C1 = ⌃�⌃1 as in Lemma 11,

then recursively repeating the procedure on C1 (in-
stead of ⌃) with U2 ⇠ Bd(1, k�2), . . . , until we get k
Wishart matrices of degree one summing to ⌃:

B1 = ⌃
1
2U1

�
⌃

1
2
�>

B2 = ⌃
1
2 (1�U1)

1
2

| {z }
C1/2

1

U2

�
(I�U1)

1
2
�>�

⌃
1
2
�>

| {z }
(C1/2

1 )>
...

Bk = ⌃
1
2 (1�Uk�1)

1
2 . . .| {z }

C1/2
k�1

Uk . . .
�
(1�Uk�1)

1
2
�>�

⌃
1
2
�>

| {z }
(C1/2

k�1)
>

.

The above collection of matrices can be described
more simply via the matrix variate Dirichlet distribu-
tion. Given independent matrices ⌃i ⇠ Wd(ki,⌃DX )
for i = 1..s, the matrix variate Dirichlet distribution
Dd(k1, . . . , ks) corresponds to a sequence of matrices

Vi = ⌃
� 1

2 ⌃i

�
⌃

� 1
2
�>

, i = 1..s, ⌃ =
sX

i=1

⌃i.

Now, Theorem 6.3.14 from [13] states that matrices Bi

defined recursively as above can also be written as

Bi = ⌃
1
2Vi

�
⌃

1
2
�>

, (V1, . . . ,Vk) ⇠ Dd(1, . . . , 1).

In particular, we can construct them as

Bi = exiex>
i = ⌃

1
2 (X>

X)�
1
2xix

>
i

�
(X>

X)�
1
2
�>�

⌃
1
2
�>
.

Note that since matrix ⌃ is independent of vectors
xi, we can condition on it without altering the
distribution of the vectors. It remains to observe that
the conditional distribution of matrix Bi determines
the distribution of exi up to multiplying by ±1, and
since both exi and �exi are identically distributed,
we recover the correct distribution of ex1, . . . , exk

conditioned on eX> eX = ⌃, completing the proof.
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4 GENERAL ALGORITHM

In this section, we present a general algorithm for
volume-rescaled sampling, which uses approximate
leverage score sampling to generate a larger pool of
points from which the smaller volume-rescaled sam-
ple can be drawn. The method relies on a technique
called “determinantal rejection sampling”, introduced
recently in [9] for a variant of volume sampling of finite
subsets of points from a fixed set. Also, as in [9] our
algorithm uses the most standard volume sampling dis-
tribution (see (1) and the associated discussion in the
introduction) as a subroutine which samples a subset
of points/rows from a fixed set. This is done via an ef-
ficient implementation of “reverse iterative sampling”
[8] (See Algorithm 2 for a high-level description of this
sampling method). Curiously enough, the e�cient im-
plementation of reverse iterative sampling given by [8]
(denoted here as “VolSamp({x1, . . . ,xn}, k)” and not
repeated here for lack of space) is again based on re-
jection sampling: It samples a set of k points out of
n in time O(nd2) (independent of k). The runtime
bound for this implementation only holds with high
probability because of its use of rejection sampling.

For our algorithm we assume that an estimate b⌃ ⇡
⌃DX of the covariance matrix is available, along with
an upper-bound on the conditioning number.

Algorithm 1 Determinantal rejection sampling

. for arbitrary distributions DX

1: Input: b⌃,K, t
2: repeat

3: k ! 0
4: while k < t
5: Sample x ⇠ DX

6: a ⇠ Bernoulli
⇣
min

�
1, x> b⌃�1x

K

 ⌘

7: if a=true, then
8: k k+1
9: xk  x

10: exk  
p
dq

x>
k
b⌃�1xk

xk

11: end

12: end

13: e⌃ 1
t

Pt
j=1 exjex>

j

14: Sample Acc ⇠ Bernoulli
�
min{ 1, det(e⌃b⌃�1) }

�

15: until Acc = true

16: {exi1 , . . . , exid} VolSamp
�
{ex1, . . . , ext}, d

�

17: return xi1 , . . . ,xid

Algorithm 1 has one additional hyperparameter t,
which controls the number of inner-loop iterations.
Our analysis works for any t > d2, although for sim-
plicity we use t = 2d2 in the main result.

Algorithm 2 Reverse iterative sampling [8]

1: Input {x1, . . . ,xn} ⇢ Rd and k � d
2: S  {1..n}
3: while |S| > k

4: For each i 2 S: qi 
det(

P
j2S\i xjx

>
j )

(|S|�d) det(
P

j2S xjx>
j )

5: Sample i from distribution (qi)i2S

6: S  S\{i}
7: end

8: return {xi}i2S

Our analysis of Algorithm 1 uses the following two lem-
mas, both of which are extensions of results from [9].

Lemma 12 For b⌃ � 0, let lb⌃(x) = x
> b⌃�1

x. Define

the following probability measure over Rd
:

Levb⌃,X (A)
def
= EDX


1A

lb⌃(x)

tr(⌃DX
b⌃�1)

�
.

If x1, . . . ,xt
i.i.d.⇠ Levb⌃,X , and exi =

p
dp

l b⌃(xi)
xi, then

det(e⌃b⌃�1)  1, where e⌃ =
1

t

tX

i=1

exiex>
i ,

and E
⇥
det(e⌃b⌃�1)

⇤
�
⇣
1� d2

t

⌘ det(⌃DX
b⌃�1)

( 1d tr(⌃DX
b⌃�1))d

.

Lemma 13 Let x1, . . . ,xk ⇠ VSkDX be a volume-

rescaled sample, and suppose that {xi1 , . . . ,xid} is

a subset produced from it by standard volume sam-

pling, i.e. by calling VolSamp({x1, . . . ,xk}, d). Then

xi1 , . . . ,xid ⇠ VSdDX .

We now show that Algorithm 1 with t = 2d2 satisfies
the conditions of Theorem 4. Our key contribution
compared to the analysis of [9] is the use of the Kan-
torovich inequality, which allows us to significantly re-
lax the ✏-approximation condition on b⌃.

Proof of Theorem 4 From the assumptions, we have

K � KDX

1� ✏
� max

ex2supp(DX )
ex> b⌃�1ex,

so the sequence ex1, . . . , ext obtained by the algorithm
at the point of exiting the while loop is distributed as
in Lemma 12, and let DeX be the distribution of one

such vector. The lemma ensures that det
�e⌃b⌃�1

�
 1

is a valid Bernoulli success probability so after exiting
the repeat loop, ex1, . . . , ext is distributed so that the
probability of any event A is proportional to

EDt
eX


1A

det(e⌃)

det(b⌃)

�
/ EDt

eX


1A det

⇣ tX

i=1

exiex>
i

⌘�
/ VStDeX

,
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i.e., volume-rescaled sampling from DeX . Now Lemma

13 implies that exi1 , . . . , exid ⇠ VSdDeX
. In particular, it

means that the distribution of xi1 , . . . ,xid is the same
for any choice of t � d. We use this observation to
compute the probability of an event A w.r.t. sampling
of xi1 , . . . ,xid (up to constant factors) by setting t = d

(in the below, e⌃ is treated as a function of x1, . . . ,xd):

Pr(A) / EDk
X


1A det

�e⌃
�✓ dY

i=1

lb⌃(xi)

◆�

(⇤)
= EDk

X


1A

det(
P

i xix
>
i )

(dt )
d
Q

i lb⌃(xi)

✓ dY

i=1

lb⌃(xi)

◆�

/ EDk
X


1A det

✓ dX

i=1

xix
>
i

◆�

/ VSdDX (A),

where (⇤) uses the fact that for t = d, det(e⌃) is
the squared volume of the parallelopiped spanned by
x1, . . . ,xd and stretched with the appropriate scaling
factors. Thus, we established the correctness of Algo-
rithm 1 for any t � d, and we move on to complexity
analysis. If we think of each iteration of the repeat

loop as a single Bernoulli trial, the success probability
Pr(Acc = true) equals E[det(e⌃b⌃�1)] with the expec-
tation defined as in Lemma 12. Let �1, . . . ,�d be the
eigenvalues of matrix b⌃⌃

�1
DX

. The approximation guar-

antee for b⌃ implies that all of these eigenvalues lie in
the range [1�✏, 1+✏]. To lower-bound the success prob-
ability, we use the Kantorovich arithmetic-harmonic
mean inequality. Letting A(·), G(·) and H(·) denote
the arithmetic, geometric and harmonic means respec-
tively:

det(⌃DX
b⌃�1)

( 1d tr(⌃DX
b⌃�1))d

=

Qd
i=1

1
�i

( 1d
Pd

i=1
1
�i
)d

=

✓
H(�1, . . . ,�d)

G(�1, . . . ,�d)

◆d (1)
�

✓
H(�1, . . . ,�d)

A(�1, . . . ,�d)

◆d

(2)
�
�
(1�✏)(1+✏)

�d ✏=1/
p
2d

=
⇣
1� 1

2d

⌘d
� 1

2
,

where (1) is the geometric-arithmetic mean inequality
and (2) is the Kantorovich inequality ([17]) with a=
1�✏ and b=1+✏:

For 0<a�1,...,�db,
A(�1,...,�d)

H(�1,...,�d)

✓
A(a, b)

G(a, b)

◆2

.

Now setting t = 2d2 in Lemma 12, we obtain that

Pr(Acc=true) = E
⇥
det(e⌃b⌃�1)

⇤
�
⇣
1� d2

t

⌘ 1

2
=

1

4
.

So a simple tail bound on a geometric random variable
shows that the number of iterations of repeat loop is

r  ln( 1� )/ ln(
4
3 ) w.p. at least 1 � �. It remains to

bound the number of samples needed from DX . Note
that we can lower bound this success probability

Pr(a=true) = EDX


x

> b⌃�1
x

K

�
=

tr(⌃DX
b⌃�1)

K

�
tr(⌃DX ⌃

�1
DX

)

(1 + ✏)K
=

d

(1 + ✏)K
.

Similarly as before we conclude that the number of
samples needed for a single iteration of repeat loop
is O(2d2K

d ln( 1� )) = O(Kd ln( 1� )) w.p. at least 1 � �.
Note that the computational cost per sample is O(d2)
and the cost of VolSamp is O(d4), obtaining the de-
sired complexities.

Finally, we discuss the time and sample complexity of
obtaining b⌃ with desired accuracy under the model
where access to DX is given only through sampling
from the distribution. For this we can rely on stan-
dard matrix Cherno↵ bounds given by [25]. The below
version is adapted from [7]:

Lemma 14 ([25, 7]) If x1,x2, . . . ,xm
i.i.d.⇠ DX and

m � C
KDX
✏2 ln(d� ) for some absolute constant C, then

(1� ✏)⌃DX �
1

m

mX

i=1

xix
>
i � (1 + ✏)⌃DX w.p. � 1� �.

Setting ✏ = 1p
2d

in Lemma 14, we note that the sam-

ple complexity of obtaining b⌃ that would satisfy the
assumptions of Theorem 4 is m = O(KDX d ln(

d
� )), and

computing it takes O(md2) = O(KDX d
3 ln(d� )).

5 CONCLUSIONS

We show that for the least squares estimator, the bias
which occurs in random design linear regression can
be corrected by augmenting the dataset with dimen-
sion many points sampled from a special joint distri-
bution - an extension of discrete volume sampling. We
present two methods for performing this augmentation
when the underlying data distribution is only known
through i.i.d. samples. In the process we improve the
time complexity of a recently proposed algorithm for
discrete volume sampling.

An important future research direction is providing a
random design error analysis for the least squares es-
timator of the augmented sample. Furthermore, it is
natural to ask if there are distribution families other
than multivariate normal which o↵er better complex-
ity guarantees for producing volume-rescaled samples.



Micha l Dereziński, Manfred K. Warmuth, Daniel Hsu

Acknowledgements
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A SAMPLE AUGMENTATION:
PROOFS

In this section we give the proofs omitted in Section 2.

Proof of Lemma 7 First, suppose that k = d, in
which case det(A>

B) = det(A) det(B). Recall that
by definition the determinant can be written as:

det(C) =
X

�2Sd

sgn(�)
dY

i=1

ci,�i ,

where Sd is the set of all permutations of (1..d), and
sgn(�) = sgn

�
(1..d),�

�
2 {�1, 1} is the parity of the

number of swaps from (1..d) to �. Using this formula
and denoting cij =

�
E[ab>]

�
ij
, we can rewrite the ex-

pectation as:

E
⇥
det(A) det(B)

⇤
=

X

�,�02Sd

sgn(�) sgn(�0)
dY

i=1

E
⇥
ai�ibi�0

i

⇤

=
X

�2Sd

X

�02Sd

sgn(�,�0)
dY

i=1

c�i�0
i

= d!
X

�02Sd

sgn(�0)
dY

i=1

ci�0
i

= d! det
�
E[ab>]

�
,

which completes the proof for k = d. The case of k >
d follows by induction via a standard determinantal
formula:

E
⇥
det(A>

B)
⇤ (⇤)
= E


1

k � d

kX

i=1

det
�
A

>
�iB�i

��

=
k

k � d
E
⇥
det

�
A

>
�kB�k

�⇤
,

where (⇤) follows from the Cauchy-Binet formula and
A�i denotes matrix A with the ith row removed.

Next, we state a formula which we used in the proof of
Theorem 2. This lemma is an immediate implication
of a result shown by [8].

Lemma 15 Given full rank X 2 Rk⇥d
and y 2 Rk

,

we have:

w
⇤(X,y) =

kX

i=1

det(X>
�iX�i)

(k � d) det(X>X)
w

⇤(X�i,y�i),

where w
⇤(X,y) = X

+
y is the least squares solution

for (X,y), and X
+

is the pseudoinverse of X.

Proof Let I�i denote the identity matrix with ith
diagonal entry set to zero. Note that we can write

w
⇤(X�i,y�i) = (I�iX)+y. Moreover, by Sylvester’s

theorem we have

det(X>
�iX�i)

det(X>X)
= 1� x

>
i (X

>
X)�1

xi.

Thus, it su�ces to show that

X
+ =

kX

i=1

1� x
>
i (X

>
X)�1

xi

k � d
(I�iX)+,

which is in fact precisely the formula shown in [8] (see
proof of Theorem 5).

B VOLUME-RESCALED
GAUSSIAN: PROOFS

In this section we give the proofs omitted in Section 3.

Proof of Lemma 9 Since we are conditioning on
an event which may have probability 0, this requires
a careful limiting argument. Let A be any measurable
event over the random matrix eX and let

C✏
⌃

def
=
�
B 2 Rd⇥d : kB�⌃k  ✏

 

be an ✏-neighborhood of ⌃ w.r.t. the matrix 2-norm.
We write the conditional probability of eX 2 A given
that eX> eX 2 C✏

⌃ as:

Pr
� eX2A | eX> eX2C✏

⌃

�
=

Pr
� eX2A ^ eX> eX2C✏

⌃

�

Pr
� eX> eX2C✏

⌃

�

=
E
⇥
1[X2A]1[X>X2C✏

⌃] det(X
>
X)

⇤

E
⇥
1[X>X2C✏

⌃] det(X>X)
⇤


E
⇥
1[X2E]1[X>X2C✏

⌃] det(⌃)(1 + ✏)d
⇤

E
⇥
1[X>X2C✏

⌃] det(⌃)(1� ✏)d
⇤

=
E
⇥
1[X2A]1[X>X2C✏

⌃]

⇤

E
⇥
1[X>X2C✏

⌃]

⇤
✓
1 + ✏

1� ✏

◆d

= Pr
�
X2A |X>

X2C✏
⌃

�✓1 + ✏

1� ✏

◆d

✏!0�! Pr
�
X2A |X>

X=⌃
�
.

We can obtain a lower-bound analogous to the above

upper-bound, namely Pr
�
X 2 A |X>

X 2 C✏
⌃

��
1�✏
1+✏

�d
,

which also converges to Pr
�
X2A |X>

X=⌃
�
. Thus,

we conclude that:

Pr
� eX2A | eX> eX=⌃

�
= lim

✏!0
Pr
� eX2A | eX> eX2C✏

⌃

�

= Pr
�
X2A |X>

X=⌃
�
,

completing the proof.
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C GENERAL ALGORITHM:
PROOFS

In this section we give proofs omitted in Section 4.

Proof of Lemma 12 The distribution Levb⌃,X inte-
grates to one because for x ⇠ DX :

E
⇥
x

> b⌃�1
x
⇤
= E

h
tr
�
xx

> b⌃�1
�i

= tr
�
⌃DX

b⌃�1
�
.

Next, we use the geometric-arithmetic mean inequality
for the eigenvalues of matrix e⌃ to show that:

det
�e⌃b⌃�1

�

⇣1
d
tr
�e⌃b⌃�1

�⌘d

=
⇣ 1

d t

tX

i=1

d

lb⌃(xi)
x

>
i
b⌃�1

xi

⌘d
= 1.

Next, we use the formula for the normalization con-
stant in Theorem 1 but with a modified random vec-

tor. Specifically, let exi =

r
tr(⌃DX

b⌃�1)
l b⌃(xi)

xi. Then

E[exiex>
i ] = ⌃DX and

e⌃ =
1

t

tX

i=1

d

lb⌃(xi)
xix

>
i =

d

tr(⌃DX
b⌃�1)

1

t

tX

i=1

exiex>
i .

So, using Lemma 7 on the vectors exi, we have:

E
⇥
det(e⌃b⌃�1)

⇤
=

✓
d

tr(⌃DX
b⌃�1)

◆d E[det(
P

i exiex>
i )]

td det(b⌃)

=
d!
�t
d

�
det

�
E[ex1ex>

1 ]
�

td( 1d tr(⌃DX
b⌃�1))d det(b⌃)

=

✓ d�1Y

i=0

t� i

t

◆
det(⌃DX

b⌃�1)

( 1d tr(⌃DX
b⌃�1))d

�
✓
1� d

t

◆d det(⌃DX
b⌃�1)

( 1d tr(⌃DX
b⌃�1))d

.

Applying Bernoulli’s inequality concludes the proof.

Proof of Lemma 13 Let X 2 Rk⇥d be the ma-
trix with rows x

>
i and let qi(X) denote the sampling

probability in line 4 of Algorithm 2, given the set of
row vectors. We will show that if x1, . . . ,xk ⇠ VSkDX ,
then after one step of the algorithm, the remaining
vectors are distributed according to VSk�1

DX
. Let A

denote a measurable event over the space (Rd)k�1,
and let A0 = A ⇥ Rd be that event marginalized over
the space (Rd)k. We wish to compute the probability
Pr(A) over the sample returned by the algorithm given
input set {x1, . . . ,xk} and sampling size k � 1. Note
that since the sample x1, . . . ,xk is symmetric under

permutations, the probability of A should not depend
on which index i is selected in line 5 of Algorithm 2,
so we have

Pr(A) = k Pr(A | Alg. 2 selected i=k)

/ EDk
X


1A0 qk(X) det

�
X

>
X
��

/ EDk
X


1A0

det(X>
�kX�k)

det(X>X)
det

�
X

>
X
��

= EDk
X


1A0 det(X>

�kX�k)

�

/ VSk�1
DX

(A),

where in the above we skipped constant factors, since
they fall into the normalization constant. The lemma
now follows by induction over increasing k.


