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Tensor PCA is a stylized statistical inference problem introduced by
Montanari and Richard to study the computational difficulty of estimating
an unknown parameter from higher-order moment tensors. Unlike its matrix
counterpart, Tensor PCA exhibits a statistical-computational gap, that is, a
sample size regime where the problem is information-theoretically solvable
but conjectured to be computationally hard. This paper derives computational
lower bounds on the run-time of memory bounded algorithms for Tensor PCA
using communication complexity. These lower bounds specify a trade-off
among the number of passes through the data sample, the sample size and
the memory required by any algorithm that successfully solves Tensor PCA.
While the lower bounds do not rule out polynomial-time algorithms, they do
imply that many commonly-used algorithms, such as gradient descent and
power method, must have a higher iteration count when the sample size is not
large enough. Similar lower bounds are obtained for non-Gaussian compo-
nent analysis, a family of statistical estimation problems in which low-order
moment tensors carry no information about the unknown parameter. Finally,
stronger lower bounds are obtained for an asymmetric variant of Tensor PCA
and related statistical estimation problems. These results explain why many
estimators for these problems use a memory state that is significantly larger
than the effective dimensionality of the parameter of interest.

1. Introduction. Many statistical inference problems exhibit a range of sample sizes or
signal-to-noise ratios in which it is information-theoretically possible to infer the unknown
parameter of interest, but all known (computationally) efficient estimators fail to give accurate
inferences. It is widely conjectured that, for many such problems, no efficient algorithm can
produce accurate inferences in these so-called (conjectured) “hard” phases, even though there
may be efficient algorithms that work if the sample size or signal-to-noise ratio is sufficiently
high (i.e., in the “easy” phase of the problem). The existence of such a hard phase is known
as a statistical-to-computational gap. Since proofs of such gaps are currently out-of-reach, a
popular way to give evidence for the gaps is to prove that certain restricted classes of estima-
tors fail to solve the inference problems in the conjectured hard phases. These restrictions are
often chosen to capture the techniques used by the best efficient estimators known to date, for
example, sum-of-squares relaxations [54], belief propagation and message passing [4, 67],
general first-order methods [18] and low-degree polynomial functions [44, 47, 57].

Another way to constrain estimators is to require additional desirable properties, such as:

1. robustness to deviations from model assumptions,
2. low memory footprint,
3. low communication cost in a distributed computing environment.

If all estimators with these properties were proved to fail in the conjectured hard phases
of inference problems, then we would have a satisfying practical theory of statistical-
computational gaps. That is, even if efficient estimators exist in the conjectured hard phase
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of inference problems, their use in practice would be limited since they would use too much
memory, be nonrobust to slight model mismatches, etc.

Steinhardt, Valiant and Wager [60] provide another motivation for studying inference prob-
lems under such constraints. They hypothesize that computationally easy problems remain
solvable even in the face of constraints, such as those related to robustness, memory and
communication. In contrast, hard problems have brittle solutions, which are unable to endure
such constraints. Hence, hard problems should exhibit certain hallmarks such as the nonro-
bustness, high memory footprint or high communication cost of efficient estimators. Studying
inference problems under such constraints enriches our understanding of the computational
complexity of these problems.

The hypothesis of Steinhardt, Valiant and Wager [60] is supported by the power of Kearns’
Statistical Query (SQ) model for explaining known statistical-computational gaps [33, 34, 45,
64]. In the SQ model, estimators can only access the data set by querying summary statistics
of the data set, and they must be tolerant to adversarial perturbations in query responses of
magnitude similar to the random fluctuations of these statistics. For many inference problems
believed to exhibit a hard phase, it is known that all efficient estimators that are robust in the
SQ-sense will fail to solve these inference problems in that phase (e.g., [33, 34, 64]).

In this paper, we further investigate the hypothesis of Steinhardt, Valiant and Wager by
studying Tensor PCA and related problems that exhibit a similar statistical-computational
gap under memory constraints. Our results are, in fact, obtained by studying the effect of
communication constraints, and then leveraging a reduction from communication-bounded
estimation to memory-bounded estimation.

2. Statistical inference and computational constraints. In this section, we introduce
notation used throughout this paper, the setup for general statistical inference problems and
the computational model for memory-bounded estimators under which we derive our run-
time lower bounds.

2.1. Notation.

Important sets. N and R denote the set of positive integers and the set of real numbers,
respectively. N0

def= N ∪ {0} is the set of nonnegative integers. For each k, d ∈ N, [k] denotes
the set {1,2,3, . . . , k}, Rd denotes the d-dimensional Euclidean space, Rd×k denotes the set
of all d × k matrices, and

⊗k Rd denotes the set of all d × d × · · · × d (k times) tensors with
R-valued entries.

Linear algebra. We denote the d-dimensional vectors (1,1, . . . ,1), (0,0, . . . ,0) and the
d ×d identity matrix using 1d , 0d and I d , respectively. We will omit the subscript d when the
dimension is clear from the context. For a vector v ∈ Rd , ‖v‖ denotes the �2 norm of v. For
two vectors u,v ∈ Rd , 〈u,v〉 denotes the standard inner product on Rd : 〈u,v〉 def= ∑d

i=1 uivi .
For two matrices or tensors U and V , we analogously define ‖U‖, and 〈U ,V 〉 by stacking
their entries to form a vector. For a matrix A, AT denotes the transpose of A and ‖A‖op

denotes the operator (or spectral) norm of A. For a square matrix A, Tr(A) denotes the trace
of A. Finally, for vectors v1:k ∈ Rd , v1 ⊗ v2 ⊗ · · · ⊗ vk denotes the k-tensor with entries
(v1 ⊗ v2 ⊗ · · · ⊗ vk)i1,i2,...,ik = (v1)i1 · (v2)i2 · · · (vk)ik for i1:k ∈ [d]. When v1 = v2 = · · · =
vk = v, we shorthand v ⊗ v ⊗ · · · ⊗ v as v⊗k .

Asymptotic notation. Given a two nonnegative sequences ad and bd indexed by d ∈ N, we
use the following notation to describe their relative magnitudes for large d . We say that ad �
bd or ad = O(bd) or bd = �(ad) if lim supd→∞(ad/bd) < ∞. If ad � bd and bd � ad , then
we say that ad 
 bd . If there exists a constant ε > 0 such that ad · dε � bd we say that
ad � bd . We use polylog (d) to denote any sequence ad such that ad 
 logt (d) for some
fixed constant t ≥ 0.
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FIG. 1. Template for memory bounded estimation algorithms with resource profile (N,T , s).

Important distributions. N (0,1) denotes the standard Gaussian measure on R, and
N (0, I d) denotes the standard Gaussian measure on Rd . For any finite set A, Unif(A) de-
notes the uniform distribution on the elements of A.

Hermite polynomials. We will make extensive use of the Hermite polynomials {Hi : i ∈ N0},
which are the orthonormal polynomials for the Gaussian measure N (0,1). We provide the
necessary background regarding Hermite polynomials and analysis on the Gaussian Hilbert
space in the Supplementary Material [32], Appendix I.2.

Miscellaneous. For an event E , IE denotes the indicator random variable for E . For x, y ∈ R,
x ∨ y and x ∧ y denote max(x, y) and min(x, y), respectively. For x > 0, log(x) denotes the
natural logarithm (base e) of x.

2.2. Statistical inference problems. A general statistical inference problem is specified
by a model P , which is a collection of probability distributions on a space X . Elements of
P are indexed by a parameter V ∈ V , so P = {μV : V ∈ V}, where V is the parameter set.
A statistical inference problem can be thought of as a game between nature and a statistician.
First, nature picks a parameter V ∈ V , which is not revealed to the statistician. Then the N

samples x1:N = (x1,x2, . . . ,xN) are drawn i.i.d. from μV and revealed to the statistician.
The statistician constructs an estimator V̂ (x1:N) ∈ V̂ using the data set x1:N and incurs a
loss �(V , V̂ ), where � : V × V̂ → [0,∞) is the loss function. An estimator V̂ : XN → V̂ is
(ε, δ)-accurate if

sup
V ∈V

PV
(
�
(
V , V̂ (x1:N)

) ≥ ε
)
< δ.(1)

The statistician’s goal is to construct an (ε, δ)-accurate estimator with the smallest sample
size N .

2.3. Memory bounded estimators. We study iterative estimation algorithms that maintain
and update an internal memory state of s bits in the course of T passes (iterations) over a data
set of N samples. A general template of such an iterative algorithm is given in Figure 1, and
a formal definition appears below.

DEFINITION 1 (Memory bounded estimation algorithm with resource profile (N,T , s)).
A memory bounded estimation algorithm with resource profile (N,T , s) computes an esti-
mator by making T passes through a data set of N samples using a memory state of s bits
(initially all zeros). Such an algorithm is specified by the update functions ft,i : {0,1}s ×X →
{0,1}s and an estimator function g : {0,1}s → V̂ , which are used as follows. In the t th pass
through the data set, the algorithm considers each sample xi for i ∈ [N ] in sequence, and it
updates the memory state by applying the update function ft,i to the current memory state
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and the sample xi under consideration. After all T passes are complete, the estimator is com-
puted by applying the estimator function g to the final memory state. A template for a general
memory bounded algorithm is given in Figure 1.

The above class of iterative algorithms is well suited for modeling commonly-used estima-
tors, for example, spectral estimators (using the power method) and empirical risk minimizers
(using gradient descent). We measure the computational cost of an estimation algorithm by
T , the number of passes it makes through the data set. This cost measure is not sensitive to
the size of the data set. Furthermore, the update and estimator functions are permitted to be
arbitrary functions, and we do not consider their computational cost in our lower bounds.
This means that the lower bounds are conservative, in that a more detailed accounting of their
costs in a concrete computational model would only improve our lower bounds.

3. Our contributions. We study several statistical inference problems exhibiting a
statistical-computational gap and prove lower bounds on the total number of resources, as
measured by the product N · T · s of the sample size N , number of iterations (or passes) T

and the size of the memory state s that all iterative algorithms must use to solve these prob-
lems. In the following paragraphs, we introduce the problems we study at a high level and
highlight our main results.

Tensor principal components analysis. In the order-k Tensor Principal Components Anal-
ysis (k-TPCA) problem introduced by Montanari and Richard [50], one observes N noisy
independent realizations of an unknown rank-1 symmetric k-tensor (the signal) corrupted by
Gaussian noise. The unknown signal tensor can be specified using a d-dimensional vector,
which is the parameter of interest for this problem, and the goal is to estimate it. This prob-
lem is believed to exhibit a sizeable computational-statistical gap. Our main result for this
problem (Theorem 1 in Section 5) provides a lower bound on the total number of resources
N · T · s used by any iterative algorithm for Tensor PCA. Many natural algorithms for this
problem (such as the tensor power method or the maximum likelihood estimator computed
using gradient descent) use a memory state of size s 
 d proportional to the dimension of
the parameter of interest (i.e., use linear memory). By instantiating our lower bound for al-
gorithms with this property, we obtain unconditional lower bounds on their run-time. While
these lower bounds do not rule out polynomial-time linear-memory algorithms for Tensor
PCA, we are not aware of any other approach that yields an unconditional lower bound for
linear memory iterative algorithms that are comparable to our results. In particular, the pop-
ular low-degree likelihood ratio framework [44, 47] yields weaker run-time lower bounds.

Non-Gaussian component analysis. Montanari and Richard intended Tensor PCA as a styl-
ized statistical inference problem that captures computational difficulties in extracting infor-
mation about a parameter of interest from the empirical higher-order moment tensor of a
data set. Taking a cue from this motivation, we study the order-k Non-Gaussian Component
Analysis (k-NGCA) problem [11], defined as follows. The goal is to estimate an unknown
unit vector v from N i.i.d. realizations of a d-dimensional non-Gaussian vector x in which:
(1) the order-k moment tensor differs from the moment tensor of a standard Gaussian vector
z ∼ N (0, I d) along precisely one direction, given by v; and (2) for any � ≤ k − 1, the order-�
moment tensor of x is identical to that of the Gaussian vector z, and hence it reveals no infor-
mation about v. We show (Theorem 3 in Section 7) that a resource lower bound identical to
our result for k-TPCA holds for k-NGCA when the signal-to-noise ratio is sufficiently small
as a function of d . Since our lower bound applies to a broad family of constructions of the
non-Gaussian vector x, we obtain as corollaries to Theorem 3, similar results for the estima-
tion problems in specific statistical models, including Gaussian mixture models and certain
generalized linear models.
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Asymmetric tensor PCA. We also study an asymmetric version of k-TPCA (k-ATPCA),
where the signal tensor is allowed to be an arbitrary (possibly asymmetric) rank-1 tensor. The
conjectured hard phase for this problem is identical to that for (symmetric) k-TPCA. How-
ever, our main result for this problem k-ATPCA (Theorem 2 in Section 6) shows that this
problem requires significantly more total resources N · T · s than k-TPCA. The state-of-the-
art efficient estimators for k-ATPCA (such as the Montanari and Richard spectral estimator)
are, in a sense, overparameterized: they require a memory state size that is significantly larger
than the effective-dimension of the parameter of interest. A key consequence of our results is
that this overparameterization is necessary: estimators that use a smaller memory state have a
strictly worse run-time veersus sample size trade-off (shown in Figure 3b) compared to suffi-
ciently overparametrized estimators such as as the Montanari and Richard spectral estimator.
This explains why estimators for k-ATPCA “lift” the problem to higher dimensions.

Canonical correlation analysis. Since k-TPCA captures the computational difficulties in
extracting information about a parameter of interest from the empirical k-moment tensor of
a data set, it is natural to expect that k-ATPCA should capture the computational difficulties
of the same but for the empirical k-cross-moment tensor of a data set. To develop this anal-
ogy, we study the order-k Canonical Correlation Analysis problem (k-CCA), in which one
observes N i.i.d. realizations of a kd-dimensional random vector x = (x(1),x(2), . . . ,x(k))

consisting of k separate d-dimensional “views.” The parameter of interest is the order-k
cross-moment tensor E[x(1) ⊗ x(2) ⊗ · · · ⊗ x(k)], and hard instances of this problem have
the property that no other moment tensor of order-� with � ≤ k carries information regarding
the parameter of interest. For the k-CCA problem, our main result (Theorem H.1 in the Sup-
plementary Material [32], Appendix H.3) shows that a resource lower bound identical to our
result for k-ATPCA holds for the k-CCA problem in the regime when signal-to-noise ratio
is sufficiently small as a function of d . Furthermore, since the problem of learning parity
functions can be reduced to the k-CCA instance used to prove the resource lower bound for
k-CCA, we also obtain interesting resource lower bounds for the problem of learning parities.
This is discussed further in the Supplementary Material [32], Appendix H.4.

Organization. The remainder of this paper is organized as follows. Section 4 discusses
several strands of related works relevant to this paper. Sections 5–7 introduce the various in-
ference problems we study and state and discuss our computational lower bounds for each of
them: Section 5 is devoted to (symmetric) tensor PCA, Section 6 to asymmetric tensor PCA,
and Section 7 to non-Gaussian component analysis. The results for canonical correlation
analysis are presented in the Supplementary Material [32], Appendix H. Section 8 presents
the proof framework that underlies each of the computational lower bounds presented in this
paper. As an illustrative application of the proof framework presented in Section 8, we pro-
vide the proof for the computational lower bound for (symmetric) tensor PCA in Section 9.
The detailed proofs for the remaining inference problems are provided in the Supplementary
Material [32].

4. Related work. Since the work of Montanari and Richard, which introduced k-TPCA,
a number of subsequent works have proposed and analyzed various estimators and proved
different kinds of computational lower bounds for this and related problems.

Hardness of symmetric and asymmetric tensor PCA. Many works have designed compu-
tationally efficient estimators for k-TPCA that attain the conjectured optimal sample com-
plexity for polynomial-time estimators (Nλ2 � dk/2). This includes spectral estimators [10,
41–43, 50, 69], sum-of-squares relaxations [41–43], tensor power method with well-designed
initializations [3, 10] and higher-order generalizations of belief propagation [65]. The spec-
tral estimator of Hopkins et al. [42] for k-TPCA and the spectral estimator of Montanari and
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Richard [50] for k-ATPCA (discussed in detail in Section 5.4 and Section 6.4) are particularly
relevant for our work. The resources used by these estimators (as measured by the product
N · T · s) nearly match our resource lower bounds for k-TPCA and k-ATPCA, respectively.
Several works have shown that many natural classes of estimators fail in the conjectured hard
phase for k-TPCA (d � Nλ2 � dk/2). This includes sum-of-squares relaxations [9, 41–43],
estimators that compute a low degree polynomial of the data set [44, 47] and SQ algorithms
[15, 30]. A more detailed comparison with the low-degree lower bounds appears in Sec-
tion 5.4. The landscape of the maximum likelihood objective for this problem has been shown
to have numerous spurious critical points [8, 56] and it is known that Langevin dynamics on
the maximum likelihood objective fails to solve k-TPCA in the conjectured hard phase [7].
Finally, using average-case reductions, it has been shown that the hardness of hypergraph
planted clique implies the hardness of k-TPCA [14, 68].

Hardness of non-Gaussian component analysis. The k-NGCA problem was formally intro-
duced by Blanchard et al. [11], and various computationally efficient estimators have been
proposed and analyzed [21, 39, 48, 61, 62]. These estimators have a sample size require-
ment, which is significantly more than the information-theoretic sample size requirement. In
the special case when the distribution of the non-Gaussian direction is discrete, Zadik et al.
[66] and Diakonikolas and Kane [24] have designed computationally efficient algorithms that
recover the non-Gaussian direction with the information-theoretically optimal sample com-
plexity. However, these algorithms are brittle and break down when the distribution of the
non-Gaussian component is sufficiently nice (e.g., absolutely continuous with respect to the
standard Gaussian distribution; see Remark 2 for additional details). In this situation, Di-
akonikolas, Kane and Stewart [28] have identified a sample size regime where SQ algorithms
fail to identify the non-Gaussian direction with polynomially many queries. This suggests that
this problem is computationally hard in this regime. A problem closely related to k-NGCA
problem is the continuous learning with errors problem [16]. Bruna et al. [16] show that this
problem is computationally hard provided that a plausible conjecture from cryptography is
true [49], Conjecture 1.2. Since k-NGCA is connected to many other inference problems, the
SQ lower bounds of Diakonikolas, Kane and Stewart are at the heart of SQ lower bounds for
many other robust estimation and learning problems [17, 22, 23, 25–29].

Memory and communication lower bounds for statistical inference. The computational
lower bounds obtained in our work rely on a reduction (Fact 1) of Alon, Matias and Szegedy
[2], which was more recently used in the context of statistical inference problems in the works
of Shamir [58] and Dagan and Shamir [20]. This reduction shows that any iterative algorithm
that solves a statistical inference problem using few resources (as measured by the product
N · T · s) can be used to solve the statistical inference problem in a distributed setting with
a limited amount of communication between the machines holding the data samples. Conse-
quently, the claimed resource lower bounds follow from communication lower bounds for the
distributed versions of these inference problems. Recent works by Han, Özgür and Weissman
[40], Barnes, Han and Ozgur [5], Acharya et al. [1] have developed general frameworks to
prove communication lower bounds distributed statistical inference problems. However, for
k-TPCA and k-NGCA, we were unable to obtain the desired communication lower bounds
using these frameworks (see Section 8.7 for more details). Hence, building on these works, we
develop a different approach to obtain communication lower bounds for distributed inference
problems, which yields stronger communication lower bounds for k-TPCA and k-NGCA
than those obtained using the prior works [1, 5, 40]. On the other hand, for k-ATPCA and
k-CCA problems, the desired communication lower bounds can be obtained from existing
communication lower bounds for sparse Gaussian mean estimation [1, 13] and correlation
detection problems [20]. We show that the approach developed in this paper also yields alter-
native proofs for the desired communication lower bounds for k-ATPCA and the k-CCA in



STATISTICAL-COMPUTATIONAL TRADE-OFFS VIA COMMUNICATION COMPLEXITY 137

a unified manner. We refer the reader to the Supplementary Material [32], Remark E.1, for
a detailed discussion. A different line of work [6, 35–37, 46, 51–53, 55, 59, 60] initiated by
Steinhardt, Valiant and Wager [60] and Raz [55] provides another approach to obtain mem-
ory lower bounds without relying on the connection with distributed inference problems. We
provide a comparison with lower bounds obtained using this approach in the Supplementary
Material [32], Section H.4.1.

5. Symmetric tensor PCA.

5.1. Problem formulation. In the symmetric order-k Tensor PCA (k-TPCA) problem in-
troduced by Montanari and Richard [50], one observes N i.i.d. tensors X1:m ∈ ⊗k Rd sam-
pled as follows:

Xi = λV ⊗k

√
dk

+ W i , (Wi)j1,j2,...jk

i.i.d.∼ N (0,1) ∀j1, j2, . . . , jk ∈ [d].(2)

In the above display, λ > 0 is the signal-to-noise ratio, and V ∈ V is the unknown parameter
one seeks to estimate. The parameter space for this problem is V = {V ∈ Rd : ‖V ‖ = √

d}.
We let the probability measure μV denote the distribution of a single sample Xi in (2).

5.2. Statistical-computational gap in k-TPCA. Depending on the scaling of the effective
sample size Nλ2, k-TPCA exhibits three phases.

Impossible phase. If Nλ2 � d , recovering V is information-theoretically impossible [50].
Conjectured hard phase. In the regime d � Nλ2 � dk/2, the maximum likelihood estima-

tor succeeds in recovering V [50]. However, it is not known how to compute the maximum
likelihood estimator using a polynomial-time algorithm. No known polynomial-time estima-
tion algorithm has a nontrivial performance in this phase. Based on evidence from the low
degree likelihood ratio framework [47], the statistical query framework [15, 30], the sum-of-
squares hierarchy framework [41] and the average-case reductions framework [14, 68], it is
believed that no polynomial-time algorithm can have nontrivial performance in this phase.

Easy phase. In the regime Nλ2 � dk/2, there are polynomial-time algorithms that accu-
rately estimate V [3, 10, 42, 43, 50, 65, 69].

5.3. Computational lower bound. The following is our lower bound for k-TPCA.

THEOREM 1. Let V̂ denote any estimator for k-TPCA with k ≥ 2 and λ 
 1 (as d → ∞)
that can be computed using a memory bounded estimation algorithm with resource profile
(N,T , s) scaling with d as

N 
 dη/λ2, T 
 dτ , s 
 dμ

for any constants η ≥ 1, τ ≥ 0, μ ≥ 0. If

η + τ + μ <

⌈
k + 1

2

⌉
,

then, for any t ∈ R,

lim sup
d→∞

inf
V ∈V PV

( |〈V ,V̂ 〉|2
‖V ‖2‖V̂ ‖2

≥ t2

d

)
≤ 2 exp

(
− t2

2

)
.
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The above result shows that if the total resources used by a memory-bounded estimator V̂
(as measured by the product N ·T · s) is too small, there is a worst-case choice of V ∈ V such
that, on an event of probability arbitrarily close to 1, we have

|〈V ,V̂ 〉|2
‖V ‖2‖V̂ ‖2

� 1

d
.

On the other hand, for any V ∈ V , the trivial estimator V̂ ∼ N (0, I d) achieves

|〈V ,V̂ 〉|2
‖V ‖2‖V̂ ‖2

� 1

d
,

with probability arbitrarily close to 1. Hence, memory bounded estimation algorithms using
too few total resources perform no better than a random guess.

5.4. Discussion of Theorem 1. We now discuss some key implications of Theorem 1.
Recall that we consider the scaling regime where d → ∞ and λ 
 1, N 
 dη/λ2, T 
 dτ ,
s 
 dμ; the exponents η ≥ 1, τ ≥ 0 and μ ≥ 0 are fixed constants. We additionally restrict
our discussion to the case where k is even, because our lower bounds appear to be deficient by
a factor of

√
d when k is odd (additional details are provided in the Supplementary Material

[32], Appendix D.1, regarding the odd case).

5.4.1. Consequences for linear memory algorithms. Theorem 1 has some interesting
consequences for memory-bounded estimation algorithms with a memory state of size
s 
 d polylog (d) bits. We call such algorithms nearly linear memory algorithms. For
such algorithms to have a nontrivial performance for k-TPCA, the sample size exponent
η = log(Nλ2)/ log(d) and the run-time exponent τ = log(T )/ log(d) must satisfy

τ + η ≥ k

2
.(3)

This gives a lower bound on the run-time exponent as a function of the sample-size exponent
τ ≥ k/2 − η, which rules out certain run-time exponents in the conjectured hard phase for
Tensor PCA (1 < η < k/2). The run-time exponents ruled out by Theorem 1 is the triangular
subregion of the conjectured hard phase shaded in red and gray in Figure 2.

Many natural algorithms for k-TPCA are nearly linear memory algorithms, and hence, the
run-time versus sample size trade-off obtained in (3) also applies to them. This includes al-
gorithms like the tensor power method [3, 10, 50], Langevin dynamics or gradient descent on
the maximum likelihood objective [7] and partial trace spectral estimator of Hopkins et al.
[42]. These algorithms are discussed in more detail in the Supplementary Material [32], Ap-
pendix D.2.

FIG. 2. Consequences of Theorem 1 for linear memory k-TPCA algorithms (k even).
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5.4.2. Tightness of Theorem 1. The partial trace spectral estimator of Hopkins et al. [42]
is a memory bounded estimation algorithm with resource profile:(

N 
 d
k
2 /λ2, T = polylog(d), s = d · polylog(d)

)
.

This is a (nearly) linear memory estimation algorithm for Tensor PCA whose sample size
exponent η and run-time exponent τ satisfy η + τ ≤ k/2 + ε for arbitrary ε > 0. This shows
that the run-time versus sample size trade-offs implied for linear-memory algorithms by The-
orem 1 are tight. Furthermore, this shows that Theorem 1 provides a weak separation between
the easy and the conjectured hard phases:

1. In the easy phase, when the sample size exponent η > k/2, there are (nearly) linear
memory algorithms whose run-time exponent is arbitrarily close to zero (τ ≤ ε for any ε > 0).

2. In contrast, in the hard phase, when the sample size exponent η < k/2, Theorem 1
shows that any linear memory algorithm must have a strictly positive run-time exponent τ ≥
k/2 − η.

5.4.3. Comparison with low-degree lower bounds. Lastly, it is interesting to compare the
lower bounds implied by Theorem 1 with the lower bounds obtained using the low-degree
likelihood framework. Kunisky, Wein and Bandeira [47], Theorem 3.3, show that when

Nλ2 � d
k
2

D
k−2

2

,

any procedure that computes a degree-D polynomial of the data set X1:N fails to solve k-
TPCA [47], Theorem 4. In general, the lower bounds obtained from Theorem 1 are incompa-
rable to those obtained from the low-degree framework for the following reasons:

1. The low-degree polynomial makes no restrictions on the amount of memory used to
compute the polynomial.

2. There are no degree restrictions placed on memory bounded estimation algorithms.

However, one can still make interesting comparisons between lower bounds obtained for
algorithms that can be implemented in both computational models. An important example
is the tensor power method (a general class of examples is discussed in the Supplementary
Material [32], Appendix D.2). The T th iterate of the tensor power method is a polynomial
in X1:N of degree D = (k − 1)T . Hence, low-degree lower bounds only show the failure of
iterative schemes like the tensor power method in the conjectured hard phase of k-TPCA for
T � log(d) iterations. The failure of the low-degree framework to give iteration lower bounds
of the form T � dδ for any δ > 0 because of the following reasons:

1. The low-degree framework measures the computational cost of computing a polyno-
mial only using its degree. Hence, in order to show an iteration lower bound of T � dδ , one
would have to show that polynomials of degree D = exp(O(dδ)) fail to solve k-TPCA.

2. However, it is known that for every ε ∈ (0,1), there is a computationally inefficient
estimator based on a degree D � dε polynomial that solves k-TPCA in a part of the hard
phase with sample-size exponent η = ε + k(1 − ε)/2 < k/2 (see discussion in [47], page 16,
and references therein).

In contrast, since tensor power method can be implemented with a memory state of size
s 
 d polylog (d) bits (see [32], Appendix D.2), stronger iteration lower bounds (recall (3)
and Figure 2) are obtained via Theorem 1 by exploiting the fact that the output of the tensor
power method has an additional structural property not shared by arbitrary polynomials of
comparable degree: it can be computed by T iterations of a linear memory algorithm.
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6. Asymmetric tensor PCA.

6.1. Problem formulation. In the asymmetric order-k Tensor PCA (k-ATPCA) problem,
one observes N i.i.d. tensors X1:N ∈ ⊗k Rd sampled as follows:

(4)

Xi = λV 1 ⊗ V 2 ⊗ · · · ⊗ V k√
dk

+ W i , (Wi)j1,j2,...,jk

i.i.d.∼ N (0,1) ∀j1, j2, . . . , jk ∈ [d].

In the above display, λ > 0 is the signal-to-noise ratio, and V 1,V 2, . . . ,V k are unknown
vectors in Rd with ‖V i‖ = √

d . The goal is to estimate the rank-1 signal tensor V
def= V 1 ⊗

V 2 · · · ⊗ V k . The parameter space for this problem is V = {V 1 ⊗ V 2 ⊗ · · · ⊗ V k : V i ∈
Rd,‖V i‖ = √

d ∀i ∈ [k]}. We let the probability measure μV denote the distribution of a
single sample Xi in (4).

6.2. Statistical-computational gap in k-ATPCA. The delineations between the impossi-
ble phase, conjectured hard phase and easy phase for k-ATPCA are the same as in (symmet-
ric) k-TPCA. In particular, the known polynomial-time algorithms that accurately estimate
V require Nλ2 � dk/2 [50, 69].

6.3. Computational lower bound. The following is our lower bound for k-ATPCA.

THEOREM 2. Let V̂ ∈ ⊗k Rd denote any estimator for k-ATPCA with k ≥ 2 and signal-
to-noise ratio λ 
 1 (as d → ∞) that can be computed using a memory bounded estimation
algorithm with resource profile (N,T , s) scaling with d as

N 
 dη/λ2, T 
 dτ , s 
 db

for any constants η > 0, τ ≥ 0, b ≥ 0. If

η + τ + b < k,

then, for any t ∈ R,

lim sup
d→∞

inf
V ∈V PV

( |〈V ,V̂ 〉|2
‖V ‖2‖V̂ ‖2

≥ t2

dk

)
≤ 1

t2 .

Just as in the case of (symmetric) k-TPCA, Theorem 2 shows that memory bounded esti-
mation algorithms for k-ATPCA using too few total resources (as measured by the product
N · T · s) perform no better than a random guess.

6.4. Discussion of Theorem 2. We now discuss some implications of Theorem 2. We
restrict attention to the situation where λ 
 1 and k = 2� is even.

6.4.1. Price of asymmetry. A comparison of the computational lower bound for k-
ATPCA (Theorem 2 and k-TPCA (Theorem 1) reveals that k-ATPCA is a more resource-
intensive inference problem. The minimum amount of resources (as measured by the product
N · T · s) needed to solve k-ATPCA is strictly more than the minimum amount of resources
required to solve k-TPCA.



STATISTICAL-COMPUTATIONAL TRADE-OFFS VIA COMMUNICATION COMPLEXITY 141

6.4.2. Tightness of Theorem 2. Let X ∈ ⊗k Rd denote the empirical average of X1:N .
Montanari and Richard [50] proposed estimating V by the best rank-1 approximation of
the matrix obtained by flattening X into a d� × d� matrix. The estimator is based on the
matricization operation Mat : ⊗k Rd → Rd� × Rd�

, which reshapes a tensor into a matrix.
To define Mat(T ) for a tensor T ∈ ⊗k Rd , we index the rows and columns of Mat(T ) by
�-tuples of indices (i1, i2, . . . , i�) ∈ [d]�, so the entries of Mat(T ) are given by

(5) Mat(T )(i1,i2,...,i�);(j1,j2,j3,...,j�)
def= Ti1,i2,...,i�,j1,j2,...,j�

.

The estimator V̂ MR of Montanari and Richard is defined by V̂ MR = Mat−1(M̂), where M̂ is
the best rank-1 approximation (or the rank-1 SVD) of Mat(X). This estimator was analyzed
by Zheng and Tomioka [69] for k-ATPCA. Their analysis shows that in the regime λ 
 1,

when Nλ2 � d
k
2 , V̂ MR is a consistent estimator for V . Moreover, in this regime, the matrix

M̂ has a spectral gap of size 	 � 1. Consequently, V̂ MR can be computed using polylog(d)

iterations of the power method. Since Mat(X) ∈ Rd�×d�
with � = k/2, in order to imple-

ment the power method using a memory bounded algorithm, one requires a memory state of
size s 
 d� polylog(d) bits. Consequently, this estimator can be computed using a memory
bounded estimation algorithm with resource profile(

N 
 d
k
2 /λ2, T 
 polylog(d), s 
 d

k
2 polylog(d)

)
.

The total resources consumed by this estimation algorithm satisfies N · T · s � dk+ε for any
ε > 0. This shows that the resource lower bound in Theorem 2 is nearly tight.

6.4.3. A separation between easy and hard phases. Theorem 2 has interesting conse-
quences for memory bounded estimation algorithms that have a memory requirement com-

parable to the spectral estimator of Montanari and Richard, that is, s 
 d
k
2 . For such al-

gorithms to have a nontrivial performance for k-ATPCA, the sample size exponent η =
log(Nλ2)/ log(d) and the run-time exponent τ = log(T )/ log(d) must satisfy

τ + η ≥ k

2
.(6)

This gives a lower bound on the run-time exponent as a function of the sample-size exponent:
τ ≥ k/2 − η. This rules out certain run-time exponents in the conjectured hard phase for k-
ATPCA (1 < η < k/2), specifically those in the striped triangular region in Figure 3a. (The
spectral estimator of Montanari and Richard is depicted by the green dot at (logd(Nλ2) =

FIG. 3. Consequences of Theorem 2 for k-ATPCA algorithms with memory size of s 
 d
k
2 bits (left) and s 
 db

bits for b < k/2 (right). The striped triangular region represents the run-time versus sample size trade-offs ruled
out by Theorem 2. The green dot at (logd (Nλ2) = k/2, logd (T ) = 0) in Figure 3a represents the Montanari and
Richard estimator.
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k/2, logd(T ) = 0) in Figure 3a.) Hence, Theorem 2 provides a weak separation between
the easy and the conjectured hard phases, similar to that provided by Theorem 1 for linear
memory algorithms and k-TPCA.

6.4.4. Necessity of overparameterization. The Montanari–Richard spectral estimator is

overparameterized in the sense that it uses a memory state of s � d
k
2 bits, which is sig-

nificantly larger than the effective dimension of the parameter of interest V , namely kd ,
whenever k ≥ 3. Theorem 2 shows that this amount of overparameterization is necessary.
To see this, we instantiate Theorem 2 for memory state sizes of s 
 db bits for some
b < k/2. For such memory bounded estimation algorithms to have a nontrivial performance
for k-ATPCA, the sample size exponent η = log(Nλ2)/ log(d) and the run-time exponent
τ = log(T )/ log(d) must satisfy

τ + η ≥ k

2
+

(
k

2
− b

)
.(7)

The trade-off in (7) is strictly worse than the trade-off obtained from (6); compare the phase
diagram in Figure 3b to that in Figure 3a. Hence, one cannot significantly reduce the over-
parameterization level (as measured by the size of the memory state) of the Montanari and
Richard spectral estimator without increasing its run-time or sample-size exponents.

7. Non-Gaussian component analysis.

7.1. Problem formulation. In the non-Gaussian Component Analysis (NGCA) problem,
one seeks to estimate an unknown vector V ∈ Rd with ‖V ‖ = √

d from an i.i.d. sample x1:N
generated as follows:

xi = ηi

1√
d

V +
(
I d − 1

d
V V T

)
zi ,(8a)

where ηi ∈ R and zi ∈ Rd are independent random variables with distributions

zi ∼ N (0, I d), ηi ∼ ν.(8b)

In the above display, ν is a non-Gaussian distribution on R. Let μV denote the distribution
of xi described by the above generating process (8). The likelihood ratio (with respect to the
standard Gaussian distribution μ0) of a single sample x ∈ Rd from the model (8) is

dμV

dμ0
(x) = dν

dμ0
(η) where η

def=
〈
x,

1√
d

V

〉
.(9)

REMARK 1. We overload the symbol μ0 to mean μ0 = N (0, I d) on the left-hand side of
(9), and μ0 =N (0,1) on the right-hand side. We will use this overloaded notation throughout
our analysis of NGCA, but the meaning of μ0 should be clear from the context.

7.1.1. Degree of non-Gaussianity. The statistical and computational difficulty of esti-
mating V depends on how non-Gaussian ν is. For positive integer k ≥ 2, order-k NGCA
(k-NGCA) refers to instances of NGCA in which the first k − 1 moments of ν are identical
to a standard Gaussian random variable,∫

xiν(dx) = EZi, Z ∼ N (0,1), ∀i ∈ [k − 1],
but the kth moment differs from the corresponding standard Gaussian moment,∣∣∣∣∫ xkν(dx) −E

[
Zk]∣∣∣∣ = λ > 0, Z ∼ N (0,1).

The parameter λ > 0 is the signal-to-noise ratio for this problem.
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7.1.2. Assumptions on the non-Gaussian component. The computational lower bounds
we prove holds for a broad class of non-Gaussian distributions ν that have a density with
respect to the standard Gaussian measure μ0 = N (0,1) on R, and that satisfy some additional
assumptions. Before stating these assumptions, for any probability measure ν on R, we define
the coefficients ν̂i for any i ∈ N0 as follows:

ν̂i
def= E

[
Hi(η)

]
, η ∼ ν.

(Recall that {Hi}i∈N0 are the orthonormalized Hermite polynomials.) Note that since H0(z) =
1, we have ν̂0 = 1. Since we always assume that ν has a density with respect to μ0 = N (0,1),
we can equivalently write

ν̂i = E0

[
dν

dμ0
(Z)Hi(Z)

]
, Z ∼ μ0 = N (0,1).

Hence, ν̂i is the ith Hermite coefficient of the likelihood ratio function dν/dμ0. By
Plancheral’s identity,

E0

[(
dν

dμ0
(Z) − 1

)2]
=

∞∑
i=1

ν̂2
i .

We now state our assumptions below.

ASSUMPTION 1. Distribution ν satisfies the moment matching assumption with param-
eter k ∈ N, k ≥ 2 if ∫

ziν(dz) =
∫

ziμ0(dz) ∀i ∈ [k − 1].
Equivalently, ν̂i = 0 for any i ∈ [k − 1].

ASSUMPTION 2. Distribution ν satisfies the bounded signal strength assumption with
parameters (λ,K) for some λ ≥ 0 and K ≥ 0 if

∞∑
i=1

ν̂2
i ≤ K2λ2, Z ∼N (0,1).

ASSUMPTION 3. Distribution ν satisfies the locally bounded likelihood ratio assumption
with parameters (λ,K,κ) for some λ ≥ 0, K ≥ 0 and κ ≥ 0 if∣∣∣∣ dν

dμ0
(z) − 1

∣∣∣∣ ≤ Kλ
(
1 + |z|)κ ∀z ∈R such that Kλ

(
1 + |z|)κ ≤ 1.

ASSUMPTION 4. Distribution ν satisfies the minimum signal strength assumption with
parameters (λ, k) for some λ > 0 and k ∈ N, k ≥ 2 if∣∣∣∣E0Z

k −
∫

xkν(dx)

∣∣∣∣ = λ, Z ∼ μ0 = N (0,1).

ASSUMPTION 5. The random vector x ∼ μV is sub-Gaussian with variance proxy ϑ for
some ϑ ≥ 1.1

1A random vector w ∈ Rd is sub-Gaussian with variance proxy v (a.k.a. v sub-Gaussian) if E[w] = 0 and

E[exp(〈u,w〉)] ≤ exp(v‖u‖2/2) for all u ∈ Rd . Note that x ∼ μV is sub-Gaussian with variance proxy ϑ if
η ∼ ν is sub-Gaussian with variance proxy ϑ .
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7.2. Statistical-computational gap in k-NGCA. Similar to k-TPCA, the k-NGCA prob-
lem exhibits three phases depending on the effective sample size Nλ2.

Impossible phase. When Nλ2 � d , there is no consistent estimator for the non-Gaussian
direction V . This follows from standard lower bounds based on Fano’s inequality. We re-
fer the reader to the arXiv version [31], Appendix F.2, of this paper for the proof of the
information-theoretic lower bound.

Conjectured hard phase. When d �Nλ2 � dk/2 and λ� 1, there is a consistent, but com-
putationally inefficient estimator for the non-Gaussian direction V (provided Assumptions 4
and 5 hold). This estimator is described and analyzed in the arXiv version of this paper [31],
Appendix F.3. The lower bounds of Diakonikolas, Kane and Stewart [28] show that SQ al-
gorithms fail to estimate the non-Gaussian direction with polynomially many queries in this
regime. This suggests that this regime is the conjectured hard phase for k-NGCA. We provide
additional evidence for this using the low-degree likelihood ratio framework of Hopkins [44]
in the arXiv version of this paper [31], Appendix F.4. In the situation when the non-Gaussian
measure ν is a mixture of Gaussians, similar lower bounds appear in the work of Mao and
Wein [48]. Alternatively, low-degree lower bounds for this problem can also be derived from
the SQ lower bounds of Diakonikolas, Kane and Stewart [28] by verifying the general con-
ditions proposed by Brennan et al. [15], which ensure equivalence between the low-degree
computational model and the SQ model.

Easy phase. When Nλ2 � dk/2, there are polynomial-time estimators for k-NGCA. In the
arXiv version of this paper [31], Appendix F.5, we study a spectral estimator for k-NGCA
(with even k) that estimates the non-Gaussian direction V by the leading eigenvector V̂ (in
the magnitude) of a data-dependent matrix M̂ :

M̂
def= 1

N

N∑
i=1

(‖xi‖2 − d
) k−2

2 xix
T
i −E

[(‖z‖2 − d
) k−2

2 zzT
]
,(10a)

V̂
def= max‖u‖=1

∣∣uTM̂u
∣∣.(10b)

In the above display, z ∼ N (0, I d). When Nλ2 � d
k
2 , we show that V̂ is a consistent esti-

mator for the non-Gaussian direction (provided Assumptions 4 and 5 hold). This estimator
generalizes spectral estimators proposed in prior work of Mao and Wein [48] and Davis, Diaz
and Wang [21] for the special case k = 4.

REMARK 2 (Lattice and sum-of-squares algorithms for k-NGCA). When the non-
Gaussian measure is discrete or close to discrete, Diakonikolas and Kane [24] and Zadik
et al. [66] have designed estimators for the non-Gaussian direction, which use N = d + 1
samples and run in polynomial-time. In contrast, Davis, Diaz and Wang [21] leverage the
results of Ghosh et al. [38] show that estimators based on sum-of-squares relaxations fail to
solve these instances when N � d3/2. Since we assume that the non-Gaussian distribution
ν has a density with respect to N (0,1) and the signal-to-noise ratio λ � 1 as d → ∞, these
estimators are not applicable to the instances of k-NGCA studied in this paper.

7.3. Connections to other inference problems. By considering particular families of the
non-Gaussian distribution ν, we can relate k-NGCA to other inference problems. In the Sup-
plementary Material [32], Appendix G, we provide two constructions of the non-Gaussian
distribution ν and leverage them to obtain computational lower bounds for learning Gaus-
sian mixture models and generalized linear models with binary responses as corollaries of
Theorem 3.



STATISTICAL-COMPUTATIONAL TRADE-OFFS VIA COMMUNICATION COMPLEXITY 145

7.4. Computational lower bound. The following is our lower bound for k-NGCA.

THEOREM 3. Consider the k-NGCA problem with non-Gaussian distribution ν satisfy-
ing:

1. the moment matching assumption (Assumption 1) with parameter k ≥ 2 and k 
 1;
2. the bounded signal strength assumption (Assumption 2) with parameters (λ,K 
 1);
3. the locally bounded likelihood ratio assumption (Assumption 3) with parameters

(λ,K 
 1, κ 
 1).

Suppose that λ 
 d−γ (as d → ∞) for any constant γ > 2�(k+1)/2�+κ . Let V̂ ∈Rd denote
any estimator for this k-NGCA problem that can be computed using a memory bounded
estimation algorithm with resource profile (N,T , s) scaling with d as

Nλ2 
 dη, T 
 dτ , s 
 dμ

for any constants η ≥ 1, τ ≥ 0, μ ≥ 0. If

η + τ + μ <

⌈
k + 1

2

⌉
,

then, for any t ∈ R,

lim sup
d→∞

inf
V ∈V PV

( |〈V ,V̂ 〉|2
‖V ‖2‖V̂ ‖2

≥ t2

d

)
≤ 2 exp

(
− t2

2

)
.

Theorem 3 shows that if the signal-to-noise ratio λ is sufficiently small, then memory
bounded estimation algorithms using too few total resources (as measured by the product
Nλ2 · T · s) perform no better than a random guess.

7.5. Discussion of Theorem 3. Theorem 3 is quantitatively similar to the computational
lower bound obtained for k-TPCA (modulo the condition on the signal-to-noise ratio), so
most of the implications discussed in Section 5.4 continue to hold. This includes the following
(again, just considering even k).

1. Theorem 3 gives a nearly tight lower bound on the total resources, as evidenced by the
existence of the spectral estimator from (10) that can be implemented by a memory bounded
estimation algorithm with resource profile (N 
 dk/2 · polylog(d)/λ2, T 
 polylog(d), s 

d · polylog(d)).

2. The run-time versus sample-size trade-offs for (nearly) linear memory estimators,
shown in Figure 2 for k-TPCA, also applies to k-NGCA. Nearly linear memory estimators for
k-NGCA include the spectral estimator from (10), the tensor power method on the empirical
order-k moment tensor and gradient descent on natural nonconvex objectives [21, 63].

3. For many nearly linear memory algorithms, stronger iteration lower bounds can be
obtained using Theorem 3 in the low signal-to-noise regime as compared to the low-degree
likelihood ratio framework [44, 47], which only yields lower bounds of the form T � log(d).

REMARK 3. The computational lower bound of Theorem 3 applies only when the signal-
to-noise ratio λ2 is sufficiently small. This requirement is an inherent limitation of the proof
technique, which derives a lower bound for memory bounded estimation algorithms from a
communication lower bound for distributed estimation algorithms. The Supplementary Ma-
terial [32], Appendix F, Remark F.1, discusses a simple distributed estimation algorithm that
rules out the required communication lower bound in the high signal-to-noise ratio regime.
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8. Proof framework. In this section, we present a general framework used to obtain the
computational lower bounds presented in Theorems 1, 2 and 3, as well as the computational
lower bounds for the canonical correlation analysis problem in the Supplementary Material
[32], Appendix H.

8.1. Reduction to distributed estimation. Although our primary focus is on proving lower
bounds for memory-bounded estimation algorithms, these lower bounds are consequences of
communication lower bounds for distributed estimation protocols in the “blackboard” model
of communication, introduced next.

DEFINITION 2 (Distributed estimation protocol with parameters (m,n, b)). A distributed
estimation protocol with parameters (m,n, b) computes an estimator based on a data set
{xi,j ∈X : i ∈ [m], j ∈ [n]} of N = mn samples that are distributed across m machines, with
n samples Xi = {xi,j : j ∈ [n]} per machine, after each machine writes at b bits to a (public)
blackboard. The execution of the protocol occurs in a sequence of mb rounds; a single bit
is written on the blackboard per round. In round t : (1) a machine �t ∈ [m] is chosen as a
function of the current contents of the blackboard Y<t = (Y1, Y2, . . . , Yt−1) ∈ {0,1}t−1; then,
(2) machine �t computes a Boolean function of the local data set X�t stored on machine �t ,
as well as the current contents of the blackboard Y<t ; and finally, (3) the output Yt ∈ {0,1}
of the function computed by machine �t is then written on the blackboard. Each machine is
chosen in b rounds. At the end of the mb rounds, the estimator is computed as a function
of the final contents of the blackboard Y ∈ {0,1}mb. A general template for a distributed
estimation protocol is shown in Figure 4.

The connection between the memory bounded computational model and the distributed
computational model is encapsulated in Fact 1, below, formalized by Shamir [58] and Dagan
and Shamir [20]. It is a consequence of a simple reduction of Alon, Matias and Szegedy
[2] that simulates a memory bounded estimation algorithm using a distributed estimation
protocol: the machines take turns to simulate the algorithm’s passes over the data set, with
one machine concluding its turn by writing the memory state on the blackboard so the next
machine can continue the simulation.

FACT 1 ([2, 20, 58]). A memory bounded estimation algorithm with resource pro-
file (N,T , s) can be simulated using a distributed estimation protocol with parameters
(N/n,n, sT ) for any n ∈ N such that N/n ∈ N.

We rely on Fact 1 to convert lower bounds for distributed estimation protocols to lower
bounds for memory bounded estimation algorithms. Note that in the reduction, there is some

FIG. 4. Template for distributed estimation protocols with parameters (m,n, b).
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flexibility in the choice of n, the number of samples per machine. In our use of Fact 1, we
will set n in a way that gives us the most interesting lower bounds.

REMARK 4 (Deterministic versus randomized distributed estimation protocols). In Def-
inition 2, we have defined distributed estimation protocols to be deterministic, so they do not
use any additional randomness apart from the data set. However, all of our lower bounds for
deterministic protocols also apply to randomized protocols, in which all computations (of
the �t ’s, Yt ’s and V̂ ) are permitted to additionally depend on a (shared) uniformly random
bit vector q ∈ {0,1}R . This is because, to rule out (ε, δ)-accurate distributed estimators, we
study the Bayesian version of the inference problem, in which the parameter is drawn from a
prior V ∼ π . In the Bayesian problem, there is no advantage of using a randomized protocol:
one can always use the deterministic protocol corresponding to the bit vector q that achieves
the lowest Bayes risk (averaged over the realization of V ∼ π ). This deterministic protocol
is guaranteed to perform as well as the original randomized protocol.

8.2. Lower bounds for distributed estimation protocols. As a consequence of the re-
duction from memory bounded estimation to communication bounded estimation, we focus
our attention on proving lower bounds for distributed estimation protocols. We introduce a
general lower bound technique for showing that if an estimator V̂ is computed by a dis-
tributed estimation protocol using insufficiently-many resource (as measured by the parame-
ters (m,n, b)), then it is not (ε, δ)-accurate (for suitable choices of ε and δ):

sup
V ∈V

PV
(
�(V , V̂ ) ≥ ε

) ≥ δ.

To show this, we consider the Bayesian (a.k.a. average-case) version of the statistical infer-
ence problem, in which nature draws the parameter V from a prior π on the parameter space
V . Since

sup
V ∈V

PV
(
�(V , V̂ ) ≥ ε

) ≥
∫

PV
(
�(V , V̂ ) ≥ ε

)
π(dV ),

it is enough to show that the RHS of the above display is at least δ. In order to do so, we will
rely on Fano’s inequality for Hellinger Information [19], which we introduce next.

8.3. Hellinger information and Fano’s inequality. Recall that in a statistical inference
problem, the N samples {xi,j : i ∈ [m], j ∈ [n]} ⊂ X are drawn i.i.d. from μV . In the present
distributed setting, the samples are distributed across m = N/n machines, with n samples per
machine. The data set at machine i is denoted by Xi ∈ X n. The machines then communicate
via a distributed estimation protocol to write a transcript Y ∈ {0,1}mb on the blackboard;
the final estimator V̂ is only a function of Y . Let P(Y = y|X1:m) denote the conditional
probability that the final transcript is y ∈ {0,1}mb given the data sets X1:m. Now define

μV (dXi )
def=

n∏
j=1

μV (dxi,j ),(11)

PV (Y = y)
def=

∫
P(Y = y|X1:m) · μV (dX1) · μV (dX2) · · ·μV (dXm).(12)

In words, μV (dXi ) and PV (Y = y) are respectively the marginal laws of Xi (the data set
at machine i) and the blackboard transcript Y when the parameter picked by nature is V .
We compare two distributions P1 and P2 on {0,1}mb using the squared Hellinger distance,
defined by

d2
hel(P1,P2) = 1

2

∑
y∈{0,1}mb

(√
P1(Y = y) −

√
P2(Y = y)

)2
.
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With these preliminary definitions in place, we now define the Hellinger Information between
the parameter V and the blackboard transcript Y by

Ihel(V ;Y )
def= inf

Q

∫
d2

hel(PV ,Q)π(dV ),(13)

where the infimum is taken over all probability measures on {0,1}mb.
Fano’s inequality for Hellinger Information (due to Chen, Guntuboyina and Zhang [19])

provides a lower bound on the error of any estimator for V based on the transcript Y in terms
of the Hellinger Information Ihel(V ;Y ) between V and Y .

FACT 2 (Fano’s inequality for Hellinger Information [19]). Let � : V × V̂ → {0,1} be an
arbitrary 0-1 loss. Let π be an arbitrary prior on V . Define

R0(π)
def= min

u∈V̂

(∫
V

�(V ,u)π(dV )

)
.

Then, for any estimator V̂ : {0,1}mb → V̂ , we have∫
V
EV

[
�
(
V , V̂ (Y )

)]
π(dV ) ≥ R0(π) − √

2Ihel(V ;Y ).

In the above display, Ihel(V ;Y ) denotes the Hellinger information between the random vari-
ables: V ∼ π and Y ∼ PV .

PROOF. The above claim is a minor modification of a result proved by Chen, Guntuboy-
ina and Zhang [19], Corollary 7, item (ii). We provide a derivation in the Supplementary
Material [32], Appendix I.3, for completeness. �

Note that R0(π) is the lowest possible estimation error when the transcript Y is not ob-
served. The above fact says that

√
2Ihel(V ;Y ) is an upper bound on the reduction in estima-

tion error possible by leveraging information contained in the transcript Y . Since we wish to
lower bound ∫

PV
(
�(V , V̂ ) ≥ ε

)
π(dV ),

we will apply Fano’s inequality with the 0-1 loss �̃ defined as follows:

�̃(v, v̂)
def=

{
0 if �(v, v̂) < ε,

1 if �(v, v̂) ≥ ε.

8.4. Information bound for distributed estimation protocols. Next, we present a general
upper bound on Ihel(V ;Y ) for distributed estimation protocols.

PROPOSITION 1. Let:

1. π be a prior distribution on the parameter space V ;
2. μ0 be a reference probability measure on X n such that μV � μ0 for all V ∈ V ;
3. μ be a null probability measure on X n such that μ and μ0 are mutually absolutely

continuous;
4. Z ⊂ X n be an event such that{

X ∈X n :
∣∣∣∣ dμ

dμ0
(X) − 1

∣∣∣∣ ≤ 1

2

}
⊂ Z,

and let Zi for i ∈ [m] be the indicator random variables defined by Zi
def= IXi∈Z .
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Consider a hypothetical setup in which machine i ∈ [m] is exceptional, and the data X1:m
are sampled independently as follows:

(Xj )j �=i
i.i.d.∼ μ, Xi ∼ μ0.

Let P
(i)

0 and E
(i)

0 denote the probabilities and expectations in this setup:

P
(i)

0 (Y = y)
def=

∫
P(Y = y|X1:m) μ0(dXi ) · ∏

j �=i

μ(dXj ),

E
(i)

0 f (X1:m,Y )
def=

∫ ∑
y∈{0,1}mb

f (X1:m,y) P(Y = y|X1:m) μ0(dXi ) · ∏
j �=i

μ(dXj ).

Also, let E
(i)

0 [·|·] denote conditional expectations in this setup.

There is a universal constant K such that, if V ∼ π , X1:m
i.i.d.∼ μV and Y is the transcript

produced by a distributed estimation protocol with parameters (m,n, b), then

Ihel(V ;Y ) ≤ K

m∑
i=1

E
(i)

0

[
Zi

∫ (
E

(i)

0

[
dμV

dμ0
(Xi ) − dμ

dμ0
(Xi )

∣∣∣Y ,Zi, (Xj )j �=i

])2
π(dV )

]

+ mK

2

(∫
μV

(
Zc)π(dV ) + μ

(
Zc)).

PROOF. The proof of this result is presented in the Supplementary Material [32], Ap-
pendix B.1. �

In order to apply Proposition 1, one needs to suitably choose the reference measure μ0,
null measure μ and the event Z . The considerations involved in these choices are as follows:

1. The reference measure μ0 is chosen so that it is easy to analyze the concentration
behavior of the following likelihood ratios when X ∼ μ0:

dμV

dμ0
(X),

dμ

dμ0
(X).

Typically, μ0 will be the standard Gaussian measure over X n.
2. We will often set the null measure μ = μ0. However, in some cases, we will be able to

obtain improved lower bounds with the following choice:

μ(·) =
∫

μV (·) π(dV ),

which is the marginal law of the data set in a single machine after integrating out V ∼ π .
3. Finally, we will typically set Z minimally as

Z =
{
X ∈X n :

∣∣∣∣ dμ

dμ0
(X) − 1

∣∣∣∣ ≤ 1

2

}
.

However, in some cases, we will find it helpful to enrich Z with other high probability events
that facilitate the analysis of (our upper bound on) Hellinger information.

8.5. Linearization. To use our upper bound on Hellinger information, we develop upper
bounds on

�2
i

(
y, zi, (Xj )j �=i

) def=
∫ (

E
(i)

0

[
dμV

dμ0
(Xi ) − dμ

dμ0
(Xi )

∣∣∣Y = y,Zi = zi, (Xj )j �=i

])2
π(dV ).

A useful technique to control �2
i (y, zi, (xj )j �=i ) is linearization, described below.
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LEMMA 1 (Linearization). We have

�
(
y, zi, (Xj )j �=i

) = sup
S:V→R‖S‖π≤1

E
(i)

0

[〈
dμV

dμ0
(Xi ) − dμ

dμ0
(Xi ), S

〉
π

∣∣∣Y = y,Zi = zi, (Xj )j �=i

]
,

where ‖ · ‖π and 〈·, ·〉π denote the L2 norm and inner product with respect to the prior π :

‖S‖2
π =

∫
S2(V )π(dV ),〈

dμV

dμ0
(Xi ) − dμ

dμ0
(Xi ), S

〉
π

=
∫

S(V ) ·
(

dμV

dμ0
(Xi ) − dμ

dμ0
(Xi )

)
π(dV ).

PROOF. The proof follows from the following identities:

�
(
y, zi, (Xj )j �=i

) (a)=
∥∥∥∥E(i)

0

[
dμV

dμ0
(Xi ) − dμ

dμ0
(Xi )

∣∣∣Y = y,Zi = zi, (Xj )j �=i

]∥∥∥∥
π

(b)= sup
S:V→R‖S‖π≤1

〈
S,E

(i)

0

[
dμV

dμ0
(Xi ) − dμ

dμ0
(Xi )

∣∣∣Y = y,Zi = zi, (Xj )j �=i

]〉
π

(c)= sup
S:V→R‖S‖π≤1

E
(i)

0

[〈
S,

dμV

dμ0
(Xi ) − dμ

dμ0
(Xi )

〉
π

∣∣∣Y = y,Zi = zi, (Xj )j �=i

]
.

In the step marked (a), we used the definition of � and ‖ · ‖π . In the step marked (b), we used
the Cauchy–Schwarz inequality (and its tightness condition). In the step marked (c), we used
Fubini’s theorem to move the inner product 〈·, ·〉π inside the conditional expectation. �

8.6. Geometric inequalities. In order to upper bound(
E

(i)

0

[〈
S,

dμV

dμ0
(Xi ) − dμ

dμ0
(Xi )

〉
π

∣∣∣Y = y,Zi = zi, (Xj )j �=i

])2
,(14)

we will use the framework of geometric inequalities introduced by Han, Özgür and Weiss-
man [40], which shows that the task of upper bounding (14) can be reduced to the task of
understanding the concentration properties of the following function when X ∼ μ0:

f (Xi ) =
〈
S,

dμV

dμ0
(X) − dμ

dμ0
(X)

〉
π

.

Similar results were known in the concentration of measure literature prior to the work
of Han, Özgür and Weissman under the name ‘transportation lemma” (see, e.g., [12],
Lemma 4.18). This result has also been used in other works studying communication lower
bounds for distributed estimation [1, 5]. The following proposition summarizes this tech-
nique.

PROPOSITION 2 (Boucheron, Lugosi and Massart [12], Han, Özgür and Weissman [40]).
Let f : X n →R be given, and consider X ∼ μ0.

1. For any ξ > 0,∣∣E(i)

0
[
f (Xi )|Y = y,Zi = zi, (Xj )j �=i

]∣∣
≤ log(E0[eξf (X)] ∨E0[e−ξf (X)])

ξ
+ 1

ξ
log

1

P
(i)

0 (Y = y,Zi = zi |(Xj )j �=i)
.
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2. For any q ≥ 1,

∣∣E(i)

0
[
f (Xi )|Y = y,Zi = zi, (Xj )j �=i

]∣∣ ≤
(

E0|f (X)|q
P

(i)

0 (Y = y,Zi = zi |(Xj )j �=i )

) 1
q

.

PROOF. The proof of this result is presented in the Supplementary Material [32], Ap-
pendix B.2. �

We have now introduced all the key elements of our lower bound framework.

8.7. Comparison to prior works. Recent works by Han, Özgür and Weissman [40],
Barnes, Han and Ozgur [5], Acharya et al. [1] have developed general frameworks to ob-
tain communication lower bounds for distributed statistical inference problems. The general
information bounds developed in these works yield lower bounds for the simpler “hide-and-
seek” variant of the inference problems [58]. In the hide-and-seek variant, the statistician
knows the entire parameter vector V ∈ {±1}d except for a single coordinate, hidden at an
unknown index i ∈ [d]. The goal is to infer the sign of the hidden coordinate.

A hide-and-seek version inference problem can always be solved in the distributed setting
with the information-theoretic sample complexity as long as each machine is allowed to com-
municate at least �(d · polylog(d)) bits. To see this, note that because the statistician knows
the entire parameter vector except for a single coordinate hidden at an unknown index i ∈ [d],
the possible parameter space for the inference problem is a discrete set of size 2d—there are
d possibilities for the index of the unknown coordinate, and two possibilities for the sign of
the unknown coordinate. Hence, each machine j ∈ [m] can transmit the likelihoods of all
2d elements of this discrete set given its own data set Xj , using O(d · polylog(d)) bits of
communication. These likelihoods can be aggregated (by taking their product) to obtain the
likelihoods given all of the data; this is a sufficient statistic for any inference problem.

Since the information bounds developed in the previously mentioned works [1, 5, 40]
apply to the hide-and-seek variant of inference problems, we are unable to use them directly
to obtain nontrivial lower bounds for k-TPCA and k-NGCA in the regime where the problems
are information-theoretically solvable (N = m · n � d) and each machine is allowed at least
b � d · polylog(d) bits of communication. The information bound in Proposition 1 builds on
these works to address this limitation.

9. Proof of computational lower bound for tensor PCA (Theorem 1). As an illustra-
tion, we instantiate the framework introduced in Section 8 to obtain the computational lower
bound for Symmetric Tensor PCA (k-TPCA) claimed in (Theorem 1). The computational
lower bounds for the other inference problems studied in this paper are obtained by follow-
ing the same recipe and their detailed proofs appear in the Supplementary Material [32].

The computational lower bound for k-TPCA (Theorem 1) is obtained by transferring a
communication lower bound for distributed estimation protocols for k-TPCA to memory
bounded estimators for the same problem using the reduction in Fact 1.

In the (Bayesian) distributed setup for k-TPCA, the parameter V is drawn from the prior
π

def= Unif({±1}d), and then X1:N are sampled i.i.d. from μV ; these tensors are distributed
across m = N machines with n = 1 sample/machine. The execution of a distributed estima-
tion protocol with parameters (m,n = 1, b) results in a transcript Y ∈ {0,1}mb written on the
blackboard.
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Instantiating Fano’s inequality (Fact 2) in the context of k-TPCA (the Supplementary Ma-
terial [32], Appendix C.2, contains a detailed derivation) shows that for any distributed esti-
mator V̂ (Y ):

inf
V ∈V PV

( |〈V ,V̂ (Y )〉|2
‖V ‖2‖V̂ (Y )‖2

≥ t2

d

)
≤ 2 exp

(
− t2

2

)
+ √

2Ihel(V ;Y ).(15)

The main technical result needed to prove Theorem 1 is the following bound on Ihel(V ;Y ) for
k-TPCA in Proposition 3. We obtain this result by instantiating our general information bound
(Proposition 1) and controlling the resulting upper bound using the linearization technique
(Lemma 1) and the geometric inequalities stated in Proposition 2. Applying the geometric
inequalities, in turn, requires sharp variance and concentration estimates for nonlinear func-
tions of Gaussian random variables derived from the likelihood ratio for this model, which
we obtain by exploiting the Hermite decomposition of the likelihood ratio.

PROPOSITION 3 (Information bound for k-TPCA). Let Y ∈ {0,1}mb be the transcript
generated by a distributed estimation protocol for k-TPCA with parameters (m,1, b). Then

Ihel(V ;Y )

≤ Ck

(
σ 2 · m · b + 1

d
+ λ2 · b ·

(
λ2 ∨ log(m · d)

d

) k
2 + inf

α≥2

λ2α

d
+ m ·

(
Ckαλ2
√

dk
+ e−d

) α
2
)
,

where

σ 2 def=
⎧⎨⎩Ck · λ2 · d− k+2

2 if k is even,

Ck · λ2 · d− k+1
2 if k is odd;

and Ck > 0 is a positive constant that depends only on k. In particular, in the scaling regime
(as d → ∞)

λ 
 1, m 
 dη, b 
 dβ

for any constants η ≥ 1 and β ≥ 0 that satisfy

η + β <

⌈
k + 1

2

⌉
,

we have Ihel(V ;Y ) → 0 as d → ∞.

Proposition 3 is proved in the Supplementary Material [32], Appendix C. With this infor-
mation bound in hand, we can complete the proof of Theorem 1.

PROOF OF THEOREM 1. Appealing to the reduction in Fact 1 with the choice n = 1,
we note that any memory bounded estimator V̂ with resource profile (N,T , s) can be imple-
mented using a distributed estimation protocol with parameters (N,1, sT ). Applying Fano’s
inequality (15) and Proposition 3 to the distributed implementation of the memory-bounded
estimator immediately yields Theorem 1. �
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SUPPLEMENTARY MATERIAL

Supplement to “Statistical-computational trade-offs in tensor PCA and related prob-
lems via communication complexity” (DOI: 10.1214/23-AOS2331SUPP; .pdf). This sup-
plement provides computational lower bounds for the higher-order canonical correlation anal-
ysis problem, along with the complete proofs and some additional discussion of the results
presented in the paper.
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Organization. This supplement proves the results presented in the main paper. Through-
out the supplement, intermediate results introduced in the supplement are numbered accord-
ing to the section in which they appear. Results numbered without their section number refer
to results from the main paper. For e.g. Fact B.1, Lemma C.1 and Proposition H.1 refer to
results introduced in Appendix B, Appendix C, and Appendix H in the supplement. On the
other hand, Proposition 1 refers to Proposition 1 from the main paper. The supplement is
organized as follows:

1. Appendix A contains a glossary of notations used through out the supplement.
2. Appendix B proves the general information bound stated in Proposition 1 and the Geo-

metric Inequalities from Proposition 2.
3. Appendix C is devoted to the proof of the information bound for Symmetric Tensor PCA

(Proposition 3).
4. Appendix D provides come additional discussion for the Symmetric Tensor PCA prob-

lem. Appendix D.1 discusses the apparent deficiencies in our lower bounds for odd order
Tensor PCA. Appendix D.2 complements Section 5.4.1 in the main paper by providing
additional details to explain how many natural algorithms for Symmetric k-Tensor PCA
(k-TPCA) fit into the template of (nearly) linear memory iterative algorithms and dis-
cusses the consequences of the computational lower bound for k-TPCA (Theorem 1) for
these algorithms.

5. Appendix E presents the proof of the computational lower bound Asymmetric k-Tensor
PCA (Theorem 2).

6. Appendix F provides the proof of the computational lower bound for the order-k Non-
Gaussian Component Analysis problem (Theorem 3)

7. Appendix G shows that computational lower bounds for k-NGCA imply lower bounds for
learning Gaussian mixture models and binary generalized linear models. This appendix
also provides two constructions for non-Gaussian distributions that satisfy our assump-
tions.



STATISTICAL-COMPUTATIONAL TRADE-OFFS VIA COMMUNICATION COMPLEXITY 3

8. Appendix H introduces the order-k Canonical Correlation Analysis problem (k-CCA),
states our computational lower bound for this problem and provides its complete proof.

9. Finally, Appendix I contains some background on Hermite polynomials and the Gaussian
Hilbert space along with some additional technical facts and results used in this paper.

APPENDIX A: NOTATION

Important sets. N and R denote the set of positive integers and the set of real numbers,
respectively. N0

def
= N∪ {0} is the set of non-negative integers. For each k, d ∈N, [k] denotes

the set {1,2,3, . . . , k}, Rd denotes the d-dimensional Euclidean space, Sd−1 denotes the
unit sphere in Rd, Rd×k denotes the set of all d× k matrices,

⊗kRd denotes the set of all
d × d × · · · × d (k times) tensors with R-valued entries, and

⊗kNd0 denotes the set of all
d× d× · · · × d (k times) tensors with N0-valued entries.

Linear Algebra. We denote the d-dimensional vectors (1,1, . . . ,1), (0,0, . . . ,0) and the
d× d identity matrix using 1d, 0d, and Id respectively. We will omit the subscript d when
the dimension is clear from the context. The vectors e1,e2, . . . ,ed denote the standard basis
vectors of Rd. For a vector v ∈ Rd, ‖v‖,‖v‖1,‖v‖∞ denote the `2, `1, `∞ norms of v, and
‖v‖0 denotes the sparsity (number of non-zero entries) of v. For two vectors u,v ∈ Rd,
〈u,v〉 denotes the standard inner product on Rd: 〈u,v〉 def

=
∑d

i=1 uivi. For two matrices or
tensorsU and V , we analogously define ‖U‖,‖U‖1,‖U‖∞,‖U‖0, and 〈U ,V 〉 by stacking
their entries to form a vector. For a matrix A, AT denotes the transpose of A and ‖A‖op
denotes the operator (or spectral) norm ofA. For a square matrixA, Tr(A) denotes the trace
of A. Finally, for vectors v1:k ∈ Rd, v1 ⊗ v2 ⊗ · · · ⊗ vk denotes the k-tensor with entries
(v1⊗ v2⊗ · · · ⊗ vk)i1,i2,...,ik = (v1)i1 · (v2)i2 · · · (vk)ik for i1:k ∈ [d]. When v1 = v2 = · · ·=
vk = v, we shorthand v ⊗ v ⊗ · · · ⊗ v as v⊗k. Analogously, given two tensors U ∈

⊗`Rd
and V ∈

⊗mRd, U ⊗ V is the (` + m)-tensor with entries (U ⊗ V )i1,i2,...,i`,j1,j2,...,jm =
(U)i1,i2,...,i` · (V )j1,j2,...,jm for i1:` ∈ [d], j1:m ∈ [d]. This definition is naturally extended to
define the (`1 + `2 + · · ·+ `k)-tensorU1⊗U2⊗· · ·⊗Uk for tensorsU1:k withUi ∈

⊗`i Rd
for each i ∈ [k].

Asymptotic notation. Given a two non-negative sequences ad and bd indexed by d ∈N, we
use the following notations to describe their relative magnitudes for large d. We say that
ad . bd or ad = O(bd) or bd = Ω(ad) if lim supd→∞(ad/bd) <∞. If ad . bd and bd . ad,
then we say that ad � bd. If there exists a constant ε > 0 such that ad · dε . bd we say that
ad� bd. We use polylog (d) to denote any sequence ad such that ad � logt(d) for some fixed
constant t≥ 0.

Important distributions. N (0,1) denotes the standard Gaussian measure on R, and
N (0,Id) denotes the standard Gaussian measure on Rd. For any finite set A, Unif (A) de-
notes the uniform distribution on the elements of A.

Hermite polynomials. We will make extensive use of the Hermite polynomials {Hi : i ∈
N0} which are the orthonormal polynomials for the Gaussian measure N (0,1) and their
multivariate analogs {Hc : c ∈ Nd0}, which are the orthornormal polynomials for the d-
dimensional Gaussian measure N (0,Id). We provide the necessary background regarding
Hermite polynomials and analysis on the Gaussian Hilbert space in Appendix I.2.

Miscellaneous. For an event E , IE denotes the indicator random variable for E . For x, y ∈R,
x ∨ y and x ∧ y denote max(x, y) and min(x, y), respectively; and sign(x) denotes the sign
function (sign(x) = 1 iff x > 0, sign(x) =−1 iff x < 0 and sign(0) = 0). For x > 0, log(x)
denotes the natural logarithm (base e) of x.
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APPENDIX B: PROOFS OF THE INFORMATION BOUND AND GEOMETRIC
INEQUALITIES

This appendix presents the proofs of our general information bound (Proposition 1) and
the Geometric Inequalities (Proposition 2).

B.1. Proof of Proposition 1. In this section, we present the proof of Proposition 1. This
section is organized as follows:

1. In Section B.1.1, we introduce some additional notation used in the proof.
2. In Section B.1.2, we collect some well-known properties of distributed estimation algo-

rithms.
3. In Section B.1.3, we present the actual proof of Proposition 1.

B.1.1. Additional Notation. Recall that in the distributed learning setup, the data
X1:m

i.i.d.∼ µV . We use PV and EV to denote probabilities and expectations, respectively,
when the dataset of each machine is generated i.i.d. from µV . For instance, the marginal
distribution of the transcript in this setup is given by

PV (Y = y)
def
=

∫
P(Y = y|X1:m) µV (dX1)µV (dX2) · · ·µV (dXm).(B.1)

Similarly, the expectation of any function f of the data X1:m and the transcript Y in this
setup is

EV f(X1:m,Y )
def
=

∫ ∑
y∈{0,1}mb

f(X1:m,y) P(Y = y|X1:m) µV (dX1) · · ·µV (dXm).

(B.2)

For our analysis, it will be helpful to consider additional hypothetical setups in which the
datasets for some (or all) of the machines are generated from a distribution other than µV
(such as the null measure µ or the reference measure µ0 introduced in Proposition 1). We
introduce the following three hypothetical setups:

Setup 1: Here, the data samples X1:m
i.i.d.∼ µ. We use P and E to denote the probabilities and

expectations in this setup:

P(Y = y)
def
=

∫
P(Y = y|X1:m) µ⊗m(dX1:m),(B.3a)

Ef(X1:m,Y )
def
=

∫
Xm

∑
y∈{0,1}mb

f(X1:m,y) P(Y = y|X1:m) µ⊗m(dX1:m).(B.3b)

We also use E[g(X1:m)|Y = y] to denote conditional expectations in this setup.
Setup 2: Here, data samples X1:m

i.i.d.∼ µ0. We use P0 and E0 to denote the probabilities and
expectations in this setup:

P0(Y = y)
def
=

∫
P(Y = y|X1:m) µ⊗m0 (dX1:m),(B.4a)

E0f(X1:m,Y )
def
=

∫
Xm

∑
y∈{0,1}mb

f(X1:m,y) P(Y = y|X1:m) µ⊗m0 (dX1:m).(B.4b)

We also use E0[g(X1:m)|Y = y] to denote conditional expectations in this setup.
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Setup 3: Here, a fixed machine i ∈ [m] is exceptional, and the data X1:m are sampled inde-
pendently as follows:

(Xj)j 6=i
i.i.d.∼ µ, Xi ∼ µV .

We use P(i)
V and E(i)

V to denote the probabilities and expectations in this setup:

P(i)
V (Y = y)

def
=

∫
P(Y = y|X1:m) µV (dXi) ·

∏
j 6=i

µ(dXj),

(B.5a)

E(i)
V f(X1:m,Y )

def
=

∫
Xm

∑
y∈{0,1}mb

f(X1:m,y) P(Y = y|X1:m) µV (dXi) ·
∏
j 6=i

µ(dXj).

(B.5b)

We also use E(i)
V [g(X1:m)|Y = y] to denote conditional expectations in this setup.

Setup 4: Here, a fixed machine i ∈ [m] is exceptional, and the data X1:m are sampled inde-
pendently as follows:

(Xj)j 6=i
i.i.d.∼ µ, Xi ∼ µ0.

We use P(i)
0 and E(i)

0 to denote the probabilities and expectations in this setup:

P(i)
0 (Y = y)

def
=

∫
P(Y = y|X1:m) µ0(dXi) ·

∏
j 6=i

µ(dXj),

(B.6a)

E(i)
0 f(X1:m,Y )

def
=

∫
Xm

∑
y∈{0,1}mb

f(X1:m,y) P(Y = y|X1:m) µ0(dXi) ·
∏
j 6=i

µ(dXj).

(B.6b)

We also use E(i)
0 [g(X1:m)|Y = y] to denote conditional expectations in this setup.

(Note that Setup 4 is the hypothetical setup defined in Proposition 1.)

B.1.2. Properties of Distributed Algorithms. We recall two well-known properties of
distributed estimation protocols in the blackboard model of communication (Definition 2),
taken from Bar-Yossef et al. [3] and Jayram [22].

FACT B.1 (Bar-Yossef et al. [3]). Suppose datasets X1:m are distributed across m ma-
chines. Let Y ∈ {0,1}mb be the transcript produced by a distributed estimation protocol.

1. The likelihood of the transcript given the data factorizes as follows:

P(Y = y|X1:m) =

m∏
i=1

Fi(y|Xi),

where each Fi(y|Xi) takes values in [0,1].
2. Suppose that the datasets X1:m are drawn from a product measure,

X1:m ∼
m⊗
i=1

νi,
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then the conditional distribution of X1:m given Y = y is also a product measure:

X1:m|Y = y ∼
m⊗
i=1

νyi ,

where, for each i ∈ [m],

νyi (dX) =
Fi(y|X)νi(dX)∫
X Fi(y|X)νi(dX)

.

We also use the following bound on the Hellinger distance, which is a consequence of the
“cut-and-paste” property of distributed estimation protocols [3, 22]. This result has been used
in several prior works that prove lower bounds for such protocols [e.g., 10, 1].

FACT B.2 (Jayram [22]). Recall the definitions of PV from (B.1), P from (B.3) and P(i)
V

from (B.5). There exists a universal constant K such that

d2
hel

(
PV ,P

)
≤K ·

m∑
i=1

d2
hel

(
P(i)
V ,P

)
.

We are now ready to present the proof of Proposition 1.

B.1.3. Proof of Proposition 1.

PROOF OF PROPOSITION 1. Recall that:

Ihel (V ;Y )
def
= inf

Q

∫
d2
hel (PV ,Q)π(dV ),

We choose Q = P to obtain the bound

Ihel (V ;Y )≤
∫
d2
hel

(
PV ,P

)
π(dV ).

By Fact B.2, we have

d2
hel

(
PV ,P

)
≤K ·

∫ m∑
i=1

d2
hel

(
P(i)
V ,P

)
π(dV ).

Recall that

d2
hel

(
P(i)
V ,P

)
=

1

2

∑
y∈{0,1}mb

(√
P(i)
V (Y = y)−

√
P(Y = y)

)2

=
1

2

∑
y∈{0,1}mb

P(i)
0 (Y = y) ·


√√√√P(i)

V (Y = y)

P(i)
0 (Y = y)

−

√√√√ P(Y = y)

P(i)
0 (Y = y)

2

.

Next we observe that, by Fact B.1,

P(Y = y) =

m∏
j=1

EFj(y|Xj),

P(i)
0 (Y = y) = E0Fi(y|Xi) ·

m∏
j=1,
j 6=i

EFj(y|Xj),
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P(i)
V (Y = y) = EV Fi(y|Xi) ·

m∏
j=1,
j 6=i

EFj(y|Xj).

Hence,

P(i)
V (Y = y)

P(i)
0 (Y = y)

=
EV Fi(y|Xi)

E0Fi(y|Xi)
=

1

E0Fi(y|Xi)
E0

[
dµV
dµ0

(Xi)Fi(y|Xi)

]
(a)
= E(i)

0

[
dµV
dµ0

(Xi)

∣∣∣∣Y = y

]
,

P(Y = y)

P(i)
0 (Y = y)

=
EFi(y|Xi)

E0Fi(y|Xi)
=

1

E0Fi(y|Xi)
E0

[
dµ

dµ0
(Xi)Fi(y|Xi)

]
(a)
= E(i)

0

[
dµ

dµ0
(Xi)

∣∣∣∣Y = y

]
.

In the step marked (a) above, we used the characterization on the conditional distribution of
Xi given Y = y. Hence, we have obtained

Ihel (V ;Y )≤ K

2

m∑
i=1

∑
y∈{0,1}mb

P(i)
0 (Y = y)×

∫ (√
E(i)

0

[
dµV
dµ0

(Xi)
∣∣Y = y

]
−

√
E(i)

0

[
dµ

dµ0
(Xi)

∣∣Y = y

])2

π(dV ).

We can write

E(i)
0

[
dµV
dµ0

(Xi)

∣∣∣∣Y = y

]
= E(i)

0

[
dµV
dµ0

(Xi)IXi∈Z

∣∣∣∣Y = y

]
+E(i)

0

[
dµV
dµ0

(Xi)IXi /∈Z

∣∣∣∣Y = y

]
,

and analogously for the term involving the likelihood ratio dµ/dµ0. For any a1, a2, ε1, ε2 ≥ 0,
we have the scalar inequality

(
√
a1 + ε1 −

√
a2 + ε2)2 = ε1 + ε2 + (

√
a1 −

√
a2)2 + 2

√
a1a2 − 2

√
(a1 + ε1)(a2 + ε2)

≤ ε1 + ε2 + (
√
a1 −

√
a2)2.

This gives us

Ihel (V ;Y )≤ K

2
· (I + II) ,

where

I
def
=

∫ m∑
i=1

∑
y

P(i)
0 (Y = y)×

(
E(i)

0

[
dµV
dµ0

(Xi)IXi /∈Z

∣∣∣∣Y = y

]
+E(i)

0

[
dµ

dµ0
(Xi)IXi /∈Z

∣∣∣∣Y = y

])
π(dV )



8

and

II
def
=

m∑
i=1

∑
y

P(i)
0 (Y = y)×

∫ (√
E(i)

0

[
dµV
dµ0

(Xi)IXi∈Z

∣∣∣∣Y = y

]
−

√
E(i)

0

[
dµ

dµ0
(Xi)IXi∈Z

∣∣∣∣Y = y

])2

π(dV ).

We simplify I and II separately below.

Analysis of I. By the tower property of conditional expectations,

I =

∫ m∑
i=1

(
E(i)

0

[
dµV
dµ0

(Xi)IXi /∈Z

]
+E(i)

0

[
dµ

dµ0
(Xi)IXi /∈Z

])
π(dV )

=

∫ m∑
i=1

(
E0

[
dµV
dµ0

(Xi)IXi /∈Z

]
+E0

[
dµ

dµ0
(Xi)IXi /∈Z

])
π(dV )

=m ·
(∫

µV (Zc)π(dV ) + µ(Zc)
)
.

Analysis of II. Note that

E(i)
0

[
dµV
dµ0

(Xi)IXi∈Z

∣∣∣∣Y = y

]
= E(i)

0

[
dµV
dµ0

(Xi)

∣∣∣∣Y = y,Xi ∈Z
]
· P(i)

0 (Xi ∈Z|Y = y).

Analogously,

E(i)
0

[
dµ

dµ0
(Xi)IXi∈Z

∣∣∣∣Y = y

]
= E(i)

0

[
dµ

dµ0
(Xi)

∣∣∣∣Y = y,Xi ∈Z
]
· P(i)

0 (Xi ∈Z|Y = y).

And hence,(√
E(i)

0

[
dµV
dµ0

(Xi)IXi∈Z

∣∣∣∣Y = y

]
−

√
E(i)

0

[
dµ

dµ0
(Xi)IXi∈Z

∣∣∣∣Y = y

])2

=

P(i)
0 (Xi ∈Z|Y = y)×(√

E(i)
0

[
dµV
dµ0

(Xi)

∣∣∣∣Y = y,Xi ∈Z
]
−

√
E(i)

0

[
dµ

dµ0
(Xi)

∣∣∣∣Y = y,Xi ∈Z
])2

.

Note that by definition of Z ,

E(i)
0

[
dµ

dµ0
(Xi)

∣∣∣∣Y = y,Xi ∈Z
]
≥ 1

2
.

Note the scalar inequality for any a1 ≥ 0, a2 ≥ 1/2,

(
√
a1 −

√
a2)2 =

(a1 − a2)2

(
√
a1 +

√
a2)2

≤ (a1 − a2)2

a2
≤ 2(a1 − a2)2.

This gives us
1
2(II)≤
m∑
i=1

∑
y∈{0,1}mb

P(i)
0 (Y = y,Xi ∈Z)

∫ (
E(i)

0

[
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

∣∣∣∣Y = y,Xi ∈Z
])2

π(dV ).
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Recall that Zi = IXi∈Z , so 1
2(II) can be bounded by:

m∑
i=1

∑
y∈{0,1}mb

P(i)
0 (Y = y,Zi = 1)

∫ (
E(i)

0

[
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

∣∣∣∣Y = y,Zi = 1

])2

π(dV )

≤
m∑
i=1

∑
(y,z)∈{0,1}mb+1

z · P(i)
0 (Y = y,Zi = z)

∫ (
E(i)

0

[
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

∣∣∣∣Y = y,Zi = z

])2

π(dV )

=

m∑
i=1

E(i)
0

[
Zi ·

∫ (
E(i)

0

[
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

∣∣∣∣Y ,Zi])2

π(dV )

]
.

Note that, due to the conditional independence property given in Fact B.1 (item 2), we have

Xi|Y
d
=Xi|(Y , (Xj)j 6=i),

where d
= denotes equality of distributions. Since Zi is a function of Xi, we have

(Xi,Zi)|Y
d
= (Xi,Zi)|Y , (Xj)j 6=i =⇒ Xi|Zi,Y

d
=Xi|Zi,Y , (Xj)j 6=i.

Hence

II≤ 2

m∑
i=1

E(i)
0

[
Zi ·

∫ (
E(i)

0

[
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )

]
.

B.2. Proof of Proposition 2. In this section, we present the proof of Proposition 2.

PROOF OF PROPOSITION 2. The proof follows the argument from Han, Özgür and
Weissman [20]. We prove each item separately. Fix any z ∈ {0,1}, and define Z(1) = Z
and Z(0) =Zc.

1. Consider the following sequence of inequalities:∣∣∣∣E(i)
0

[
f(Xi)

∣∣∣∣Y = y,Zi = z, (Xj)j 6=i

]∣∣∣∣q (a)

≤ E(i)
0

[
|f(Xi)|q

∣∣∣∣Y = y,Zi = z, (Xj)j 6=i

]
=

∫
Z(z) |f(Xi)|q · P(Y = y|X1:m) µ0(dXi)

P(i)
0 (Y = y,Zi = z|(Xj)j 6=i)

(b)

≤
∫
X |f(Xi)|qµ0(dXi)

P(i)
0 (Y = y,Zi = z|(Xj)j 6=i)

=
E0[|f(X)|q]

P(i)
0 (Y = y,Zi = z|(Xj)j 6=i)

.

In the step marked (a) above, we used Jensen’s Inequality; in the step marked (b), we used
P(Y = y|(Xj)j∈[m])≤ 1. Hence,∣∣∣∣E(i)

0

[
f(Xi)

∣∣∣∣Y = y,Zi = z, (Xj)j 6=i

]∣∣∣∣≤
(

E0|f(X)|q

P(i)
0 (Y = y,Zi = z|(Xj)j 6=i)

) 1

q

,

as claimed.
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2. For any η ∈R,

η ·E(i)
0

[
f(Xi)

∣∣∣∣Y = y,Zi = z, (Xj)j 6=i

]
(c)

≤ logE
[
eηf(Xi)

∣∣∣∣Y = y,Zi = z, (Xj)j 6=i

]
(d)

≤ log

(
E0[eηf(Xi)]

P(i)
0 (Y = y,Zi = z|(Xj)j 6=i)

)

= logE0[eηf(X)] + log
1

P(i)
0 (Y = y,Zi = z|(Xj)j 6=i)

.

The step marked (c) above uses Jensen’s inequality, and the step marked (d) relies on the
fact that P(Y = y|(Xj)j∈[m])≤ 1. Hence, for any η ∈R,

η ·E(i)
0

[
f(Xi)

∣∣∣∣Y = y,Zi = z, (Xj)j 6=i)

]
≤ logE0[eηf(X)] + log

1

P(i)
0 (Y = y,Zi = z|(Xj)j 6=i)

.(B.7)

Now, fix ξ > 0, and set η as follows:

η = ξ · sign
(
E(i)

0

[
f(Xi)

∣∣∣∣Y = y,Zi = z, (Xj)j 6=i

])
,

so (B.7) with this choice of η yields∣∣∣∣E(i)
0

[
f(Xi)

∣∣∣∣Y = y,Zi = z, (Xj)j 6=i

]∣∣∣∣
≤ logE0[eηf(X)]

ξ
+

1

ξ
log

1

P(i)
0 (Y = y,Zi = z|(Xj)j 6=i)

≤ log(E0[eξf(X)]∨E0[e−ξf(X)])

ξ
+

1

ξ
log

1

P(i)
0 (Y = y,Zi = z|(Xj)j 6=i)

.

APPENDIX C: PROOFS FOR SYMMETRIC TENSOR PCA

C.1. Setup. This appendix is devoted to the proof Proposition 3, the information bound
for the distributed k-TPCA problem. Recall that in the distributed k-TPCA problem:

1. An unknown parameter V ∼ π is drawn from the prior π = Unif
(
{±1}d

)
.

2. A dataset consisting of m tensors X1:m is drawn i.i.d. from µV , where µV is the distri-
bution of a single tensor from the k-TPCA problem:

Xi =
λV ⊗k√
dk

+Wi, (Wi)j1,j2,...jk
i.i.d.∼ N (0,1) , ∀ j1, j2, . . . , jk ∈ [d].(C.1)

This dataset is divided among m machines with 1 tensor per machine.
3. The execution of a distributed estimation protocol with parameters (m,n = 1, b) results

in a transcript Y ∈ {0,1}mb written on the blackboard.

The information bound stated in Proposition 3 is obtained using the general information
bound given in Proposition 1 with the following choices:

Choice of µ0: Under the reference measure, X ∼ µ0 is a k-tensor with i.i.d. N (0,1) coor-
dinates.
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Choice of µ: Under the measure µ, the sample in each machine is sampled i.i.d. from:

µ(·) def
=

∫
µV (·) π(dV ).

Choice of Z: We choose the event Z as follows:

Z def
=

{
X ∈

k⊗
Rd :

∣∣∣∣ dµ

dµ0
(X)− 1

∣∣∣∣≤ 1

2

}
.

This appendix is organized into subsections as follows.

1. Appendix C.2 instantiates Fano’s inequality in the context of k-TPCA.
2. To prove the information bound for k-TPCA stated in Proposition 3, we rely on certain

analytic properties of the likelihood ratio for the k-TPCA problem. These properties are
stated (without proofs) in Appendix C.3.

3. Using these properties, Proposition 3 is proved in Appendix C.4.
4. Finally, the proofs of the analytic properties of the likelihood ratio are given in Ap-

pendix C.5.

C.2. Fano’s Inequality for Symmetric Tensor PCA. Instantiating Fano’s inequality
(Fact 2) in the context of k-TPCA yields the following corollary.

COROLLARY C.1 (Fano’s Inequality for k-TPCA). For any estimator V̂ (Y ) for k-TPCA
computed by a distributed estimation protocol, and for any t ∈R, we have

inf
V ∈V

PV

(
|〈V ,V̂ 〉|2

‖V ‖2‖V̂ ‖2
≥ t2

d

)
≤ 2 exp

(
− t

2

2

)
+
√

2Ihel (V ;Y ).

PROOF. We apply Fano’s Inequality (Fact 2) with the following loss function:

`(V ,u)
def
=

{
1 if |〈V ,u〉|

2

‖V ‖2‖u‖2 <
t2

d ,

0 otherwise.

To do so, we need to compute a lower bound on R0(π). By Hoeffding’s inequality, for any
fixed unit vector u, we have

P
(
|〈V ,u〉|2

‖V ‖2
≥ t2

d

)
≤ 2 exp

(
− t

2

2

)
.

Consequently R0(π)≥ 1− 2e−t
2/2. The claim is now immediate from Fact 2.

C.3. The Likelihood Ratio for Symmetric Tensor PCA. In this section, we collect
some important properties of the likelihood ratio for the Tensor PCA problem without proofs.
The proofs of these properties are provided in Appendix C.5. This section requires famil-
iarity with Hermite polynomials and their some of their properties, which are reviewed in
Appendix I.2.

In order to prove our desired information bound (Proposition 3) we will find it useful to
decompose the likelihood ratio for Tensor PCA in the orthogonal basis given by the Hermite
polynomials. This decomposition is given in the lemma stated below.

LEMMA C.1 (Hermite Decomposition for Tensor PCA). For any X ∈
⊗kRd, we have

dµV
dµ0

(X) =

∞∑
i=0

λi√
i!
·Hi

(〈
X,V ⊗k

〉
√
dk

)
.
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PROOF. See Appendix C.5.1.

Next, we introduce the following family of functions derived from the Hermite polynomi-
als.

DEFINITION C.1 (Integrated Hermite Polynomials). Let S : {±1}d→ R be a function
with ‖S‖π = 1. For any i ∈N0, the integrated Hermite polynomials are defined as

H i(X;S)
def
=

∫
Hi

(〈
X,V ⊗k

〉
√
dk

)
· S(V ) π(dV ).

Our rationale for introducing this definition is that proving the communication lower
bounds using Proposition 1 requires understanding the following quantities derived from the
likelihood ratio:

dµ

dµ0
(X)

def
=

∫
dµV
dµ0

(X) π(dV ),〈
dµV
dµ0

(X), S

〉
π

def
=

∫
dµV
dµ0

(X) · S(V ) π(dV ).

Using Lemma C.1, these quantities are naturally expressed in terms of the integrated Hermite
polynomials:

dµ

dµ0
(x) =

∞∑
i=0

λi√
i
·H i(X; 1),

〈
dµV
dµ0

(X), S

〉
π

=

∞∑
i=0

λi√
i
·H i(X;S).

The following lemma shows that the integrated Hermite polynomials inherit the orthogonality
property of the standard Hermite polynomials.

LEMMA C.2. For any i, j ∈N0 such that i 6= j, we have

E0[H i(X;S) ·Hj(X;S)] = 0,

where X ∼ µ0.

PROOF. See Appendix C.5.2.

Though the integrated Hermite polynomials are orthogonal, they do not have unit norm.
In general, the norm of these polynomials depends on the choice of the function S in Def-
inition C.1. The following lemma provides bounds on the norm of the integrated Hermite
polynomials.

LEMMA C.3. There is a universal constant C (independent of d) such that, for any i ∈
N0, we have the following.

1. For any S : {±1}d→R with ‖S‖π ≤ 1, we have E0[H i(X;S)2]≤ (Cki)
ki

2 · d−d
ki

2
e.

2. For any S : {±1}d→R with ‖S‖π ≤ 1, 〈S,1〉π = 0, we have E0[H i(X;S)2]≤ (Cki)
ki

2 ·
d−d

ki+1

2
e,

where X ∼ µ0.
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PROOF. See Appendix C.5.3.

As a consequence of the orthogonality property of integrated Hermite polynomials
(Lemma C.2) and the estimates obtained in Lemma C.3, one can easily estimate the second
moment of functions constructed by linear combinations of the integrated Hermite polyno-
mials: ∥∥∥∥∥

∞∑
i=0

αi ·H i(X;S)

∥∥∥∥∥
2

2

def
= E0

( ∞∑
i=0

αi ·H i(X;S)

)2

=

∞∑
i=0

α2
i ·E0[H i(X;S)2].

In our analysis, we will also find it useful to estimate the q-norms of linear combinations of
integrated Hermite polynomials for q ≥ 2:∥∥∥∥∥

∞∑
i=0

αi ·H i(X;S)

∥∥∥∥∥
q

q

def
= E0

∣∣∣∣∣
∞∑
i=0

αi ·H i(X;S)

∣∣∣∣∣
q

.

The following lemma uses Gaussian Hypercontractivity (Fact I.7) to provide an estimate for
the above quantity.

LEMMA C.4. Let {αi : i ∈N0} be an arbitrary collection of real-valued coefficients. For
any q ≥ 2, we have∥∥∥∥∥

∞∑
i=0

αi ·H i(X;S)

∥∥∥∥∥
2

q

≤
∞∑
i=0

(q− 1)i · α2
i ·E0[H i(X;S)2]

Furthermore, the inequality holds as an equality when q = 2.

PROOF. See Appendix C.5.4.

C.4. Proof of Information Bound (Proposition 3). In this subsection, we present a
proof of the information bound for distributed Tensor PCA (Proposition 3). We begin by
recalling the general information bound from Proposition 1:

Ihel (V ;Y )

K
≤

m∑
i=1

E(i)
0

[∫ (
E(i)

0

[
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )

]
+mµ(Zc).

In order to analyze the conditional expectation of the centered likelihood ratio, we will ap-
proximate it by a low-degree polynomial. Recall that in Lemma C.1, we computed the fol-
lowing expansion of the likelihood ratio in terms of the Hermite polynomials:

dµV
dµ0

(X) =

∞∑
i=0

λi√
i!
·Hi

(〈
X,V ⊗k

〉
√
dk

)
.

Recalling the definition of integrated Hermite polynomials (Definition C.1), and also that

dµ

dµ0
=

∫
dµV
dµ0

π(dV ),

we can express the integrated likelihood ratio in terms of the integrated Hermite polynomials:

dµ

dµ0
=

∞∑
i=0

λi√
i!
·H i(X; 1).



14

For any t ∈N, we define the degree t-approximation to the centered likelihood ratio:(
dµV
dµ0

(X)− dµ

dµ0
(X)

)
≤t

def
=

t∑
i=0

λi√
i!
·

(
Hi

(〈
X,V ⊗k

〉
√
dk

)
−H i(X; 1)

)
and the corresponding truncation error:(

dµV
dµ0

(X)− dµ

dµ0
(X)

)
>t

def
=

∞∑
i=t+1

λi√
i!
·

(
Hi

(〈
X,V ⊗k

〉
√
dk

)
−H i(X; 1)

)
.

By choosing t large enough, we hope that:

E(i)
0

[
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

∣∣∣∣Y ,Zi, (Xj)j 6=i

]

≈ E(i)
0

[(
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

)
≤t

∣∣∣∣Y ,Zi, (Xj)j 6=i

]
.

We estimate the approximation error in the above equation using the following lemma.

LEMMA C.5. Let X ∼ µ0. Suppose that:

t≥ (λ2e2)∨ log
4

ε
∨ 1.

Then

E0

[(
dµV
dµ0

(X)− dµ

dµ0
(X)

)2

>t

]
≤ ε.

PROOF. The proof of this result appears at the end of this subsection (Appendix C.4.2).

Finally to analyze the conditional expectation of the low degree approximation using the
Geometric Inequality (Proposition 2), we need to understand the concentration properties of
the low-degree approximation of the likelihood ratio. This is done using the moment esti-
mates provided in the following lemma.

LEMMA C.6. Let X ∼ µ0. There exists a finite constant Ck depending only on k such
that for any q ≥ 2 which satisfies:

λ2(q− 1)≤ 1

Ck
· d

k

2

t
k−2

2

,

we have

sup
S:{±1}d→R
‖S‖π≤1

(
E0

[∣∣∣∣∣
〈(

dµV
dµ0

(X)− dµ

dµ0
(X)

)
≤t
, S

〉
π

∣∣∣∣∣
q]) 2

q

≤ (q− 1) · σ2,

where

σ2 def
=

{
Ck · λ2 · d−

k+2

2 if k is even;

Ck · λ2 · d−
k+1

2 if k is odd.
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PROOF. The proof of this result appears at the end of this subsection (Appendix C.4.1).

Finally, we also need to estimate µ(Zc) to upper bound the Hellinger Information using
Proposition 1. This is the content of the following lemma.

LEMMA C.7. Consider the event Z:

Z def
=

{
x ∈ X :

∣∣∣∣ dµ

dµ0
(x)− 1

∣∣∣∣≤ 1

2

}
,

There exists a universal constant Ck (depending only on k) such that, for any 2 ≤ q ≤
d/(Ckλ

2), we have

µ(Zc)≤
(
Ckqλ

2

√
dk

+ e−d
) q

2

.

PROOF. The proof of this lemma appears at the end of this subsection (Appendix C.4.3).

With these results, we are now ready to provide a proof of Proposition 3.

PROOF OF PROPOSITION 3. Recall that in Proposition 1 we showed:

Ihel (V ;Y )

K
≤

m∑
i=1

E(i)
0

[∫ (
E(i)

0

[
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )

]
+mµ(Zc)

The centered likelihood ratio can be decomposed as:

dµV
dµ0

(X)− dµ

dµ0
(X) =

(
dµV
dµ0

(X)− dµ

dµ0
(X)

)
≤t

+

(
dµV
dµ0

(X)− dµ

dµ0
(X)

)
>t

.

Using the inequality (a+ b)2 ≤ 2a2 + 2b2 and Cauchy Schwarz Inequality:

1

2

(
E(i)

0

[
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

≤(
E(i)

0

[(
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

)
≤t

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

+

E(i)
0

[(
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

)2

>t

∣∣∣∣Y ,Zi, (Xj)j 6=i

]
.

Hence,

Ihel (V ;Y )

2K
≤

m∑
i=1

E(i)
0

[
Ψ2
i (Y ,Zi, (Xj)j 6=i)

]
+
mµ(Zc)

2
+m ·

∫
E0

[(
dµV
dµ0

(X)− dµ

dµ0
(X)

)2

>t

]
π(dV ),

(C.2)
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where:

Ψ2
i (y, zi, (xj)j 6=i)

def
=∫ (

E(i)
0

[(
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

)
≤t

∣∣∣∣Y = y,Zi = zi, (Xj)j 6=i = (xj)j 6=i)

])2

π(dV ).

Our goal is to show that for any α≥ 2, we have

Ihel (V ;Y )

2K
≤ Ckλ

2α

d
+m ·

(
Ckαλ

2

√
dk

+ e−d
)α

2

︸ ︷︷ ︸
Step 1

+
1

d︸︷︷︸
Step 2

+ 3Ck · λ2 · b
(

(λ2e2)∨ log(m · d)

d

) k

2

+ 16σ2 ·m · b︸ ︷︷ ︸
Step 3

(C.3)

The information bound in the statement of the proposition follows by choosing α optimally.
The proof proceeds in several steps. In the above display, we have grouped the terms in the
information bound according to the step they arise in.

Step 1: Controlling µ(Zc). Note that if λ2α> d/Ck, then the claimed upper bound (C.3)
on Ihel (Y ;V ) is trivial since Ihel (Y ;V ) ≤ 1. Hence we assume λ2α ≤ d/Ck. Applying
Lemma C.7 with q = α, we have

m · µ(Zc)≤m ·
(
Ckαλ

2

√
dk

+ e−d
)α

2

≤ Ckλ
2α

d
+m ·

(
Ckαλ

2

√
dk

+ e−d
)α

2

.(C.4)

Step 2: Controlling High Degree Term. We set:

t= (λ2e2)∨ log(m · d).

Applying Lemma C.5, we obtain,

E0

[(
dµV
dµ0

(X)− dµ

dµ0
(X)

)2

>t

]
≤ 1

m · d
.(C.5)

Step 3: Controlling Low Degree Term. Next we control Ψ2
i (y, zi, (xj)j 6=i). By lineariza-

tion (Lemma 1) we have:

Ψ(y, zi, (xj)j 6=i) =

sup
S:V→R
‖S‖π≤1

E(i)
0

[〈(
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

)
≤t
, S

〉
π

∣∣∣∣Y = y,Zi = zi, (Xj)j 6=i = (xj)j 6=i)

]
.

Using the Geometric Inequality framework (Proposition 2) we can bound |Ψ(y, zi, (xj)j 6=i)|
if we can understand the concentration properties of:

fS(X)
def
=

〈(
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

)
≤t
, S

〉
π

, X ∼ µ0

for any S : V → R, ‖S‖π ≤ 1. The concentration properties of fS(X) are studied in
Lemma C.6 which shows that for any q such that:

1≤ q− 1≤ 1

Ck · λ2

(
d

t

) k

2

,(C.6)
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we have

sup
S:{±1}d→R
‖S‖π≤1

(E0 [|fS(X)|q])
2

q ≤ σ2(q− 1),

where:

σ2 def
=

{
Ck · λ2 · d−

k+2

2 : k is even
Ck · λ2 · d−

k+1

2 : k is odd
.

In order to apply Proposition 2 we need to choose q appropriately. The choice of q depends
on

P(i)
0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i).

We define the set of rare and frequent realizations of Y ,Zi:

R(i)
freq

def
=

{
(y,zi) ∈ {0,1}mb+1 : P(i)

0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i)>
1

e

}
,

R(i)
rare

def
=
{

(y,zi) ∈ {0,1}mb+1 : 0< P(i)
0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i)≤ 4−b

}
.

By the tower property,

E(i)
0

[
Ψ2
i (Y ,Xi, (Xj)j 6=i)

]
= E(i)

0 E(i)
0

[
Ψ2
i (Y ,Zi, (Xj)j 6=i) | (Xj)j 6=i)

]
= E(i)

0 Fi((Xj)j 6=i) +E(i)
0 Ri((Xj)j 6=i) +E(i)

0 Oi((Xj)j 6=i).

where:

Fi((xj)j 6=i)
def
=

∑
(y,zi)∈R(i)

freq

Ψ(y, zi, (xj)j 6=i)
2 · P(i)

0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i),

Ri((xj)j 6=i)
def
=

∑
(y,zi)∈R(i)

rare

Ψ(y, zi, (xj)j 6=i)
2 · P(i)

0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i),

Oi((xj)j 6=i)
def
=

∑
(y,zi)/∈R(i)

freq∪R
(i)
rare

Ψ(y, zi, (xj)j 6=i)
2 · P(i)

0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i).

We bound each of the terms separately.

Case 1: Frequent realizations. Consider the case when (y, zi) ∈ R(i)
freq. In this case we set

q = 2. We need to check that this choice obeys (C.6). Indeed if (C.6) is violated for q = 2,
then the upper bound on Ihel (V ;Y ) in (C.3) is trivial since the term:

3Ck · λ2 · b
(

(λ2e2)∨ log(m · d)

d

) k

2

> 1.

Hence we may assume that q = 2 obeys (C.6) without loss of generality and we obtain by
Proposition 2,

|Ψ(y, zi, (xj)j 6=i)| ≤ σ · P
(i)
0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i)

− 1

2 , ∀ (y, zi) ∈R(i)
freq.

Note that |R(i)
freq| ≤ e, and hence,

Fi((xj)j 6=i)≤ 2σ2.
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Case 2: Rare realizations. Consider the case when (y, zi) ∈ R(i)
rare. In this case we set q =

4. It is straightforward to check that if q doesn’t satisfy (C.6),then the claimed bound
on Ihel (V ;Y ) in (C.3) is vacuous and hence we assume q = 4 satisfies (C.6). Applying
Proposition 2 gives us ∀ (y, zi) ∈R(i)

rare:

|Ψ(y, zi, (xj)j 6=i)| ≤
√

3 · σ · P(i)
0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i)

− 1

4 .

Hence we can upper bound Ri:

Ri((xj)j 6=i)
def
=

∑
(y,zi)∈R(i)

rare

Ψ(y, zi, (xj)j 6=i)
2 · P(i)

0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i)

≤ 3σ2
∑

(y,zi)∈R(i)
rare

P(i)
0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i)

1

2

≤ 3σ22−b|R(i)
rare|.

Recall that we assume that the communication protocol is deterministic, i.e. the bit written
by a machine is a deterministic function its local dataset and the bits written on the black-
board so far. Hence, conditional on (Xj)j 6=i there are only 2b+1 possible realizations of
(Y ,Zi) with non-zero probability. And hence, |R(i)

rare| ≤ 2b+1. Hence,

Ri((xj)j 6=i)≤ 6σ2.

Case 3: All other realizations. Now consider any realization (y, zi) /∈ R(i)
rare ∪R(i)

freq. In this
case, we set q as:

q =−2 logP(i)
0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i).

Since (y, zi) /∈R(i)
rare ∪R(i)

freq, we have

2≤ q ≤ b log(4)≤ 2b.

In particular, if

bλ2 ≤ 1

2Ck

(
d

t

) k

2

,

then (C.6) holds for this choice of q. On the other hand, if this is not the case, then the
claimed upper bound (C.3) on Ihel (V ;Y ) is trivial since

3Ck · λ2 · b
(

(λ2e2)∨ log(m · d)

d

) k

2

> 1.

Hence, we have for any (y, zi) /∈R(i)
rare ∪R(i)

freq:

|Ψ(y, zi, (xj)j 6=i)| ≤
√

2e · σ · (− logP(i)
0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i))

− 1

2 .

Hence,

Oi((xj)j 6=i)

def
=

∑
(y,zi)/∈R(i)

freq∪R
(i)
rare

Ψ(y, zi, (xj)j 6=i)
2 · P(i)

0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i)

≤ 2eσ2
∑

(y,zi)∈{0,1}mb
h(P(i)

0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i)),
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where h(·) is the entropy function h(x)
def
= −x log(x). We note that the expression ap-

pearing in the above equation is the entropy of (Y ,Zi) conditional on (Xj)j 6=i = (xj)j 6=i.
Since the protocol is deterministic (cf. Remark 4) there are at most 2b+1 realizations (y, zi)

such that P(i)
0 (Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i)> 0. Since the entropy is maximized by

the uniform distribution:

Oi((xj)j 6=i)≤ 2 · e · log(2) · σ2 · (b+ 1).

Using the bounds from the above 3 cases, we have:

E(i)
0

[
Ψ2
i (Y ,Xi, (Xj)j 6=i)

]
= E(i)

0 E(i)
0

[
Ψ2
i (Y ,Zi, (Xj)j 6=i) | (Xj)j 6=i)

]
(C.7)

≤ 8σ2 + 2e log(2) · σ2 · (b+ 1)≤ 16σ2b.(C.8)

Substituting the estimates (C.4), (C.5) and (C.7) in (C.2) we obtain (C.3). This proves the
first claim made in the statement of the proposition. Lastly, we consider scaling regime:

λ= Θ(1), m= Θ(dη), b= Θ(dβ)

for some constants η ≥ 1, β ≥ 0, which satisfy:

η+ β <

⌈
k+ 1

2

⌉
.

We set α to be any constant strictly more than max(2,4η/k) and observe that β < k/2 +
1− η ≤ k/2. Consequently, each term in the upper bound in (C.3) is od(1). This finishes the
proof of the proposition.

The remainder of this subsection is devoted to the proofs of Lemma C.6 (in Ap-
pendix C.4.1), Lemma C.5 (in Appendix C.4.2) and Lemma C.7 (in Appendix C.4.3).

C.4.1. Analysis of Low Degree Part. In this section, we provide a proof of Lemma C.6.

PROOF OF LEMMA C.6. Recall that,(
dµV
dµ0

(X)− dµ

dµ0
(X)

)
≤t

def
=

t∑
i=0

λi√
i!
·

(
Hi

(〈
X,V ⊗k

〉
√
dk

)
−H i(X; 1)

)
,

and in particular, ∫ (
dµV
dµ0

(X)− dµ

dµ0
(X)

)
≤t
π(dV ) = 0.

Hence,〈(
dµV
dµ0

(X)− dµ

dµ0
(X)

)
≤t
, S

〉
π

=

〈(
dµV
dµ0

(X)− dµ

dµ0
(X)

)
≤t
, S − 〈S,1〉π

〉
π

=

〈(
dµV
dµ0

(X)

)
≤t
, S − 〈S,1〉π

〉
π

,

where, (
dµV
dµ0

(X)

)
≤t

def
=

t∑
i=0

λi√
i!
·Hi

(〈
X,V ⊗k

〉
√
dk

)
.
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Consequently,

sup
S:{±1}d→R
‖S‖π≤1

E0

[∣∣∣∣∣
〈(

dµV
dµ0

(X)− dµ

dµ0
(X)

)
≤t
, S

〉
π

∣∣∣∣∣
q]

= sup
S:{±1}d→R
‖S‖π≤1
〈S,1〉

π
=0

E0

[∣∣∣∣∣
〈(

dµV
dµ0

(X)

)
≤t
, S

〉
π

∣∣∣∣∣
q]
.

We can compute: 〈(
dµV
dµ0

(X)

)
≤t
, S

〉
π

=

t∑
i=1

λi√
i!
·H i(X;S).

Note that when X ∼ µ0, X is a Gaussian tensor with i.i.d. N (0,1) entries. Hence by Gaus-
sian Hypercontractivity (Lemma C.4):(

E0

[∣∣∣∣∣
〈(

dµV
dµ0

(X)

)
≤t
, S

〉
π

∣∣∣∣∣
q]) 2

q

=

t∑
i=1

λ2i

i!
· (q− 1)i ·E0[H i(X;S)2]

(a)

≤
t∑
i=1

λ2i

i!
· (q− 1)i · (Cki)

ki

2 · d−d
ki+1

2
e,

where in the step marked (a) we used the estimate on E0[H i(X;S)2] from Lemma C.3. We
split the above sum into two parts:

t∑
i=1

λ2i

i!
· (q− 1)i · (Cki)

ki

2 · d−d
ki+1

2
e =

t∑
i=1
i is odd

λ2i

i!
· (q− 1)i · (Cki)

ki

2 · d−d
ki+1

2
e

+

t∑
i=1

i is even

λ2i

i!
· (q− 1)i · (Cki)

ki

2 · d−d
ki+1

2
e.

We first analyze the sum corresponding to the odd terms. By estimating the ratio of two
consecutive terms in the sum, one can obtain a constant Ck such that if,

λ4 · (q− 1)2 · tk−2

dk
≤ 1

Ck
,(C.9)

then the sum decays geometrically by a factor of 1/2. Hence,
t∑
i=1
i is odd

λ2i

i!
· (q− 1)i · (Cki)

ki

2 · d−d
ki+1

2
e ≤ Ck · λ2 · (q− 1)

dd
k+1

2
e

(
1 +

1

2
+

1

4
+ . . .

)

≤ Ck · λ2 · (q− 1)

dd
k+1

2
e

.

The same argument can be used to estimate the sum corresponding to the even terms. Under
the same assumption (C.9), we have

t∑
i=1

i is even

λ2i

i!
· (q− 1)i · (Cki)

ki

2 · d−d
ki+1

2
e ≤ Ck · λ4 · (q− 1)2

dk+1

(
1 +

1

2
+ . . .

)
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≤ Ck · λ4 · (q− 1)2

dk+1
.

Hence,

sup
S:{±1}d→R
‖S‖π≤1

(
E0

[∣∣∣∣∣
〈(

dµV
dµ0

(X)− dµ

dµ0
(X)

)
≤t
, S

〉
π

∣∣∣∣∣
q]) 2

q

≤ Ckλ
2(q− 1)

dd
k+1

2
e

+
Ckλ

4(q− 1)2

dk+1

≤ Ck · λ2 · (q− 1)

dd
k+1

2
e

.

In the above display, in order to obtain the final inequality, we again used assumption (C.9).
This concludes the proof.

C.4.2. Analysis of High Degree Part. In this section, we provide a proof of Lemma C.5.

PROOF OF LEMMA C.5. Recall that,(
dµV
dµ0

(X)− dµ

dµ0
(X)

)
>t

def
=

∞∑
i=t+1

λi√
i!
·

(
Hi

(〈
X,V ⊗k

〉
√
dk

)
−H i(X; 1)

)
.

Hence,

E0

[(
dµV
dµ0

(X)− dµ

dµ0
(X)

)2

>t

]
≤

2E0

( ∞∑
i=t+1

λi√
i!
·Hi

(〈
X,V ⊗k

〉
√
dk

))2
+ 2E0

( ∞∑
i=t+1

H i(X; 1)

)2
 .

By the orthogonality of Hermite and integrated Hermite polynomials (see Lemma C.2), we
obtain,

E0

[(
dµV
dµ0

(X)− dµ

dµ0
(X)

)2

>t

]
≤ 2

( ∞∑
i=t+1

E0

[
H2
i

(〈
X,V ⊗k

〉
√
dk

)]
+E0[H i(X; 1)2]

)
.

By Jensen’s Inequality,

E0[H i(X; 1)2]≤
∫

E0

[
H2
i

(〈
X,V ⊗k

〉
√
dk

)]
π(dV ) = 1.

Hence,

E0

[(
dµV
dµ0

(X)− dµ

dµ0
(X)

)2

>t

]
≤ 4

∞∑
i=t+1

λ2i

i!

(a)

≤ ε.

In the last step, we used the hypothesis on t and Fact I.1 given in Appendix I.

C.4.3. Analysis of Bad Event. In this section, we provide a proof of Lemma C.7.

PROOF OF LEMMA C.7. For any q ≥ 2, we have, by Chebychev’s Inequality:

P(Zc)≤ 2q ·E
∣∣∣∣ dµ

dµ0
(x)− 1

∣∣∣∣q
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= 2q ·E0
dµ

dµ0

∣∣∣∣ dµ

dµ0
(x)− 1

∣∣∣∣q
≤ 2q

(
E0(x)

∣∣∣∣ dµ

dµ0
(x)− 1

∣∣∣∣q+1

+E0

∣∣∣∣ dµ

dµ0
(x)− 1

∣∣∣∣q
)

Recalling Lemma C.1 and Definition C.1, we have

dµ

dµ0
(X) = 1 +

∞∑
t=1

λi√
i!
H i(X; 1).

By Gaussian Hypercontractivity (Lemma C.4) we have, for any q ≥ 2:(
E0

∣∣∣∣ dµ

dµ0
(x)− 1

∣∣∣∣q) 2

q

≤
∞∑
i=1

λ2i · (q− 1)i

i!
·E0[H i(X; 1)2].

We split the above sum into a high-degree part and a low degree part. Let t ∈N be arbitrary.
Then(
E0

∣∣∣∣ dµ

dµ0
(x)− 1

∣∣∣∣q) 2

q

≤
t∑
i=1

λ2i(q− 1)i

i!
E0[H i(X; 1)2] +

∞∑
i=t+1

λ2i(q− 1)i

i!
E0[H i(X; 1)2].

Analysis of the low degree part. Using the bound on E0[H i(X; 1)2] obtained in Lemma C.3,
we have

t∑
i=1

λ2i · (q− 1)i

i!
·E0[H i(X; 1)2]≤

t∑
i=1

λ2i · (q− 1)i

i!
·
(
Cki

d

) ki

2

.

By analyzing the ratio of consecutive terms in the sum, one can find a constant Ck depending
only on k such that, if,

λ2 · (q− 1)≤ 1

Ck
· d

k

2

t
k−2

2

,(C.10)

then the sum decays geometrically with a factor of atleast 1/2 and hence,
t∑
i=1

λ2i · (q− 1)i

i!
·E0[H i(X; 1)2]≤ Ck · λ2 · (q− 1)

d
k

2

·
(

1 +
1

2
+ · · ·

)
≤ Ckλ

2(q− 1)

d
k

2

.

Analysis of high degree part. Recall the definition of integrated Hermite polynomials (Def-
inition C.1):

H i(X; 1) =

∫
Hi

(〈
X,V ⊗k

〉
d
k

2

)
π(dV ).

Hence, by Jensen’s Inequality,

E0[H i(X; 1)2]≤
∫

E0

Hi

(〈
X,V ⊗k

〉
d
k

2

)2
 π(dV ) = 1.

Hence,
∞∑

i=t+1

λ2i · (q− 1)i

i!
·E0[H i(X; 1)2]≤

∞∑
i=t+1

λ2i · (q− 1)i

i!
.
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Appealing to Fact I.1, we set,

t= (e2λ2(q− 1))∨ d∨ 1,(C.11)

and obtain,
∞∑

i=t+1

λ2i · (q− 1)i

i!
·E0[H i(X; 1)2]≤ e−d.

Note that the hypothesis assumed in the statememt of the lemma λ2 · q ≤ d/Ck guarantees
that the choice of t in (C.11) satisfies (C.10). Hence, we have shown that for any q ≥ 2(

E0

∣∣∣∣ dµ

dµ0
(x)− 1

∣∣∣∣q) 2

q

≤ Ck(q− 1)λ2

√
dk

+ e−d,

for a universal constant Ck depending only on k provided λ2(q − 1)≤ d/Ck. Applying this
with q, q+ 1 we obtain:

µ(Zc)≤
(
Ckqλ

2

√
dk

+
1

d

) q

2

+

(
Ckqλ

2

√
dk

+ e−d
) q+1

2

provided λ2q ≤ d/Ck. Note that under this assumption, since k ≥ 2, we have Ckλ2q/
√
dk ≤

Ckλ
2q/d≤ 1. Hence the above bound can be simplified to:

µ(Zc)≤
(
Ckqλ

2

√
dk

+ e−d
) q

2

,

for a suitably large constant Ck.

C.5. Omitted Proofs from Appendix C.3. This section contains the proofs of the var-
ious analytic properties of the likelihood ratio for Tensor PCA, which were stated in Ap-
pendix C.3.

C.5.1. Proof of Lemma C.1.

PROOF OF LEMMA C.1. We observe that,

dµV
dµ0

(X) = exp

(
λ ·
〈
X,V ⊗k

〉
√
dk

− λ2

2

)
.

In particular, the likelihood ratio depends on X only through the projection
〈
X,V ⊗k

〉
. Ob-

serve that when X ∼ µ0, 〈
X,V ⊗k

〉
√
dk

∼N (0,1) .

Since Hermite polynomials form a complete orthonormal basis for L2(N (0,1)), the likeli-
hood ratio admits an expansion of the form:

dµV
dµ0

(X) =

∞∑
i=0

ci ·Hi

(〈
X,V ⊗k

〉
√
dk

)
.

The coefficients ci are given by:

ci
def
= E0

[
dµV
dµ0

(X) ·Hi

(〈
X,V ⊗k

〉
√
dk

)]
,
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where X ∼ µ0. We can simplify ci as follows:

ci
def
= E0

[
dµV
dµ0

(X) ·Hi

(〈
X,V ⊗k

〉
√
dk

)]

(a)
= EV

[
Hi

(〈
X,V ⊗k

〉
√
dk

)]
(b)
= E0 [Hi(λ+Z)]

(c)
=

λi√
i!
.

In the above display, in the step marked (a), applied a change of measure to change the
distribution of X to X ∼ µV . In the step marked (b), we used the fact that when X ∼ µV ,〈

X,V ⊗k
〉

√
dk

∼ λ+Z, Z ∼N (0,1) .

In the step marked (c), we appealed to Fact I.4.

C.5.2. Proof of Lemma C.2.

PROOF OF LEMMA C.2. Using Definition C.1 and Fubini’s theorem, we obtain,

E0[H i(X;S) ·Hj(X;S)] =∫
E0

Hi

(〈
X,V ⊗k

〉
√
dk

)
Hj


〈
X, Ṽ ⊗k

〉
√
dk

 · S(V ) · S(Ṽ ) π(dV ) π(dṼ ).

Since i 6= j, Fact I.6 gives us,

E0

Hi

(〈
X,V ⊗k

〉
√
dk

)
Hj


〈
X, Ṽ ⊗k

〉
√
dk

= 0.

Hence, we obtain the claim of the lemma.

C.5.3. Proof of Lemma C.3.

PROOF OF LEMMA C.3. Using Definition C.1 and Fubini’s theorem, we obtain,

E0[H i(X;S)2] =∫
E0

Hi


〈
X,V ⊗k1

〉
√
dk

Hi


〈
X,V ⊗k2

〉
√
dk

 · S(V1) · S(V2) π(dV1) π(dV2).

Fact I.6 gives us,

E0

Hi


〈
X,V ⊗k1

〉
√
dk

Hi


〈
X,V ⊗k2

〉
√
dk

=

(
〈V1,V2〉

d

)ki
.
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We define V = V1 �V2, where � denotes entry-wise product of vectors and,

V =
1

d

d∑
i=1

Vi.

Hence,

E0[H i(X;S)2] =

∫
V
ki · S(V1) · S(V2) π(dV1) π(dV2).

Since V1,V2 are independently sampled from the prior π and V = V1 � V2, it is straight-
forward to check that V1,V are independent, uniformly random {±1}d vectors and V2 =
V1 �V . Hence,

E0[H i(X;S)2] =

∫
V
ki · S(V1) · S(V �V1) π(dV1) π(dV ).(C.12)

Recall that, the collection of polynomials:{
V r def

=

d∏
i=1

V ri
i : r ∈ {0,1}d

}
,

form an orthonormal basis for functions on the Boolean hypercube {±1}d with respect to the
uniform distribution π = Unif

(
{±1}d

)
. Hence, we can expand S in this basis:

S(V ) =
∑

r∈{0,1}d
Ŝr ·V r, Ŝr

def
=

∫
S(V ) ·V rπ(dV ).

Substituting this in (C.12) gives us:

E0[H i(X;S)2] =
∑

r,s∈{0,1}d
ŜrŜs

∫
V
ki ·V r+s

1 ·V s π(dV1) π(dV ).

Noting that, if r 6= s, ∫
V r+s

1 π(dV1) = 0,

we obtain,

E0[H i(X;S)2] =
∑

r∈{0,1}d
Ŝ2
r

∫
V
ki ·V r π(dV ).

Since ‖S‖π ≤ 1, we know that
∑
r Ŝ

2
r ≤ 1. When 〈S,1〉π = 0, one additionally has Ŝ0 = 0.

Hence,

sup
S:‖S‖π≤1

E0[H i(X;S)2] = max
r∈{0,1}d

∫
V
ki ·V r π(dV ),

sup
S:‖S‖π≤1
〈S,1〉

π
=0

E0[H i(X;S)2] = max
r∈{0,1}d
‖r‖1≥1

∫
V
ki ·V r π(dV ).

The right hand sides of the above equations have been analyzed in Lemma I.1. Appealing to
this result immediately yields the claims of this lemma.
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C.5.4. Proof of Lemma C.4.

PROOF OF LEMMA C.4. Note that the result for q = 2 follows from the discussion pre-
ceding this lemma. Hence we focus on proving the inequality when q ≥ 2. Recalling Defini-
tion C.1, we have

H i(X;S)
def
=

∫
Hi

(〈
X,V ⊗k

〉
√
dk

)
· S(V ) π(dV ).

Observe that for any fixed V , the quantity

Hi

(〈
X,V ⊗k

〉
√
dk

)
can be expressed as a polynomial in X of degree i (see Fact I.5). Since,

H i(X;S)
def
=

∫
Hi

(〈
X,V ⊗k

〉
√
dk

)
· S(V ) π(dV ),

is a weighted linear combination of such polynomials, H i(X;S) is also a homogeneous
polynomial in X of degree i. Hence, by the completeness of the Hermite polynomial basis,
H i(X;S) must have a representation of the form:

H i(X;S) =
∑

c∈
⊗k Nd0
‖c‖1=i

β(c;S) ·Hc(X),

for some coefficients β(c;S). While these coefficients can be computed, we will not need
their exact formula for our discussion. Hence,

∞∑
i=0

αi ·H i(X;S) =

∞∑
i=0

∑
c∈

⊗k Nd0
‖c‖1=i

αi · β(c;S) ·Hc(X)

By Gaussian Hypercontractivity (Fact I.7),∥∥∥∥∥
∞∑
i=0

αi ·H i(X;S)

∥∥∥∥∥
2

q

≤
∞∑
i=0

∑
c∈

⊗k Nd0
‖c‖1=i

α2
i · β(c;S)2 · (q− 1)i

=

∞∑
i=0

α2
i · (q− 1)i ·

∑
c∈

⊗k Nd0
‖c‖1=i

β(c;S)2

Observing that,

E0[H i(X;S)2] =
∑

c∈
⊗k Nd0
‖c‖1=i

β(c;S)2,

yields the claim of the lemma.
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APPENDIX D: ADDITIONAL DISCUSSIONS FOR SYMMETRIC TENSOR PCA

D.1. Discussion for k-Tensor PCA with odd k. When k is odd, our computational
lower bound for k-TPCA (Theorem 1) shows that any iterative algorithm which uses N
samples, makes T passes through the dataset, and has a memory state of size s bits fails to
solve k-TPCA if:

(Nλ2) · T · s�
√
dk+1.(D.1)

On the other hand, there are iterative algorithms [2, 5] for k-TPCA with odd k with a resource
profile:

Nλ2 �
√
dk · polylog(d), T = polylog(d), s� d · polylog(d),(D.2)

which succeed in estimating the unknown signal vector V consistently in the sense that the
estimator V̂ computed by these algorithms satisfies:

〈V , V̂ 〉2

‖V ‖2‖V̂ ‖2
→ 1 as d→∞.(D.3)

We believe that the
√
d gap between the resource lower bound in (D.1) and the upper

bound in (D.2) arises due to our use of the Hellinger information. Specifically, our ap-
proach relies on showing that the Hellinger Information Ihel (V ;Y ) between the signal vector
V ∼ Unif

(
{±1}d

)
and the transcript Y generated by an iterative algorithm which uses too

few resources (when run in a distributed setting via the reduction in Fact 1) satisfies:

Ihel (V ;Y )→ 0 as d→∞.(D.4)

Due to Fano’s Inequality for Hellinger Information (Fact 2, see also Corollary C.1 for its
instantiation for k-TPCA), showing (D.4) not only rules out consistent estimation (cf. (D.3))
but yields a stronger-than-desired result that any estimator V̂ computed via an iterative algo-
rithm which uses too few resources fails to achieve better-than-random estimation:

∀ ε > 0, P

(
〈V , V̂ 〉2

‖V ‖2‖V̂ ‖2
≥ dε

d

)
→ 0 as d→∞.(D.5)

For better-than-random estimation, the resource lower bound in (D.1) is, in fact, optimal.
Specifically, for any arbitrarily small constant ε ∈ (0,1), there is an iterative algorithm with
the following properties:

1. The algorithm has a resource profile of:

Nλ2 �
√
dk+ε, T = 1, s�

√
d1+ε.(D.6)

In particular, it uses N · T · s�
√
dk+1+2ε resources, which matches the lower bound in

(D.1) upto an arbitrarily small polynomial factor of dε.
2. The estimator V̂ε computed by the algorithm satisfies:

〈V , V̂ 〉2

‖V ‖2‖V̂ ‖2
&
dε

d
with high probability (say, 0.9).(D.7)

In particular, this estimator works better-than-random and consequently, the Hellinger
information between the signal V ∼ Unif

(
{±1}d

)
the transcript Y generated by this al-

gorithm in a distributed setting must satisfy Ihel (V ;Y ) & 1 to avoid contradicting Fano’s
Inequality (Corollary C.1).
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The existence of an algorithm with the above properties (described below) shows that the
resource bound in (D.1) is the best possible lower bound that can be obtained using the ap-
proach based on Hellinger information used in our work. In order to improve the lower bound,
one would need to use other information measures. A natural approach would be to show that
the mutual information IKL(V ;Y ) (based on KL divergence) satisfies IKL(V ;Y )≤ cd for a
suitably constant c, which would rule out consistent estimation. However, the key challenge
in bounding the mutual information IKL(V ;Y ) is that the analog of the “cut-and-paste prop-
erty” [22] (see Fact B.2), which plays a crucial role in proving the general information bound
that underlies all our results (Proposition 1), is not known for KL divergence. This is why we
chose to use Hellinger information in our analysis.

The algorithm that satisfies the properties (D.6) and (D.7) is as follows. The idea is that
since one is only allowed a memory state of size s�

√
d1+ε� d, one tries to estimate only

the first s coordinates of the unknown signal V . To do so, one uses N �
√
dk+ε/λ2 samples

T1:N (where each Ti = λ · d−
k

2 ·V ⊗k +Wi where V ∼ Unif
(
{±1}d

)
is the unknown signal

vector and Wi is the i.i.d. Gaussian noise tensor) to compute the s �
√
d1+ε-dimensional

statistic t whose entries are given by:

∀ ` ∈ [s], t` =
1

N

N∑
i=1

Ti(Id,Id, . . . ,Id︸ ︷︷ ︸
q

def
=(k−1)/2 times

,e`)
def
=

1

N

N∑
i=1

d∑
j1,j2,...,jq=1

(Ti)j1,j1,j2,j2,...,jq,jq,`

In the above display q = (k − 1)/2 and e1:s are the standard basis vectors of Rs. The above
statistic can be computed in a single pass over the data set, so the algorithm satisfies the
resource requirement in (D.6). The final estimator for V is obtained by appending d − s
zeros to t to obtain a d-dimensional vector:

V̂ε = (t>,0, . . . ,0︸ ︷︷ ︸
d−s times

)>

To see why this algorithm yields a better-than-random estimate, we observe that the distribu-
tion of the statistic t is given by:

t
d
=

λ√
d
·V[s] +

√
d
k−1

2

N
· g, g ∼N (0,Is) .

In the above display V[s] ∈ {±1}s represents the vector obtained by the first s coordinates of
V . As a result, we have the following lower bound on the dot product:

〈V̂ε,V 〉 ≥
λs√
d
−

√
d
k−1

2

N
· |〈g,V[s]〉|

(a)

&
λs√
d
−

√
d
k−1

2

N
·
√
s

(b)

& λ
√
dε.

In the above display, step (a) follows from the fact that 〈g,V[s]〉 ∼ N
(
0,‖V[s]‖2

)
and hence

satisfies |〈g,V[s]〉| . ‖V[s]‖ =
√
s with high probability. Step (b) uses the fact that Nλ2 �√

dk+ε, s�
√
d1+ε. We can also upper bound the norm:

‖V̂ε‖= ‖t‖ ≤
λ‖V[s]‖√

d
+

√
d
k−1

2

N
· ‖g‖

(a)

.
λ
√
s√
d

+

√
d
k−1

2

N
·
√
s

(b)

.
λ · dε/4

d1/4
+ λ. λ.

In the above display, step (a) follows by observing that ‖V[s]‖=
√
s and ‖g‖.

√
s (with high

probability). Step (b) uses the fact that Nλ2 �
√
dk+ε, s�

√
d1+ε. Recalling that ‖V ‖2 = d,

the above estimates yield the claim in (D.7). While the above discussion focused on k-TPCA,
analogous considerations also apply to k-NGCA.



STATISTICAL-COMPUTATIONAL TRADE-OFFS VIA COMMUNICATION COMPLEXITY 29

D.2. Linear Memory Algorithms for Symmetric Tensor PCA. As discussed in Sec-
tion 5.4.1, an important consequence of the computational lower bound for k-TPCA (The-
orem 1) for even k is that (nearly) linear memory iterative algorithms which use a memory
state of size s� dpolylog(d) fail to solve k-TPCA using N samples and T iterations if:

(Nλ2) · T �
√
dk.(D.8)

This appendix provides additional details to explain how many natural algorithms for sym-
metric Tensor PCA fit into the template of (nearly) linear memory iterative algorithms which
use a memory state of size s� dpolylog(d) bits. Consequently, the run-time v.s. sample size
trade-off implied by (D.8) applies to these algorithms. Consider a broad class of iterative al-
gorithms that maintain a sequence of iterates ut ∈ Rd and run for a total of T iterations. At
iteration t, the iterate ut is generated using the datasetX1:N and the previous iterate ut−1 as
follows:

ut =
1

N

N∑
i=1

Xi{ψt(ut−1), ·},(D.9)

where ψt : Rd→
⊗k−1 Rd maps the previous iterate ut−1 to an order-(k − 1) tensor; and

for tensors X ∈
⊗kRd and Ψ ∈

⊗k−1 Rd, the tensor contraction X{Ψ, ·} yields a vector
in Rd defined by

X{Ψ, ·}i =
∑

j1,j2,...,jk−1

Xj1,j2,...,jk−1,iΨj1,j2,...,jk−1
.

One can implement T iterations of the above scheme using a memory bounded algorithm
(recall Definition 1) with a memory state of size s= d ·polylog(d) bits and T passes through
the data. In order to see this, let us first consider the situation when the memory bounded
algorithm is allowed a real-valued memory state (instead of a Boolean memory state). In this
situation, the update in (D.9) can be implemented using a memory bounded algorithm that
maintains two d-dimensional state variables PartialSum ∈Rd and iterate ∈Rd. This im-
plementation is shown in Figure 1. By using polylog(d) bits to represent a real number, one
can approximate the real-valued state variables PartialSum and iterate using a Boolean
vector of size d · polylog(d), while ensuring that the quantization error is negligible. Con-
sequently, T iterations of (D.9) can be implemented using a memory bounded estimation
algorithm with resource profile (N,T, s = d · polylog(d)). Hence, the run-time vs. sample
size tradeoffs implied by (D.8) of the preceding paragraph also apply to iterative algorithms
with update rules as in (D.9).

By suitably defining the function ψt in (D.9) one can obtain many algorithms for k-TPCA
that have been proposed in prior works. This means that the run-time vs. sample size trade-off
obtained in (D.8) also applies to such algorithms. Two examples include:

Tensor power method. The tensor power method is given by the iterations:

ut =
1

N

N∑
i=1

Xi

{
u⊗k−1
t−1 , ·

}
Hence, the tensor power method can be obtained from the general iteration (D.9) by choos-
ing:

ψt(u) = u⊗k−1.
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Memory bounded implementation of the iterative algorithm with update rule (D.9).
Input: X1:N , a dataset of N tensors.
Output: An estimator V̂ ∈Rd.
Variables: iterate ∈Rd and PartialSum ∈Rd

• For iteration t ∈ {1,2, . . . , T}
– Set PartialSum = 0d.
– For sample i ∈ {1,2, . . . ,N}

PartialSum← PartialSum+
Xi {ψt(iterate); ·}

N

– Update iterate← PartialSum.
• Return Estimator V̂ = iterate.

Fig 1: Memory bounded implementation of the iterative algorithm with update rule (D.9).

Spectral method with partial trace. This estimator is given by the leading eigenvector of the
matrix M whose entries are constructed as follows:

Mα,β
def
=

1

N

N∑
i=1

∑
γ1,γ2,...,γ`∈[d]

(Xi)γ1,γ1,γ2,γ2,...,γ`,γ`,α,β.

In the above display, we defined ` def
= k/2− 1. This estimator is due to Hopkins et al. [21];

see Biroli, Cammarota and Ricci-Tersenghi [5] for a simple analysis. It can be verified that

M
d
=
λ

d
V V T +

√
d`

N
·Z,

whereZ ∈Rd×d is a random d×d random matrix with i.i.d.N (0,1) entries. In the regime
when λ� 1 and Nλ2� d

k

2 , the largest eigenvector ofM yields a consistent estimator for
V . Furthermore, in this regime M exhibits a spectral gap of size ∆ & 1 [see, e.g., 5, for
detailed arguments]. Hence, the largest eigenvector of M can be computed by running
T � log(d) iterations of the power method beginning from a random initialization. The
power iterations are given by the update rule

ut =M · ut−1

‖ut−1‖
.

Recalling the formula for M , we can express the update rule for the power iteration as

ut =
1

N

N∑
i=1

Xi

Id ⊗ Id ⊗ · · · ⊗ Id︸ ︷︷ ︸
` times

⊗ ut−1

‖ut−1‖
, ·

 .

This is an instantiation of the general iteration in (D.9) with

ψt(u) = Id ⊗ Id ⊗ · · · ⊗ Id︸ ︷︷ ︸
` times

⊗ u

‖u‖
.

APPENDIX E: PROOFS FOR ASYMMETRIC TENSOR PCA

E.1. Proof of Computational Lower Bound (Theorem 2). Similar to Theorem 1, we
prove Theorem 2 by transferring a communication lower bound for distributed estimation
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protocols for k-ATPCA to memory bounded estimators for the same problem using the re-
duction in Fact 1.

In the (Bayesian) distributed setup for k-ATPCA, the parameter V is drawn from the prior

(E.1) π
def
= Unif

(
{
√
dk · ei1 ⊗ ei2 · · · ⊗ eik : i1, i2, . . . , ik ∈ [d]}

)
.

Here, ei denotes the i-th standard basis vector in Rd, so V ∼ π is a uniformly random 1-
sparse tensor. The tensorsX1:N are sampled i.i.d. from µV , and are distributed acrossm=N
machines with n = 1 sample/machine. The execution of a distributed estimation protocol
with parameters (m,n= 1, b) results in a transcript Y ∈ {0,1}mb written on the blackboard.

We obtain the following corollary of Fano’s Inequality for Hellinger Information (Fact 2).

COROLLARY E.1 (Fano’s Inequality for k-ATPCA). For any estimator V̂ (Y ) for k-
ATPCA computed by a distributed estimation protocol, and for any t ∈R, we have

inf
V ∈V

PV

(
|〈V ,V̂ 〉|2

‖V ‖2‖V̂ ‖2
≥ t2

dk

)
≤ 1

t2
+
√

2Ihel (V ;Y ).

PROOF. As in the proof of Corollary C.1, we apply Fact 2 with the following loss function:

`(V ,U)
def
=

{
1 if |〈V ,U〉|

2

‖V ‖2‖U‖2 < t2/dk,

0 otherwise.

We also compute a lower bound on R0(π): by Markov’s inequality, for any fixed tensor
U ∈

⊗kRd with ‖U‖= 1, we have

P
(
|〈V ,U〉|2

‖V ‖2
≥ t2

dk

)
≤ dk

t2
·
∫
V

|〈V ,U〉|2

‖V ‖2
π(dV ) =

‖U‖2

t2
=

1

t2
.

Consequently R0(π)≥ 1− 1/t2. The claim is now immediate from Fact 2.

The main technical result is the following information bound for k-ATPCA.

PROPOSITION E.1. Let Y ∈ {0,1}mb be the transcript generated by a distributed esti-
mation protocol for k-ATPCA with parameters (m,1, b). Then

Ihel (V ;Y )≤C
(
δ2mb

dk
+

1

m

)
,

where

δ
def
= exp

(
3λ2

2
+ 2λ

√
log(dk) + log(m)

)
− 1.

In the above display C is a universal constant (independent of m,b, d,λ). In particular, in
the scaling regime (as d→∞)

λ� 1, m� dη, b� dβ

for any constants η ≥ 1 and β ≥ 0 that satisfy

η+ β < k,

we have Ihel (V ;Y )→ 0 as d→∞.
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With this information bound in hand, we first present the proof of the computational lower
bound for k-ATPCA (Theorem 2) and defer the proof of the above information bound to the
following section in this appendix (Appendix E.2).

PROOF OF THEOREM 2. Appealing to the reduction in Fact 1 with the choice n= 1, we
note that any memory-bounded estimator V̂ with resource profile (N,T, s) can be imple-
mented using a distributed algorithm with parameters (N,1, sT ). Applying Corollary E.1
and Proposition E.1 to the distributed implementation of the memory-bounded estimator im-
mediately yields Theorem 2.

We end this section with the following remark, which discusses the connection between
k-ATPCA and the sparse Gaussian mean estimation problem studied in prior work [10, 1].

REMARK E.1 (Connection with Sparse Gaussian Mean Estimation). Observe that due to
the choice of the prior in (E.1), the instance of k-ATPCA used to obtain the communication
lower bound is also an instance of the 1-sparse Gaussian mean estimation problem in dimen-
sion D = dk. Communication lower bounds for this problem in the blackboard model (cf.
Definition 2) were obtained in prior work by Braverman et al. [10]. This result is sufficient
to obtain Theorem 2. Recent work by Acharya et al. [1] also provides an alternate proof for
the communication lower bounds for sparse Gaussian mean estimation. We present another
proof of these results using the information bound in Proposition 1, which is used to derive
all communication lower bounds presented in this paper.

E.2. Proof of the Information Bound (Proposition E.1). This section is devoted to the
proof of the information bound for distributed k-ATPCA (Proposition E.1). Recall that in the
distributed k-ATPCA problem:

1. An unknown rank-1 signal tensor V ∈
⊗kRd is drawn from the prior:

π
def
= Unif

(
{
√
dk · ei1 ⊗ ei2 · · · ⊗ eik : i1, i2, . . . , ik ∈ [d]}

)
.

2. A dataset consisting of m tensors X1:m is drawn i.i.d. from µV , where µV is the distri-
bution of a single tensor from the k-ATPCA problem:

Xi =
λV1 ⊗V2 · · · ⊗Vk√

dk
+Wi, (Wi)j1,j2,···jk

i.i.d.∼ N (0,1) , ∀ j1, j2, . . . , jk ∈ [d].

(E.2)

This dataset is divided among m machines with 1 tensor per machine.
3. The execution of a distributed estimation protocol with parameters (m,n = 1, b) results

in a transcript Y ∈ {0,1}mb written on the blackboard.

We will obtain Proposition E.1 by instantiating the general information bound provided in
Proposition 1 with the following choices:

Choice of µ0: Under the reference measure, X ∼ µ0 is a k-tensor with i.i.d. N (0,1) coor-
dinates.

Choice of µ: The null measure is set to µ def
= µ0.

Choice of Z: We choose the event Z as follows:

Z def
=
{
X ∈ (Rd)⊗k : ‖X‖∞ ≤ λ+

√
2(k log(d) + ε)

}
.
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With these choices, we can write down the formula for the relevant likelihood ratio that
appears Proposition 1. Note that if V =

√
dk · ej1 ⊗ ej2 · · · ⊗ ejk , then the likelihood ratio

has the following formula:

dµV
dµ0

(X) = exp

(
λ(X)j1,j2...,jk −

λ2

2

)
.(E.3)

Consequently, we define:

dµλ
dµ0

(x)
def
= exp

(
λx− λ2

2

)
.

Note that this is exactly the likelihood ratio between µλ =N (λ,1) and µ0 =N (0,1). Hence,
when V =

√
dk · ej1 ⊗ ej2 · · · ⊗ ejk , we have:

dµV
dµ0

(X) =
dµλ
dµ0

(Xj1,j2...,jk).

The proof of Proposition E.1 relies on two intermediate results. First, Lemma E.1 analyzes
the concentration properties of a suitably truncated version of the Likelihood ratio.

LEMMA E.1. Let S ∈ (Rd)⊗k be an arbitrary tensor with ‖S‖ ≤ 1. Let ε > λ be arbi-
trary scalar. Let X ∼ µ0 be Gaussian tensor with i.i.d. N (0,1) entries. Define the tensor
T≤ε ∈ (Rd)⊗k with entries:

(T≤ε)j1,j2,...,jk
def
=

(
dµλ
dµ0

(Xj1,j2...,jk)− 1

)
· I|Xj1,j2...,jk |≤ε

Then,

1. There exists a universal constant C such that for any q ∈N,

(E0|
〈
S,T≤ε −E0T

≤ε〉 |q) 2

q ≤C · q · δ2.

In the above display 〈·, ·〉 denotes the standard inner product:〈
S,T≤ε −E0T

≤ε〉=
∑

j1,j2,...,jk∈[d]

(T≤ε −E0T
≤ε)j1,j2,...,jk(S)j1,j2,...,jk .

and,

δ
def
= max

(
eλε−

λ2

2 − 1, λε+
λ2

2

)
.

2. Furthermore,

‖ET≤ε‖2 ≤ 4 · dk · e−(ε−λ)2 .

PROOF. The proof of this result appears at the end of this appendix (Appendix E.3).

The second result required to complete the proof of Proposition E.1 is Lemma E.2. This
result provides an estimate on µV (Zc) which appears in the information bound in Proposition
1.
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LEMMA E.2. Let ε≥ 0 be arbitrary. Let Z denote the set:

Z =
{
X ∈ (Rd)⊗k : ‖X‖∞ ≤ λ+

√
2(k log(d) + ε)

}
.

Then, µV (Zc)≤ e−ε. In the above display, ‖X‖∞ denotes the entry-wise∞-norm:

‖X‖∞
def
= max
j1:k∈[d]

|Xj1,j2,...,jk |.

PROOF. Recall that under µV , we have:

X =
λV1 ⊗V2 · · · ⊗Vk√

dk
+W , (W )j1,j2,···jk

i.i.d.∼ N (0,1) , ∀ j1, j2 · · · , jk ∈ [d].

The claim follows by observing ‖Vi‖∞ ≤ ‖Vi‖=
√
d along with the standard tail bound for

maximum of Gaussian random variables:

P
(
‖W ‖∞ ≥

√
2(k log(d) + ε)

)
≤ e−ε.

With these results in hand, we now present the proof of Proposition E.1.

PROOF OF PROPOSITION E.1. Recall that in Proposition 1 we showed:

Ihel (V ;Y )

K
≤

m∑
i=1

E0

[
IZi=1 ·

∫ (
E0

[
dµV
dµ0

(Xi)− 1

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )

]
+m

∫
µV (Zc)π(dV ).

We will choose:

Z def
=
{
X ∈ (Rd)⊗k : ‖X‖∞ ≤ ε

}
, ε

def
= λ+ 2

√
(k log(d) + log(m)).

By Lemma E.2, we have, µV (Zc)≤ 1/m2. Hence,

Ihel (V ;Y )

K
≤

m∑
i=1

E0

[
IZi=1 ·

∫ (
E0

[
dµV
dµ0

(Xi)− 1

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )

]
+

1

m
.

Next we recall that we chose

π
def
= Unif

(
{
√
dk · ei1 ⊗ ei2 · · · ⊗ eik : i1:k ∈ [d]}

)
.

And when V =
√
dk · ej1 ⊗ ej2 · · · ⊗ ejk , we simplified the likelihood ratio:

dµV
dµ0

(Xi)− 1 =
dµλ
dµ0

((Xi)j1,j2,...,jk)− 1,
dµλ
dµ0

(x)
def
= exp

(
λx− λ2

2

)
.

We define the tensors Ti ∈ (Rd)⊗k we entries:

Tj1,j2,...,jk =
dµλ
dµ0

((Xi)j1,j2,...,jk)− 1.

With this notation, the upper bound on Hellinger Information can be written as:

Ihel (V ;Y )

K
≤ 1

dk

m∑
i=1

E0

[
IZi=1 ·

∥∥E0

[
Ti
∣∣Y ,Zi, (Xj)j 6=i

]∥∥2
]

+
1

m
.
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Truncation of Likelihood Ratio. Recall that Zi = IXi∈Z . Consequently, we only need to
analyze the likelihood ratio on Z . Note that on Z , we have, Ti = Ti

≤ε, where:

(T≤ε)j1,j2,...,jk
def
=

(
dµλ
dµ0

(Xj1,j2...,jk)− 1

)
· I|Xj1,j2...,jk |≤ε,

ε
def
= λ+ 2

√
(k log(d) + log(m)).

Note that:∥∥E0

[
Ti
≤ε∣∣Y ,Zi, (Xj)j 6=i

]∥∥2 ≤ 2
∥∥E0

[
Ti
≤ε −E0Ti

≤ε∣∣Y ,Zi, (Xj)j 6=i
]∥∥2

+ 2‖E0Ti
≤ε‖2.

Using the bound on ‖E0T
≤ε‖2 obtained in Lemma E.1, we obtain the following bound on

Hellinger information:

Ihel (V ;Y )

K
≤ 2

dk

m∑
i=1

E0

[∥∥E0

[
Ti
≤ε −E0Ti

≤ε∣∣Y ,Zi, (Xj)j 6=i
]∥∥2
]

+
4

d4km3
+

1

m
.

Linearization and Geometric Inequality. We observe that:∥∥E0

[
Ti
≤ε −E0Ti

≤ε∣∣Y ,Zi, (Xj)j 6=i
]∥∥

≤ sup
S∈(Rd)⊗k:‖S‖≤1

E0

[〈
S,Ti

≤ε −E0Ti
≤ε〉 ∣∣Y ,Zi, (Xj)j 6=i

]
.

Using the Proposition 2 along with the moment bounds in Lemma E.1, we obtain:∥∥E0

[
Ti
≤ε −E0Ti

≤ε∣∣Y = y,Zi = zi, (Xj)j 6=i
]∥∥2

≤ inf
q≥1

C · δ2 · q
P0(Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i)

2

q

,

where

δ = max

(
exp

(
2λ
√

(k log(d) + log(m)) +
λ2

2

)
− 1,

3λ2

2
+ 2λ

√
(k log(d) + log(m))

)
≤ exp

(
2λ
√

(k log(d) + log(m)) +
3λ2

2

)
− 1.

We define:

R(i)
freq

def
=

{
(y,zi) ∈ {0,1}mb+1 : P0(Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i)>

1

e

}
.

Note that |R(i)
freq| ≤ e. We set q as:

q =

{
1 if (y,zi) ∈R(i)

freq;

−2 logP0(Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i) if (y,zi) /∈R(i)
freq.

This ensures q ≥ 1. Setting q as above yields:∥∥E0

[
Ti
≤ε −E0Ti

≤ε∣∣Y = y,Zi = zi, (Xj)j 6=i
]∥∥2

≤

{
Cδ2 if (y,zi) ∈R(i)

freq;

−2Cδ2 logP0(Y = y,Zi = zi|(Xj)j 6=i = (xj)j 6=i) if (y,zi) /∈R(i)
freq.
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Hence we obtain:

E
[∥∥E0

[
Ti
≤ε −E0Ti

≤ε∣∣Y = y,Zi = zi, (Xj)j 6=i
]∥∥2
]

≤C|R(i)
freq|δ

2 +Cδ2H(Y ,Zi|(Xj)j 6=i).

In the above display H(Y ,Zi|(Xj)j 6=i) denotes the conditional entropy of the (Y ,Zi) given
(Xj)j 6=i. Since we assumed that the communication protocol used to generate Y is deter-
ministic, conditioning on (Xj)j 6=i determines all but b+ 1 bits of the vector (Y ,Zi). Hence
H(Y ,Zi|(Xj)j 6=i)≤C(b+ 1). This gives us,

E
[∥∥E0

[
Ti
≤ε −E0Ti

≤ε∣∣Y = y,Zi = zi, (Xj)j 6=i
]∥∥2
]
≤Cδ2b,

which in turn yields:

Ihel (V ;Y )≤K

(
2

dk

m∑
i=1

E0

[∥∥E0

[
Ti
≤ε −E0Ti

≤ε∣∣Y ,Zi, (Xj)j 6=i
]∥∥2
]

+
4

d4km3
+

1

m

)

≤C
(
δ2mb

dk
+

1

d4km3
+

1

m

)
≤C

(
δ2mb

dk
+

1

m

)
.

Finally we observe that in the scaling regime: λ= Θ(1), m= Θ(dη), b= Θ(dβ), for some
constants η ≥ 1, β ≥ 0, which satisfy η + β < k, the above upper bound on Ihel (V ;Y )→ 0
as d→∞.

E.3. Concentration of Likelihood Ratio. In this section, we provide a proof for Lemma
E.1.

PROOF OF LEMMA E.1. We prove the two parts separately.

1. Recall that,

dµλ
dµ0

(x)
def
= exp

(
λx− λ2

2

)
.

Observe that,

(T≤ε)j1,j2,...,jk
def
=

(
dµλ
dµ0

(Xj1,j2...,jk)− 1

)
· I|Xj1,j2...,jk |≤ε ≤ e

λε−λ2
2 − 1.

Furthermore,

(T≤ε)j1,j2,...,jk ≥
(
e−λε−

λ2

2 − 1
)
· I|Xj1,j2...,jk |≤ε ≥−λε−

λ2

2
.

Hence, ∣∣(T≤ε)j1,j2,...,jk∣∣≤max

(
eλε−

λ2

2 − 1, λε+
λ2

2

)
def
= δ.

Hence, (T≤ε)j1,j2,...,jk are independent random variables in [−δ, δ]. Consequently, by
Hoeffding’s Inequality

〈
S,T≤ε −E0T

≤ε〉 is sub-Gaussian with variance proxy δ2.The
claim follows by standard estimates on the moments of sub-Gaussian random variables.
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2. Since the entries of T≤ε are identically distributed, we have:

‖ET≤ε‖2 = dk(E(T≤ε)1,1,1,...,1)2.

Recall that:

(T≤ε)1,1,1,...,1
d
=

(
dµλ
dµ0

(Z)− 1

)
· I|Z|≤ε, Z ∼N (0,1) .

Hence,

|E(T≤ε)1,1,1,...,1|=
∣∣∣∣E[(dµλ

dµ0
(Z)− 1

)
· I|Z|≤ε

]∣∣∣∣
= |P(|Z| ≤ ε)− P(|Z + λ| ≤ ε)|

= |P(|Z + λ| ≥ ε)− P(|Z| ≥ ε)|

≤max(P(|Z + λ| ≥ ε),P(|Z| ≥ ε))

≤ P(|Z| ≥ ε− λ)

≤ 2e−
(ε−λ)2

2 .

Hence,

‖ET≤ε‖2 ≤ 4 · dk · e−(ε−λ)2 .

APPENDIX F: PROOFS FOR NON-GAUSSIAN COMPONENT ANALYSIS

F.1. Proof of Computational Lower Bound (Theorem 3). This appendix is devoted to
the proof of the computational lower bound for the order-k Non-Gaussian Component Anal-
ysis (k-NGCA) problem. Similar to Theorems 1 and 2, we prove Theorem 3 by transferring
a communication lower bound for distributed estimation protocols for k-NGCA to memory
bounded estimators for the same problem using the reduction in Fact 1.

In the (Bayesian) distributed setup for k-NGCA, the parameter V is drawn from the prior
π

def
= Unif

(
{±1}d

)
, and then x1:N are sampled i.i.d. from µV ; these samples are distributed

across m=N/n ∈ N machines with n samples/machine. We will obtain Theorem 3 with a
suitable choice of n. As usual, the execution of a distributed estimation protocol with param-
eters (m,n, b) results in a transcript Y ∈ {0,1}mb written on the blackboard.

We have the following corollary of Fano’s Inequality for Hellinger Information (Fact 2),
proved in exactly the same way as Corollary C.1.

COROLLARY F.1 (Fano’s Inequality for k-NGCA). For any estimator V̂ (Y ) for k-
NGCA computed by a distributed estimation protocol, and for any t ∈R, we have

inf
V ∈V

PV

(
|〈V ,V̂ 〉|2

‖V ‖2‖V̂ ‖2
≥ t2

d

)
≤ 2 exp

(
− t

2

2

)
+
√

2Ihel (V ;Y ).

The main technical result is the following information bound for k-NGCA.

PROPOSITION F.1. Consider the k-NGCA problem with non-Gaussian distribution ν
satisfying

1. the Moment Matching Assumption (Assumption 1) with parameter k ≥ 2;
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2. the Bounded Signal Strength Assumption (Assumption 2) with parameters (λ,K);
3. the Locally Bounded Likelihood Ratio Assumption (Assumption 3) with parameters

(λ,K,κ).

Let Y ∈ {0,1}mb be the transcript generated by a distributed estimation protocol for this
k-NGCA problem with parameters (m,n, b). Let q ≥ 2 be arbitrary but fixed constant. Then,
there is a finite constant Ck,K,κ,q depending only on (k,K,κ, q) such that if

(F.1) n≥Ck,K,κ,q · b · dκ+d k+1

2
e and nλ2 ≤ 1

Ck,K,κ,q
,

then

Ihel (V ;Y )≤

Ck,K,κ,q ·
(
b ·mnλ2 · d−d

k+1

2
e +m · (nλ2)2 +

m

d
q

2

+m · n · (m+ n) · e−d/Ck,K,κ,q
)
.

With this information bound in hand, we first present the proof of the computational lower
bound for k-NGCA (Theorem 3) and defer the proof of the above information bound to a
later section in this appendix (Appendix F.4).

PROOF OF THEOREM 3. Appealing to the reduction in Fact 1, we note that any memory-
bounded estimator V̂ with resource profile (N,T, s) can be implemented using a distributed
estimation protocol with parameters (N/n,n, sT ) for any n ∈ N such that m := N/n ∈ N.
As assumed in Theorem 3, we consider the situation when

η+ τ + µ <

⌈
k+ 1

2

⌉
, γ > 2

⌈
k+ 1

2

⌉
+ κ.(F.2)

We set n= dξ with

ξ
def
= τ + µ+ κ+

⌈
k+ 1

2

⌉
+

1

2

(⌈
k+ 1

2

⌉
− (η+ τ + µ)

)
︸ ︷︷ ︸

>0

> τ + µ+ κ+

⌈
k+ 1

2

⌉
.(F.3)

With this choice, we verify that the information bound in Proposition F.1 shows that
Ihel (V ;Y )→ 0; combining this with Corollary F.1 proves the theorem. We begin by ob-
serving

γ >

⌈
k+ 1

2

⌉
+ κ+ η+ τ + µ+

(⌈
k+ 1

2

⌉
− (η+ τ + µ)

)
= η+ ξ +

1

2

(⌈
k+ 1

2

⌉
− (η+ τ + µ)

)
> η+ ξ.

Next, we verify the conditions required for Proposition F.1:

1. Since η > τ + µ+ κ+ d(k+ 1)/2e we have n� b · dκ+d k+1

2
e as required.

2. Since γ > η+ ξ > ξ we have nλ2� 1 as required.

Now, from the information bound of Proposition F.1, for any q ≥ 2, we have:

Ihel (V ;Y )

≤Ck,K,κ,q ·
(
b ·mnλ2 · d−d

k+1

2
e +m · (nλ2)2 +

m

d
q

2

+m · n · (m+ n) · e−d/Ck,K,κ,q
)
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=Ck,K,κ,q ·
(
b ·Nλ2 · d−d

k+1

2
e + (Nλ2) · (nλ2) +

m

d
q

2

+m · n · (m+ n) · e−d/Ck,K,κ,q
)
.

We now check that this bound on Ihel (V ;Y ) vanishes with d→∞ with a suitable choice of
q:

1. The assumption η+ τ + µ < d(k+ 1)/2e guarantees b ·Nλ2 · d−d
k+1

2
e→ 0.

2. Since γ > η+ ξ, we have (Nλ2) · (nλ2)→ 0.
3. Observe that m = (Nλ2)/(nλ2) = dγ+η−ξ ≥ d2η . Hence, choosing q = 2(γ + η) + η

ensures m/dq/2→ 0.
4. Since n,m scale polynomially with d, we have m · n · (m+ n) · e−d/Ck,K,κ,q → 0.

This concludes the proof.

REMARK F.1. The computational lower bound in Theorem 3 requires that λ2 is suffi-
ciently small because the information bound in Proposition F.1 holds when n is sufficiently
large and nλ2 is sufficiently small (F.1). In light of this, a natural question is whether an
information bound of the form:

Ihel (V ;Y )
??

. b ·mnλ2 · d−d
k+1

2
e,(F.4)

holds without assuming λ2 is small. Unfortunately, an information of the form (F.4) is ruled
out by a simple distributed estimator unless λ2 . d3 polylog (d)/dd

k+1

2
e. This distributed

estimator uses the information theoretically optimal sample size of N = mn � d/λ2 dis-
tributed acrossm=N/nmachines with n samples per machine. The estimator simply writes
the entire dataset on the blackboard as the transcript and computes the Maximum Likeli-
hood Estimator using the transcript. Since each sample is a d-dimensional real-valued vec-
tor, which can be quantized to a dpolylog (d) bit vector, the total bits written on the black
board are mb=Ndpolylog (d) = d2 polylog (d)/λ2. Since the maximum likelihood estima-
tor is consistent, we must have Ihel (V ;Y ) & 1. This leads to a contradiction to (F.4) unless
n& dd

k+1

2
e−2/polylog (d). Since n≤N � d/λ2, this means that the information bound (F.4)

cannot hold unless λ2 . d3 polylog (d)/dd
k+1

2
e. For sufficiently large k (k ≥ 5), this means

that (F.4) cannot hold unless λ2� 1.

F.2. Proof Overview of the Information Bound (Proposition F.1). The remainder of
this appendix is devoted to the proof Proposition F.1, the information bound for the distributed
NGCA problem. Recall that in the distributed k-NGCA problem:

1. An unknown d dimensional parameter V ∼ π is drawn from the prior π = Unif
(
{±1}d

)
.

2. A dataset {xij : i ∈ [m], j ∈ [n]} consisting of N = mn samples is drawn i.i.d. from
µV , where µV is the distribution of a single sample from the Non-Gaussian Component
Analysis problem. Recall that this means that:

xij = ηij
1√
d
V +

(
Id −

1

d
V V T

)
zij ,(F.5a)

where ηij ∈R and zij ∈Rd are independent random variables with distributions

zij
i.i.d.∼ N (0,Id) , ηij

i.i.d.∼ ν.(F.5b)

In the above display, ν is a non-Gaussian distribution on R and µV denotes the distribution
of xi described by the above generating process (F.5).
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3. This dataset is divided among m machines with n samples per machine. We denote the
dataset in one machine by Xi ∈Rd×n, where,

Xi =
[
xi1 xi2 . . . xin

]
.

Since xij
i.i.d.∼ µV , Xi

i.i.d.∼ µ⊗nV .
4. The execution of a distributed estimation protocol with parameters (m,n, b) results in a

transcript Y ∈ {0,1}mb written on the blackboard.

The information bound stated in Proposition F.1 is obtained using the general information
bound given in Proposition 1 with the following choices:

Choice of µ0: Under the measure µ0, xij
i.i.d.∼ N (0,Id) for any i ∈ [m], j ∈ [n].

Choice of µ: Under the measure µ, the dataset of each machine is sampled i.i.d. from:

µ0(·) =

∫
µ⊗nV (·) π(dV ).

Note that the data across machines is independent, but the n samples within a machine are
dependent since the were sampled from the same µV .

Choice of Z: We choose the event Z as follows:

Z def
=Z1 ∩Z2,(F.6a)

Z1
def
= {x1:n ∈Rd : ‖xi‖ ≤

√
2d ∀ i ∈ [n]},(F.6b)

Z2
def
=

{
x1:n ∈Rd :

∣∣∣∣ dµ

dµ0
(x1:n)− 1

∣∣∣∣≤ 1

2

}
.(F.6c)

The proof of the k-NGCA information bound (Proposition F.1) is organized into subsec-
tions as follows.

1. To prove Proposition F.1, we rely on certain analytic properties of the likelihood ratio
for this problem (similar to k-TPCA). These properties are stated (without proofs) in
Appendix F.3.

2. Using these properties, Proposition F.1 is proved in Appendix F.4.
3. Finally, the proofs of the analytic properties of the likelihood ratio appear in Appendix F.5.

F.3. The Likelihood Ratio for Non-Gaussian Component Analysis. In this section,
we collect some important properties of the likelihood ratio for the Non-Gaussian Compo-
nent Analysis problem without proofs. The proofs of these properties are provided in Ap-
pendix F.5.

Recalling the data-generating process for k-NGCA problem (F.5), we can compute the
likelihood ratio (with respect to the standard Gaussian distribution µ0) of a single sample
x ∈Rd from the model (F.5) as:

dµV
dµ0

(x) =
dν

dµ0
(η),(F.7a)

where η def
=
〈
x, 1√

d
V
〉

. Consequently the N -sample likelihood ratio is given by:

dµV
dµ0

(x1:N ) =

N∏
i=1

dν

dµ0
(ηi), ηi =

〈xi,V 〉√
d

.(F.7b)

Next we compute the Hermite decomposition of the N -sample likelihood ratio. Due to the
product structure of the N -sample likelihood ratio, it is sufficient to compute the Hermite
decomposition of the one-sample likelihood ratio. We have
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dν

dµ0
(η) =

∞∑
t=0

E0

[
dν

dµ0
(Z)Ht(Z)

]
·Ht(η) =

∞∑
t=0

ν̂tHt(η).

In the last step, we defined,

ν̂t
def
= E0

[
dν

dµ0
(Z)Ht(Z)

]
= Eη∼ν [Ht(η)].

Hence, we obtain the expression for the Hermite decomposition of the likelihood ratio
summarized in the following lemma.

LEMMA F.1 (Hermite Decomposition for Non-Gaussian Component Analysis). We have

dµV
dµ0

(x1:N ) =
∑
t∈NN0

ν̂t ·Ht
(
〈x1,V 〉√

d
,
〈x2,V 〉√

d
, . . . ,

〈xN ,V 〉√
d

)
,

where, for any t ∈NN0 ,

Ht

(
〈x1,V 〉√

d
,
〈x2,V 〉√

d
, . . . ,

〈xN ,V 〉√
d

)
def
=

N∏
i=1

Hti

(
〈xi,V 〉√

d

)
,

ν̂t
def
=

N∏
i=1

ν̂ti .

In the above display, ν̂t, t ∈ N are the Hermite coefficients of the one-sample likelihood
ratio:

ν̂t = EZ∼µ0

[
dν

dµ0
(Z) ·Ht(Z)

]
= Eη∼ν [Ht(η)] .

We now introduce an N -sample generalization of the integrated Hermite polynomials
(Definition C.1).

DEFINITION F.1 (N -sample Integrated Hermite Polynomials). Let S : {±1}d → R be
a function with ‖S‖π = 1. For any t ∈ NN0 , we define the N -sample integrated Hermite
polynomials as:

Ht(x1:N ;S)
def
=

∫ ( N∏
i=1

Hti

(
〈xi,V 〉√

d

))
· S(V ) π(dV ).

The rationale for introducing this definition is analogous to that for their single-sample
counterparts. We use Lemma F.1 to express important quantities derived from the likelihood
ratio in terms of the N -sample integrated Hermite polynomials:

dµ

dµ0
(x1:N )

def
=

∫
dµV
dµ0

(x1:N ) π(dV ) =
∑
t∈NN0

ν̂t ·Ht(x1:N ; 1),

〈
dµV
dµ0

(x1:N ), S

〉
π

def
=

∫
dµV
dµ0

(x1:N ) · S(V ) π(dV ) =
∑
t∈NN0

ν̂t ·Ht(x1:N ;S).

Just like their single-sample counterparts, the N -sample integrated Hermite polynomials
inherit the orthogonality property of the standard Hermite polynomials.
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LEMMA F.2. For any s, t ∈NN0 such that s 6= t, we have

E0[Hs(x1:N ;S) ·Ht(x1:N ;S)] = 0.

PROOF. Using Definition F.1 and Fubini’s theorem, we obtain,

E0[Hs(x1:N ;S) ·Ht(x1:N ;S)] =∫ ∫ N∏
i=1

E0

[
Hsi

(
〈xi,V 〉√

d

)
Hti

(
〈xi,V ′〉√

d

)]
· S(V ) · S(V ′) π(dV ) π(dV ′).

Since s 6= t, there must be an i ∈N such that si 6= ti, and for this i, Fact I.6 gives us,

E0

[
Hsi

(
〈xi,V 〉√

d

)
Hti

(
〈xi,V ′〉√

d

)]
= 0.

Hence, we obtain the claim of the lemma.

We have the followingN -sample generalization of Lemma C.3. Note that these worst-case
bounds can be much smaller than 1.

LEMMA F.3. There is a universal constant C (independent of d) such that, for any t ∈
NN0 with ‖t‖1 = t, we have

1. When t is odd, Ht(x1:N ; 1) = 0.
2. When t is even, E0[Ht(x1:N ; 1)2]≤ (Ct)

t

2 · d−
t

2 .
3. For even t≤ d, E0[Ht(x1:N ; 1)2]≥ (t/C)

t

2 · d−
t

2 .
4. For any S : {±1}d→R with ‖S‖π ≤ 1, we have E0[Ht(x1:N ;S)2]≤ (Ct)

t

2 · d−d
t

2
e.

5. For any S : {±1}d→R with ‖S‖π ≤ 1, 〈S,1〉π = 0, we have E0[Ht(x1:N ;S)2]≤ (Ct)
t

2 ·
d−d

t+1

2
e.

PROOF. See Appendix F.5.1.

A limitation of the bound obtained in Lemma F.3 is that it is vacuous when ‖t‖1 � d.
The following lemma provides a bound on the norm of integrated Hermite polynomials with
degree ‖t‖1� d.

LEMMA F.4. For any t ∈NN0 with ‖t‖1 = t, we have

sup
S:‖S‖π≤1

E0[Ht(x1:N ;S)2]≤ 2 exp

(
−(1− e−2t/d)

2
· d
)
.

PROOF. See Appendix F.5.3.

Using the orthogonality of the N -sample integrated Hermite polynomials (Lemma F.2)
and the estimates obtained in Lemma F.3 and Lemma F.4, one can easily estimate the second
moment of functions constructed by linear combinations of these polynomials:∥∥∥∥∥∥
∑
t∈NN0

αtHt(x1:N ;S)

∥∥∥∥∥∥
2

2

def
= E0

∑
t∈NN0

αt ·Ht(x1:N ;S)

2

=
∑
t∈NN0

α2
t ·E0[Ht(x1:N ;S)2].

We will also need to estimate q-norms of these linear combinations, for q ≥ 2:
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∥∥∥∥∥∥
∑
t∈NN0

αtHt(x1:N ;S)

∥∥∥∥∥∥
q

q

def
= E0

∣∣∣∣∣∣
∑
t∈NN0

αt ·Ht(x1:N ;S)

∣∣∣∣∣∣
q

.

The following lemma, generalizing Lemma C.4, again uses Gaussian Hypercontractivity
(Fact I.7) to provide an estimate for the above quantity.

LEMMA F.5. Let {αt : t ∈ NN0 } be an arbitrary collection of real-valued coefficients.
For any q ≥ 2, we have∥∥∥∥∥∥

∑
t∈NN0

αtHt(x1:N ;S)

∥∥∥∥∥∥
2

q

≤
∑
t∈NN0

(q− 1)‖t‖1 · α2
t ·E0[Ht(x1:N ;S)2]

Furthermore, the inequality holds as an equality when q = 2.

PROOF. See Appendix F.5.3.

In the following section, we present a proof of the information bound for distributed Non-
Gaussian Component Analysis (Proposition F.1) using the results of this section.

F.4. Proof of the Information Bound (Proposition F.1). This section provides a proof
for Proposition F.1, the main information bound for the Non-Gaussian Component Analysis
problem. Recall that the information bound of Proposition 1 is:

Ihel (V ;Y )

K
≤

m∑
i=1

E(i)
0

[∫ (
E(i)

0

[(
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

)
· IZi=1

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )

]
+mµ(Zc),

(F.8)

where Zi = IXi∈Z . The following lemma analyzes the failure probability µ(Zc).

LEMMA F.6. Suppose that ν satisfies the Moment Matching Assumption (Assumption 1)
with constant k ≥ 2 and the Bounded Signal Strength Assumption (Assumption 2) with con-
stants (λ,K). Then, for any q ≥ 2, there is exists a finite constant Cq,k,K depending only on
(q, k,K) such that, if,

nλ2 ≤ d

Cq,k,K
,

then,

µ(Zc)≤Cq,k,K ·

(
(1 + λ2) · n · e−

d

Cq,k,K +

(
nλ2

d

) q

2

)
.

PROOF. The proof of this result appears at the end of this section (Appendix F.4.1).

We also need to analyze:

E(i)
0

[∫ (
E(i)

0

[(
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

)
· IZi=1

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )

]
,
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For any X ∈Rd×n, X = [x1 x2 · · · xn], S ⊂ [n], we introduce the notation,

LV (XS)
def
=
∏
i∈S

(
dµV
dµ0

(xi)− 1

)
,

L (XS)
def
=

∫
LV (XS) π(dV ).

In the special case when S = {i}, we will use the simplified notation LV (xi), L (xi). We
consider the following decomposition: For any X ∈Rd×n, X = [x1 x2 · · · xn],

dµV
dµ0

(X)− dµ

dµ0
(X) =

n∏
`=1

(
1 +

dµV
dµ0

(x`)− 1

)
−
∫ n∏

`=1

(
1 +

dµV
dµ0

(x`)− 1

)
π(dV )

=

n∑
`=1

(LV (x`)−L (x`))︸ ︷︷ ︸
Additive Term

+
∑

S⊂[n], |S|≥2

(LV (XS)−L (XS))

︸ ︷︷ ︸
Non Additive Term

.

With this decomposition, using the elementary inequality (a+ b)2 ≤ 2a2 + 2b2, we obtain,

E(i)
0

[∫ (
E(i)

0

[(
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

)
· IZi=1

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )

]
≤ 2 · (I + II),

(F.9)

where,

I
def
= E(i)

0

∫ (E(i)
0

[(
n∑
`=1

(LV (xi`)−L (xi`))

)
· IZi=1

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )

 ,
II

def
= E(i)

0

∫ E(i)
0

∣∣∣∣ ∑
S⊂[n], |S|≥2

(LV ((Xi)S)−L ((Xi)S))

∣∣∣∣∣∣∣∣Y ,Zi, (Xj)j 6=i

2

π(dV )

 .
In order to control the term (II), we apply Jensen’s Inequality:

II≤
∫

E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

(LV ((Xi)S)−L ((Xi)S))

∣∣∣∣2
 π(dV )

=

∫
E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

LV ((Xi)S)

∣∣∣∣2
 π(dV )−E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

L ((Xi)S)

∣∣∣∣2


≤
∫

E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

LV ((Xi)S)

∣∣∣∣2
 π(dV ).

The following lemma analyzes the above upper bound on (II).

LEMMA F.7. Suppose that ν satisfies the Bounded Signal Strength Assumption (Assump-
tion 2) with constants (λ,K). Suppose that K2nλ2 ≤ 1/2. Let X = [x1 x2 . . . xn] where
xi

i.i.d.∼ N (0,Id). Then,

E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

LV ((X)S)

∣∣∣∣2
≤ 2 · (K2nλ2)2.
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PROOF. The proof of this result appears at the end of this section (Appendix F.4.3).

In order to control the term (I), we will rewrite it as follows:

I
def
= E(i)

0

∫ (E(i)
0

[(
n∑
`=1

(LV (xi`)−L (xi`))

)
· IZi=1

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )


(a)
= E(i)

0

∫ (E(i)
0

[(
n∑
`=1

(LV (xi`)−L (xi`)) · I‖xi`‖≤
√

2d

)
· IZi=1

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )


(b)
= E(i)

0

IZi=1 ·
∫ (

E(i)
0

[
n∑
`=1

(LV (xi`)−L (xi`)) · I‖xi`‖≤
√

2d

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )

 .
In the step marked (a), we used the identity IZi=1 = IXi∈Z = IXi∈Z · I‖xi`‖≤

√
2d (cf. (F.6)).

In the step marked (b), we observed that IZi=1 is measurable with respect to the conditioning
σ-algebra. Next, we linearize the integral with respect to the prior π (Lemma 1):∫ (

E(i)
0

[
n∑
`=1

(LV (xi`)−L (xi`)) · I‖xi`‖≤
√

2d

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )

= sup
S:‖S‖π≤1

(
E(i)

0

[
n∑
`=1

〈
(LV (xi`)−L (xi`)) · I‖xi`‖≤

√
2d, S

〉
π

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

.

We will apply the Geometric Inequality framework (Proposition 2) to control the above con-
ditional expectation. In order to do so, we need to understand the concentration behavior of
the random variable:

n∑
`=1

〈
(LV (xi`)−L (xi`)) · I‖xi`‖≤

√
2d, S

〉
π
.

This is the subject of the following lemma.

LEMMA F.8. Suppose that ν satisfies:

1. the Moment Matching Assumption (Assumption 1) with parameter k,
2. the Bounded Signal Strength Assumption (Assumption 2) with parameters (λ,K),
3. the Locally Bounded Likelihood Ratio Assumption (Assumption 3) with parameters

(λ,K,κ).

Then, there is a constant Ck,κ that depends only on (k,κ) such that if the parameters
(λ,K,κ) satisfy Kλ ≤ d−

κ

2 /Ck,κ, we have, for any S : {±1}d → R with ‖S‖π ≤ 1 and
any ζ ∈R with |ζ| ≤ 1/2L,

logE exp

(
ζ

n∑
`=1

〈
(LV (x`)−L (x`)) · I‖x`‖≤

√
2d, S

〉
π

)
≤ ζnσe−

d

16 + nζ2σ2.

In the above display the parameters L,σ2 are defined as follows:

L
def
=Cκ,k ·Kλ · d

κ

2 ,

σ2 def
=Ck,κ ·K2λ2 · d−d

k+1

2
e.
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Furthermore,∥∥∥∥∥
n∑
`=1

〈
(LV (x`)−L (x`)) · I‖x`‖≤

√
2d, S

〉
π

∥∥∥∥∥
4

≤ n · σ · e−
d

16 +
√
Lσ · n

1

4 +
√
nσ,

where,∥∥∥∥∥
n∑
`=1

〈
(LV (x`)−L (x`)) · I‖x`‖≤

√
2d, S

〉
π

∥∥∥∥∥
4

4

def
= E0

( n∑
`=1

〈
(LV (x`)−L (x`)) · I‖x`‖≤

√
2d, S

〉
π

)4


PROOF. The proof of this result appears at the end of this section (Appendix F.4.2).

We can now use Geometric Inequalities (Proposition 2) to control:∣∣∣∣∣E(i)
0

[
n∑
`=1

〈
(LV (xi`)−L (xi`)) · I‖xi`‖≤

√
2d, S

〉
π

∣∣∣∣Y = y,Zi = 1, (Xj)j 6=i

]∣∣∣∣∣
2

.

We consider two cases depending upon whether y ∈R(i)
rare or y ∈R(i)

freq, where,

R(i)
rare

def
=
{
y ∈ {0,1}mb : 0< P(i)

0 (Y = y,Zi = 1|(Xj)j 6=i)≤ 4−b
}
,

R(i)
freq

def
=
{
y ∈ {0,1}mb : P(i)

0 (Y = y,Zi = 1|(Xj)j 6=i)> 4−b
}
.

Case 1: y ∈R(i)
rare. In this situation we apply the moment version of the Geometric Inequality

(Proposition 2, item (1)) with q = 4. Using the moment estimate in Lemma F.8, we obtain,∣∣∣∣∣E(i)
0

[
n∑
`=1

〈
(LV (xi`)−L (xi`)) · I‖xi`‖≤

√
2d, S

〉
π

∣∣∣∣Y = y,Zi = 1, (Xj)j 6=i

]∣∣∣∣∣
≤ n · σ · e−

d

16 +
√
Lσ · n

1

4 + σ
√
n

P(i)
0 (Y = y,Zi = 1|(Xj)j 6=i)

1

4

,(F.10)

where L,σ are as defined in Lemma F.8.
Case 2: y ∈R(i)

freq. In this situation we apply the m.g.f. version of the Geometric Inequality
(Proposition 2, item (2)). Using the m.g.f. estimate in Lemma F.8, we obtain, for any
0< ζ ≤ 1/2L,∣∣∣∣∣E(i)

0

[
n∑
`=1

〈
(LV (xi`)−L (xi`)) · I‖xi`‖≤

√
2d, S

〉
π

∣∣∣∣Y = y,Zi = 1, (Xj)j 6=i

]∣∣∣∣∣
≤ nσe−

d

16 + nζσ2 +
1

ζ
log

1

P(i)
0 (Y = y,Zi = 1|(Xj)j 6=i)

,

where L,σ are as defined in Lemma F.8. We set:

ζ2 =
1

nσ2
· log

1

P(i)
0 (Y = y,Zi = 1|(Xj)j 6=i)

≤ b · log(4)

nσ2
.
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If,

n≥ 4 log(4) · b ·L2

σ2
,(F.11)

then this choice is valid, i.e. ζ ≤ 1/2L. With this choice, we obtain,∣∣∣∣∣E(i)
0

[
n∑
`=1

〈
(LV (xi`)−L (xi`)) · I‖xi`‖≤

√
2d, S

〉
π

∣∣∣∣Y = y,Zi = 1, (Xj)j 6=i

]∣∣∣∣∣
≤ nσe−

d

16 + 2 · σ ·
√
n · log

1

2

(
1

P(i)
0 (Y = y,Zi = 1|(Xj)j 6=i)

)
.

(F.12)

With these estimates, we can control the term I, which we decompose as follows:

E(i)
0

IZi=1 ·
∫ (

E(i)
0

[
n∑
`=1

(LV (xi`)−L (xi`)) · I‖xi`‖≤
√

2d

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )


= (Ia) + (Ib),

(Ia)
def
= E(i)

0

 ∑
y∈R(i)

rare

P(i)
0 (Y = y,Zi = 1|(Xj)j 6=i) ·Ψ2

i (y, (Xj)j 6=i)

 ,
(Ib)

def
= E(i)

0

 ∑
y∈R(i)

freq

P(i)
0 (Y = y,Zi = 1|(Xj)j 6=i) ·Ψ2

i (y, (Xj)j 6=i)

 .
In the above display, we defined,

Ψ2
i (y, (Xj)j 6=i)

def
=∫ (

E(i)
0

[
n∑
`=1

(LV (xi`)−L (xi`)) · I‖xi`‖≤
√

2d

∣∣∣∣Y = y,Zi = 1, (Xj)j 6=i

])2

π(dV ).

In order to control (Ia), we rely on the estimate (F.10):

(Ia)≤ (n · σ · e−
d

16 +
√
Lσ · n

1

4 + σ
√
n)2 ·E(i)

0

 ∑
y∈R(i)

rare

P(i)
0 (Y = y,Zi = 1|(Xj)j 6=i)

1

2


≤ (n · σ · e−

d

16 +
√
Lσ · n

1

4 + σ
√
n)2 · 2−b ·E(i)

0 [|R(i)
rare|].

Since we assume the communication protocol to be deterministic conditioned on (Xj)j 6=i,
all but b bits of Y are fixed. Consequently, |Rrare| ≤ 2b. Hence,

(Ia)≤ 3 ·
(
n2 · σ2 · e−

d

8 +Lσ
√
n+ nσ2

) (c)

≤ 3 ·
(
n2 · σ2 · e−

d

8 + 2nσ2
)
.

In the above display, in the step marked (c) we observed that the assumption (F.11) guarantees
Lσ
√
n≤ nσ2. In order to control (Ib), we rely on the estimate (F.12):

(Ib)≤ 2n2σ2e−
d

8 + 8σ2n ·E(i)
0

 ∑
y∈R(i)

freq

h(P(i)
0 (Y = y,Zi = 1|(Xj)j 6=i))
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≤ 2n2σ2e−
d

8 + 8σ2n ·E(i)
0

 ∑
(y,z)∈{0,1}b+1

h(P(i)
0 (Y = y,Zi = z|(Xj)j 6=i))

 ,
where h(x)

def
=−x log(x) is the entropy function. Since we assume the communication proto-

col to be deterministic (cf. Remark 4), conditioned on (Xj)j 6=i, all but b+ 1 bits of (Y ,Zi)
are fixed. Hence conditioned on (Xj)j 6=i, the random vector (Y ,Zi) has a support size of at
most 2b+1. The maximum entropy distribution on a given set S is the uniform distribution,
which attains an entropy of log |S|. Hence,∑
(y,z)∈{0,1}b+1

P(i)
0 (Y = y,Zi = z|(Xj)j 6=i) log

1

P(i)
0 (Y = y,Zi = z|(Xj)j 6=i)

≤ (b+ 1) log(2)

This yields the estimate,

(Ib)≤ 2n2σ2e−
d

8 + 8 log(2) · σ2n · (b+ 1).

Combining the estimates on the terms Ia, Ib we obtain, (I)≤ 5n2σ2e−
d

8 + 18σ2n · b. Substi-
tuting this estimate on I and the estimate on II obtained in Lemma F.7 in (F.9), we obtain,

E(i)
0

[∫ (
E(i)

0

[(
dµV
dµ0

(Xi)−
dµ

dµ0
(Xi)

)
· IZi=1

∣∣∣∣Y ,Zi, (Xj)j 6=i

])2

π(dV )

]
≤ 10n2σ2e−

d

8 + 36σ2n · b+ 4 · (K2nλ2)2.

Plugging the above bound in (F.8) we obtain,

Ihel (V ;Y )

K
≤ 10mn2σ2e−

d

8 + 36σ2 ·m · n · b+ 4 ·m · (K2nλ2)2 +m · µ(Zc).

Finally, by Lemma F.6, for any q ≥ 2, we have

Ihel (V ;Y )

K
≤ 10mn2σ2e−

d

8 + 36σ2 ·m · n · b+ 4 ·m · (K2nλ2)2

+Cq,k,K ·m ·

(
(1 + λ2) ·m · n · e−

d

Cq,k,K +

(
nλ2

d

) q

2

)
.

This is precisely the information bound claimed in Proposition F.1. This concludes the proof
of Proposition F.1. The remainder of this section is devoted to the proof of the various inter-
mediate results used in the above proof.

F.4.1. Proof of Lemma F.6.

PROOF OF LEMMA F.6. We begin by observing that by a union bound,

µ(Zc1)≤
n∑
i=1

µ({‖xi‖>
√

2d})

=

n∑
i=1

∫
µV ({‖xi‖>

√
2d}) π(dV ).

When x∼ µ0 =N (0,Id), standard χ2-concentration (see for e.g. [37, Example 2.11]) gives
us:

µ0({‖x‖>
√

2d})≤ e−d/8.



STATISTICAL-COMPUTATIONAL TRADE-OFFS VIA COMMUNICATION COMPLEXITY 49

µV ({‖x‖>
√

2d}) = E0

[
dµV
dµ0

(x)I‖x‖>√2d

]
(a)
= E0

[
dν

dµ0
(Z) I‖x‖>√2d

]
, Z

def
=

〈
x,

V

‖V ‖

〉
(b)

≤

(
µ0

(
{‖x‖>

√
2d}
)
·E0

[(
dν

dµ0
(Z)

)2
]) 1

2

(c)

≤ (1 +K2λ2) · e−
d

16 .

In the above display, in the step marked (a), we used the formula for the likelihood ratio in
(F.7), in step (b) we used Cauchy-Schwarz inequality and in step (c) we appealed to Bounded
Signal Strength Assumption (Assumption 2). Hence, we conclude that,

µ(Zc1)≤ (1 +K2λ2) · n · e−
d

16 .

In order to analyze µ(Zc2), we recall that,

dµ

dµ0
(x1:n)− 1 =

∑
t∈Nn0
‖t‖1≥1

ν̂t ·Ht(x1:n; 1).

We decompose the centered likelihood ratio into the low degree part and the high degree part:

dµ

dµ0
(x1:n)− 1 =

(
dµ

dµ0
(x1:n)− 1

)
≤t

+

(
dµ

dµ0
(x1:n)− 1

)
>t

,

where, (
dµ

dµ0
(x1:n)− 1

)
≤t

def
=

∑
t∈Nn0

1≤‖t‖1≤t

ν̂t ·Ht(x1:n; 1),

(
dµ

dµ0
(x1:n)− 1

)
>t

def
=
∑
t∈Nn0
‖t‖1>t

ν̂t ·Ht(x1:n; 1).

With this decomposition, for any q ≥ 1, we have, by Markov’s Inequality,

µ(Zc2)≤ µ

(∣∣∣∣∣
(

dµ

dµ0
(x1:n)− 1

)
≤t

∣∣∣∣∣> 1

4

)
+ µ

((
dµ

dµ0
(x1:n)− 1

)
>t

>
1

4

)

≤ 4qE

[∣∣∣∣∣
(

dµ

dµ0
(x1:n)− 1

)
≤t

∣∣∣∣∣
q]

+ 4E
[∣∣∣∣( dµ

dµ0
(x1:n)− 1

)
>t

∣∣∣∣]

= 4qE0

[
dµ

dµ0
(x1:n)

∣∣∣∣∣
(

dµ

dµ0
(x1:n)− 1

)
≤t

∣∣∣∣∣
q]

+ 4E0

[
dµ

dµ0
(x1:n)

∣∣∣∣( dµ

dµ0
(x1:n)− 1

)
>t

∣∣∣∣]

≤ 4q
∥∥∥∥ dµ

dµ0
(x1:n)

∥∥∥∥
2

∥∥∥∥∥
(

dµ

dµ0
(x1:n)− 1

)
≤t

∥∥∥∥∥
q

2q

+ 4

∥∥∥∥ dµ

dµ0
(x1:n)

∥∥∥∥
2

∥∥∥∥( dµ

dµ0
(x1:n)− 1

)
>t

∥∥∥∥
2

.

In order to obtain the last inequality, we applied Cauchy-Schwarz inequality. We also note
that all the norms ‖ · ‖q are defined with respect to µ0. We now estimate each of the norms in
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the above display. The quantity: ∥∥∥∥∥
(

dµ

dµ0
(x1:N )− 1

)
≤t

∥∥∥∥∥
2

q

,

with the choice q = 2 is a central object in the low-degree likelihood ratio framework. In the
arXiv version of this paper [16, Appendix F.4, Proposition 8] we analyze the Non-Gaussian
Component Analysis problem in the low-degree likelihood ratio framework and show that
there is a constant Ck,K > 0 depending only on k,K such that, for any q ≥ 2, if,

t≤ 1

Ck,K
· d

(q− 1)2
, Nλ2 ≤ 1

Ck,K
· 1

(q− 1)k
· d

k

2

t
k−2

2

,(F.13)

then, ∥∥∥∥∥
(

dµ

dµ0
(x1:N )− 1

)
≤t

∥∥∥∥∥
2

q

≤
Ck,K · (q− 1)k ·Nλ2 · t

k−2

2

d
k

2

≤ 1.

We set,

t=
1

Ck,K
· d

(2q− 1)2
.

The hypothesis on the effective sample size nλ2 ≤ d/Cq,k,K ensures the requirement (F.13)
is met, and we obtain,∥∥∥∥∥

(
dµ

dµ0
(x1:n)− 1

)
≤t

∥∥∥∥∥
2

2q

≤
Ck,K · (2q− 1)2 · nλ2

d
,

∥∥∥∥∥
(

dµ

dµ0
(x1:n)− 1

)
≤t

∥∥∥∥∥
2

2

≤
Ck,K · nλ2

d
≤ 1.

On the other hand, by Lemma F.5, we have∥∥∥∥( dµ

dµ0
(x1:n)− 1

)
>t

∥∥∥∥2

2

=
∑
t∈Nn0
‖t‖1>t

ν̂2
t ·E0[Ht(x1:n; 1)2]

In Lemma F.4, we showed that, for any ‖t‖1 > t,

E0[Ht(x1:n; 1)2]≤ 2 exp

(
− d

Cq,k,K

)
, Cq,k,K = 2

(
1− e−

1

Ck,K (q−1)2

)−1

.

Hence, ∥∥∥∥( dµ

dµ0
(x1:n)− 1

)
>t

∥∥∥∥2

2

≤ 2 · e−
d

Cq,k,K ·
∑
t∈Nn0
‖t‖1>t

ν̂2
t

≤ 2 · e−
d

Cq,k,K ·
∑
t∈Nn0

ν̂2
t

(e)

≤ 2 · e−
d

Cq,k,K · (1 +K2λ2)n

≤ 2 · e−
d

Cq,k,K
+K2λ2n

(f)

≤ 2 · e−
d

2Cq,k,K .
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In the above display, the step (e) relies on the Bounded Signal Strength Assumption and in
the step marked (f) we used the effective sample size assumption nλ2 ≤ d/(2Cq,k,K). Due to
the orthogonality of integrated Hermite polynomials (Lemma F.2), one can compute:∥∥∥∥ dµ

dµ0
(x1:n)− 1

∥∥∥∥2

2

= 1 +

∥∥∥∥∥
(

dµ

dµ0
(x1:n)− 1

)
≤t

∥∥∥∥∥
2

2

+

∥∥∥∥( dµ

dµ0
(x1:n)− 1

)
>t

∥∥∥∥2

2

≤ 1 + 1 + 2 = 4.

Hence,

µ(Zc2)≤ 4q
∥∥∥∥ dµ

dµ0
(x1:n)

∥∥∥∥
2

∥∥∥∥∥
(

dµ

dµ0
(x1:n)− 1

)
≤t

∥∥∥∥∥
q

2q

+ 4

∥∥∥∥ dµ

dµ0
(x1:n)

∥∥∥∥
2

∥∥∥∥( dµ

dµ0
(x1:n)− 1

)
>t

∥∥∥∥
2

≤
(
Cq,k,K · nλ2

d

) q

2

+ 16e−d/Cq,k,K .

Finally, by suitably redefining constants, we obtain, by a union bound,

µ(Zc)≤Cq,k,K ·

(
(1 + λ2) · n · e−

d

Cq,k,K +

(
nλ2

d

) q

2

)
,

as claimed.

F.4.2. Proof of Lemma F.8. Let x1:N be generated as: xi
i.i.d.∼ N (0,Id). Let S : {±1}d→

R be a real-valued function defined on the Boolean hypercube with ‖S‖π ≤ 1. In this section,
we wish to understand the concentration behavior of the random variable:

n∑
`=1

〈
(LV (x`)−L (x`)) · I‖x`‖≤

√
2d, S

〉
π
.(F.14)

Since this is a sum of i.i.d. random variables, we will find the Bernstein Inequality useful in
our analysis, and we reproduce the statement of this inequality below for convenience. This
result is attributed to Bernstein. The statement below has been reproduced from Wainwright
[37, Proposition 2.10]

FACT F.1 (Bernstein’s Inequality). Let U1,U2 · · · ,Un be i.i.d. random variables which
satisfy:

1. EUi ≤ u
2. Var(Ui)≤ σ2

3. |Ui| ≤ L with probability 1.

Then, for any |ζ| ≤ 1/L,

logE exp

(
ζ

n∑
i=1

Ui

)
≤ ζnu+

nζ2σ2

2(1−L|ζ|)
.

We can now provide the proof of Lemma F.8.
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PROOF OF LEMMA F.8. The proof involves an application of Bernstein Inequality
(Fact F.1) after the computation of relevant quantities, which we compute in the following
paragraphs. Let x∼ µ0 =N (0,Id). We recall that,

LV (x)
def
=

dµV
dµ0

(x)− 1, L (x)
def
=

∫
LV (x) π(dV ).

Worst-case upper bound: We begin by computing:

sup
x∈Rd

∣∣∣〈(LV (x)−L (x)) · I‖x‖≤√2d, S
〉
π

∣∣∣
≤ sup
x∈Rd

‖S‖π · ‖(LV (x)−L (x))‖π · I‖x‖≤√2d

≤ 2 · sup
V ∈{±1}d

sup
x:‖x‖2≤2d

∣∣∣∣dµVdµ0
(x)− 1

∣∣∣∣ .
Since,

dµV
dµ0

(x)− 1 =
dν

dµ0

(
〈x,V 〉√

d

)
− 1,

we obtain,

sup
x∈Rd

∣∣∣〈(LV (x)−L (x)) · I‖x‖≤√2d, S
〉
π

∣∣∣≤ 2 · sup
z:|z|≤

√
2d

∣∣∣∣ dν

dµ0
(z)− 1

∣∣∣∣ .
Recall that ν satisfies the Locally Bounded Likelihood Ratio Assumption (Assumption 3)
with parameters (λ,K,κ). Furthermore if,

3κ ·K · λ · d
κ

2 ≤ 1,(F.15)

Assumption 3 yields,

sup
x∈Rd

∣∣∣〈(LV (x)−L (x)) · I‖x‖≤√2d, S
〉
π

∣∣∣≤ 2 · 3κ ·K · λ · d
κ

2(F.16)

def
= L/2.

Upper Bound on Variance: Observe that:

Var
(〈

(LV (x)−L (x)) · I‖x‖≤√2d, S
〉
π

)
≤ E0

〈
(LV (x)−L (x)) · I‖x‖≤√2d, S

〉2

π

≤ E0

〈
(LV (x)−L (x)), S

〉2

π

Observe that, ∫
LV (x)−L (x) π(dV ) = 0.

Hence,

sup
S:{±1}→R
‖S‖π≤1

Var
(〈

(LV (x)−L (x)) · I‖x‖≤√2d, S
〉
π

)

≤ sup
S:{±1}→R
‖S‖π≤1

E0

〈
(LV (x)−L (x)), S

〉2

π
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= sup
S:{±1}→R

‖S‖π≤1, 〈S,1〉
π

=0

E0

〈
(LV (x)−L (x)), S

〉2

π

= sup
S:{±1}→R

‖S‖π≤1, 〈S,1〉π=0

E0 〈LV (x), S〉2π .

Next we recall the Hermite decomposition of the LV (x) computed in Lemma F.1:

LV (x) =

∞∑
t=1

ν̂t ·Ht

(
〈x,V 〉√

d

)
.

Recalling the definition of Integrated Hermite Polynomials (Definition F.1), we can write:

〈LV (x), S〉π =

∞∑
t=1

ν̂t ·Ht(x;S).

Since the integrated Hermite polynomials are orthogonal,

E0 〈LV (x), S〉2π =

∞∑
t=1

ν̂2
t ·E0[Ht(x;S)2].

Since ν satisfies the Moment Matching Assumption (Assumption 1) with parameter k, we
have ν̂t = 0 for any t≤ k− 1. Hence,

sup
S:{±1}→R
‖S‖π≤1

Var
(〈

(LV (x)−L (x)) · I‖x‖≤√2d, S
〉
π

)
≤
∞∑
t=k

ν̂2
t ·E0[Ht(x;S)2]

≤

(
sup
t≥k

E0[Ht(x;S)2]

)
·
∞∑
t=k

ν̂2
t

(a)

≤K2λ2 ·

(
sup
t≥k

E0[Ht(x;S)2]

)
.

In the step marked (a), we appealed to the Bounded Signal Strength Assumption (Assump-
tion 2). In Lemma F.3, we showed that, E0[Ht(x1:N ;S)2]≤ (Ct)

t

2 · d−d
t+1

2
e. Hence,

max
k≤t≤d/C

E0[Ht(x;S)2]≤ (Ck)
k

2 · d−d
k+1

2
e.

On the other hand, when t≥ d/C , Lemma F.4 gives us,

max
t≥d/C

E0[Ht(x;S)2]≤ 2e−d/C
′
, C ′ =

2

(1− e−2/C)
.

By suitably defining the constant Ck (depending on k), we arrive at the following estimate
of the variance:

sup
S:{±1}→R
‖S‖π≤1

Var
(〈

(LV (x)−L (x)) · I‖x‖≤√2d, S
〉
π

)
≤ sup

S:{±1}→R
‖S‖π≤1, 〈S,1〉

π
=0

E0 〈LV (x), S〉2π

(F.17a)

≤Ck ·K2λ2 · d−d
k+1

2
e(F.17b)

def
= σ2.(F.17c)
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Upper Bound on Expectation: As before (by centering S) we can argue,

sup
S:{±1}→R
‖S‖π≤1

E0

[〈
(LV (x)−L (x)) · I‖x‖≤√2d, S

〉
π

]

= sup
S:{±1}→R
‖S‖π≤1
〈S,1〉

π
=0

E0

[
〈LV (x), S〉π · I‖x‖≤√2d

]
.

Next we observe that since E0[LV (x)] = E0[L (x)] = 0, we have

E0[
〈
(LV (x)−L (x)), S

〉
π
] = 0.

Hence, we can write:

E0

[〈
(LV (x)−L (x)), S

〉
π
· I‖x‖≤√2d

]
=−E0

[〈
(LV (x)−L (x)), S

〉
π
· I‖x‖>√2d

]
.

Consequently, by Cauchy-Schwarz Inequality,(
E0

[〈
(LV (x)−L (x)), S

〉
π
· I‖x‖≤√2d

])2
≤ µ0(‖x‖2 ≥ 2d) ·E0[〈LV (x), S〉2π].

Standard χ2-concentration (see for e.g. [37, Example 2.11]) gives us µ0({‖x‖>
√

2d})≤
e−d/8. Combining this with the estimate in (F.17), we obtain,

. sup
S:{±1}→R
‖S‖π≤1

E0

[〈
(LV (x)−L (x)) · I‖x‖≤√2d, S

〉
π

]
≤ σe−

d

16 .(F.18)

Combining the estimates obtained in (F.16), (F.17) and (F.18) with the Bernstein Inequality
immediately gives the claim of the first claim of the lemma. In order to obtain the second
claim, we first define:

α(S)
def
= E0

[〈
(LV (x)−L (x)) · I‖x‖≤√2d, S

〉
π

]
.

We have∥∥∥∥∥
n∑
`=1

〈
(LV (x`)−L (x`)) · I‖x`‖≤

√
2d, S

〉
π

∥∥∥∥∥
4

≤

nα(S) +

∥∥∥∥∥
n∑
`=1

(〈
(LV (x`)−L (x`)) · I‖x`‖≤

√
2d, S

〉
π
− α(S)

)∥∥∥∥∥
4

.

We can compute:∥∥∥∥∥
n∑
`=1

(〈
(LV (x`)−L (x`)) · I‖x`‖≤

√
2d, S

〉
π
− α(S)

)∥∥∥∥∥
4

4

= n ·E
(〈

(LV (x`)−L (x`)) · I‖x`‖≤
√

2d, S
〉
π
− α(S)

)4

+ 3n(n− 1) ·Var2
(〈

(LV (x)−L (x)) · I‖x‖≤√2d, S
〉
π

)
.

We recall that,

α(S)≤ σe−
d

16 ,

Var
(〈

(LV (x)−L (x)) · I‖x‖≤√2d, S
〉
π

)
≤ σ2,



STATISTICAL-COMPUTATIONAL TRADE-OFFS VIA COMMUNICATION COMPLEXITY 55

and that,

E
(〈

(LV (x`)−L (x`)) · I‖x`‖≤
√

2d, S
〉
π
− α(S)

)4

≤ L2 ·Var
(〈

(LV (x)−L (x)) · I‖x‖≤√2d, S
〉
π

)
≤ L2σ2.

Hence,∥∥∥∥∥
n∑
`=1

〈
(LV (x`)−L (x`)) · I‖x`‖≤

√
2d, S

〉
π

∥∥∥∥∥
4

≤ n · σ · e−
d

16 +
√
Lσ · n

1

4 + σ
√
n.

This concludes the proof of this lemma.

F.4.3. Proof of Lemma F.7.

PROOF OF LEMMA F.7. We have

E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

LV ((X)S)

∣∣∣∣2
=

∑
S1,S2⊂[n]
|S1|≥2,|S2|≥2

E0[LV ((X)S1
) ·LV ((X)S2

)]

Recall that,

LV (XS)
def
=
∏
i∈S

(
dµV
dµ0

(xi)− 1

)
.

We observe that, x1:n are independent and,

E0

[
dµV
dµ0

(xi)− 1

]
= 0.

Hence if S1 6= S2, E0[LV ((X)S1
) ·LV ((X)S2

)] = 0. This gives us:

E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

LV ((X)S)

∣∣∣∣2
=

∑
S⊂[n] |S|≥2

E0[LV ((X)S)2].

Recall the formula for the likelihood ratio for the Non-Gaussian Component Analysis prob-
lem (F.7), we obtain,

E0[LV ((X)S)2] =

(
E0

[(
dν

dµ0
(Z)− 1

)2
])|S|

, Z ∼N (0,1) .

Since ν satisfies the Bounded Signal Strength Assumption, we have

E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

LV ((X)S)

∣∣∣∣2
≤ ∑

S⊂[n] |S|≥2

(K2λ2)|S|

=

n∑
s=2

(
n

s

)
(K2λ2)s

≤
n∑
s=2

(K2nλ2)s.

The assumption K2nλ2 ≤ 1/2 guarantees that the above sum is dominated by a Geometric
series, which immediately yields the claim of the lemma.
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F.5. Omitted Proofs from Section F.3. This section contains the proofs of the various
analytic properties (Lemma F.3, Lemma F.4 and Lemma F.5) of the likelihood ratio for the
Non-Gaussian Component Analysis problem, which were stated in Appendix F.3.

F.5.1. Proof of Lemma F.3.

PROOF OF LEMMA F.3. Using Definition F.1 and Fubini’s theorem, we obtain,

E0[Ht(x1:N ;S)2] =∫ ∫ N∏
i=1

E0

[
Hti

(
〈xi,V1〉√

d

)
Hti

(
〈xi,V2〉√

d

)]
· S(V1) · S(V2) π(dV1) π(dV2).

Fact I.6 gives us,

E0

[
Hti

(
〈xi,V 〉√

d

)
Hti

(
〈xi,V ′〉√

d

)]
=

(
〈V1,V2〉

d

)t
.

We define V = V1 �V2, where � denotes entry-wise product of vectors and,

V =
1

d

d∑
i=1

Vi.

Hence,

E0[Ht(x1:N ;S)2] =

∫ ∫
V
t · S(V1) · S(V2) π(dV1) π(dV2).

Since V1,V2 are independently sampled from the prior π and V = V1 � V2, it is straight-
forward to check that V1,V are independent, uniformly random {±1}d vectors and V2 =
V1 �V . Hence,

E0[Ht(x1:N ;S)2] =

∫ ∫
V
t · S(V1) · S(V �V1) π(dV1) π(dV ).(F.19)

Recall that, the collection of polynomials:{
V r def

=

d∏
i=1

V ri
i : r ∈ {0,1}d

}
,

form an orthonormal basis for functions on the Boolean hypercube {±1}d with respect to the
uniform distribution π = Unif

(
{±1}d

)
. Hence, we can expand S in this basis:

S(V ) =
∑

r∈{0,1}d
Ŝr ·V r, Ŝr

def
=

∫
S(V ) ·V rπ(dV ).

Substituting this in (F.19) gives us:

E0[Ht(x1:N ;S)2] =
∑

r,s∈{0,1}d
ŜrŜs

∫ ∫
V
t ·V r+s

1 ·V s π(dV1) π(dV ).

Noting that, if r 6= s, ∫
V r+s

1 π(dV1) = 0,
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we obtain,

E0[Ht(x1:N ;S)2] =
∑

r∈{0,1}d
Ŝ2
r

∫
V
t ·V r π(dV ).

With this formula, we can prove each claim of the lemma.

When S = 1: When S = 1, Ŝ0 = 1 and Ŝr = 0 for any r 6= 0. Hence,

E0[Ht(x1:N ;S)2] =

∫
V
t
π(dV ).

When t is odd, this is indeed zero due to symmetry. This proves item (1). For even t, we
recall that

√
dV is sub-Gaussian with variance proxy 1, and standard moment bounds on

sub-Gaussian random variables (see e.g. [33, Lemma 1.4])

E0[Ht(x1:N ;S)2] =

∫
V
t
π(dV )≤ (4t)

t

2 · d−
i

2 .

This proves item (2). The lower bound in item (3) is obtained by appealing to Fact I.3 (due
to Kunisky, Wein and Bandeira [27]):

E0[Ht(x1:N ;S)2] =

∫
V
t
π(dV )≥ (t/e2)

t

2 · d−
t

2 .

General S with ‖S‖π ≤ 1:

Since ‖S‖π ≤ 1, we know that
∑
r Ŝ

2
r ≤ 1. When 〈S,1〉π = 0, one additionally has Ŝ0 = 0.

Hence,

sup
S:‖S‖π≤1

E0[Ht(x1:N ;S)2]≤ max
r∈{0,1}d

∫
V
t ·V r π(dV ),

sup
S:‖S‖π≤1
〈S,1〉π=0

E0[Ht(x1:N ;S)2]≤ max
r∈{0,1}d
‖r‖1≥1

∫
V
t ·V r π(dV ).

The right hand sides of the above equations have been analyzed in Lemma I.1. Appealing to
this result immediately yield claim (5) and (6).

F.5.2. Proof of Lemma F.4.

PROOF OF LEMMA F.4. Let ‖t‖1 = t. Recall that in the proof of Lemma F.3, we showed:

sup
S:‖S‖π≤1

E0[Ht(x1:N ;S)2]≤ max
r∈{0,1}d

∫
V
t ·V r π(dV ).

Hence, using the triangle inequality and the fact that |V r| ≤ 1 we obtain,

sup
S:‖S‖π≤1

E0[Ht(x1:N ;S)2]≤
∫
|V |t π(dV ).

Let D+(V ) denote the number of positive coordinates of V . Let D−(V ) denote the number
of negative coordinates of V . We observe that,

|V |= 1− 2

d
·D+(V )∧D−(V ).
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Hence,

|V |t =

(
1− 2

d
·D+(V )∧D−(V )

)t
≤ exp

(
−2t

d
·D+(V )∧D−(V )

)
≤ exp

(
−2t

d
·D+(V )

)
+ exp

(
−2t

d
·D−(V )

)
.

Observing that,∫
exp

(
−2t

d
·D−(V )

)
π(dV ) =

∫
exp

(
−2t

d
·D+(V )

)
π(dV ) =

(
1 + e−2t/d

2

)d

=

(
1− (1− e−2t/d)

2

)d
≤ exp

(
−(1− e−2t/d)

2
· d
)
.

Hence,

sup
S:‖S‖π≤1

E0[Ht(x1:N ;S)2]≤ 2 exp

(
−(1− e−2t/d)

2
· d
)
,

as claimed.

F.5.3. Proof of Lemma F.5.

PROOF OF LEMMA F.5. Note that the result for q = 2 follows from the discussion pre-
ceding this lemma. Hence we focus on proving the inequality when q ≥ 2. Recalling Defini-
tion F.1, we have

Ht(x1:N ;S)
def
=

∫ ( N∏
i=1

Hti

(
〈xi,V 〉√

d

))
· S(V ) π(dV )

Observe that for any fixed V and any i ∈ [N ],

Hti

(
〈xi,V 〉√

d

)
,

can be written as a homogeneous polynomial in xi (see Fact I.5) with degree ti. Since,

Ht(x1:N ;S) =

∫ ( N∏
i=1

Hti

(
〈xi,V 〉√

d

))
· S(V )

is a weighted linear combination of such polynomials, it must have a representation of the
form:

Ht(x1:N ;S) =
∑

c1:N∈Nd0
‖ci‖1=ti

β(c1:N ;S) ·Hc1(x1) ·Hc2(x2) · · · ·HcN (xN ),
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for some coefficients β(c1:N ;S). While these coefficients can be computed, we will not need
their exact formula for our discussion. Hence,∑
t∈NN0

αtHt(x1:N ;S) =
∑
t∈NN0

∑
c1:N∈Nd0
‖ci‖1=ti

αt · β(c1:N ;S) ·Hc1(x1) ·Hc2(x2) · · · ·HcN (xN )

By Gaussian Hypercontractivity (Fact I.7),∥∥∥∥∥∥
∑
t∈NN0

αtHt(x1:N ;S)

∥∥∥∥∥∥
2

q

≤
∑
t∈NN0

α2
t ·

∑
c1:N∈Nd0
‖ci‖1=ti

(q− 1)‖c1‖1+‖c2‖1+···+‖cN‖1 · β(c1:N ;S)2

=
∑
t∈NN0

(q− 1)‖t‖1 · α2
t ·

∑
c1:N∈Nd0
‖ci‖1=ti

β(c1:N ;S)2

Observing that,

E0[Ht(x1:N ;S)2] =
∑

c1:N∈Nd0
‖ci‖1=ti

β(c1:N )2,

yields the claim of the lemma.

APPENDIX G: FURTHER RESULTS FOR NON-GAUSSIAN COMPONENT
ANALYSIS

This appendix provides some additional results for Non-Gaussian Component Analysis. It
is organized as follows:

1. Appendix G.1 describes a connection between the k-NGCA problem and the problem of
learning Gaussian mixture models.

2. Appendix G.2 describes a connection between the k-NGCA problem and the problem of
learning binary generalized linear models.

3. Appendix G.3 provides two constructions for the non-Gaussian distributions.

G.1. Connections to Learning Mixtures of Gaussians. In this section, we describe a
connection between the problem of learning mixtures of Gaussians and the k-NGCA prob-
lem. The following lemma provides a construction where ν is a mixture of Gaussian distri-
butions. The k-NGCA problem with this particular non-Gaussian measure provides a hard
instance for the problem of learning a Gaussian mixture model.

LEMMA G.1. For each even k = 2` ∈ N, there are two positive constants λk > 0 and
Kk <∞ (depending only on k) such that for any λ ∈ (0, λk/2], there is a probability measure
ν has the following properties:

1. ν is a mixture of Gaussians on R with ` components with equal variances:

ν =
∑̀
i=1

pi · N
(
wi, σ

2
)
,

for some probability weights p1, p2, . . . , p`, mean parameters w1,w2, . . . ,w` ∈ R, and
variance parameter 0< σ2 < 1.

2. ν satisfies the Moment Matching Assumption (Assumption 1) with parameter k.
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3. ν satisfies the Bounded Signal Strenth Assumption (Assumption 2) with parameters
(λ,Kk).

4. ν satisfies the Locally Bounded Likelihood Ratio Assumption (Assumption 3) with param-
eters (λ,Kk, κ= k).

5. ν satisfies the Minimum Signal Strength Assumption (Assumption 4) with parameters
(λ,k).

6. ν is sub-Gaussian (Assumption 5) with variance proxy ϑ= 1.
7. Furthermore we have λ1/k/Kk ≤mini 6=j |wi −wj | ≤maxi 6=j |wi −wj | ≤Kk · λ1/k.

The proof of this result is provided in Appendix G.3.1. This construction also appears in
the work of Diakonikolas, Kane and Stewart [14], who use it to prove computational lower
bounds for estimating Gaussian Mixture Models in the SQ model. We use the above con-
struction to relate k-NGCA to the problem of estimating Gaussian mixture models.

Mixtures of Gaussians and k-NGCA. Consider the problem of fitting a Gaussian mixture
model, where the mixture components have identical but unknown covariance matrices. For-
mally, one is given a dataset x1:N ∈Rd generated i.i.d. from the Gaussian mixture model:

x1:N
i.i.d.∼
∑̀
i=1

pi · N (µi,Σ) ,(G.1)

where the mean vectors µ1:` and the covariance matrix Σ are unknown. The goal is to esti-
mate the mean vectors µ1:`. Observe that when the dataset x1:N is generated by the k-NGCA
model with the non-Gaussian measure ν from Lemma G.1 and non-Gaussian direction V ,
then, recalling (F.5), we obtain

x1:N
i.i.d.∼
∑̀
i=1

pi · N
(
wi√
d
V ,Id −

(1− σ2)

d
V V T

)
.

This is an instance of a Gaussian mixture model (G.1). The parameter λ from the Bounded
Signal Strength Assumption (Lemma G.1), which determines the statistical difficulty of the
k-NGCA problem, can be reinterpreted as the minimum separation between the component
means:

λ1/k �min
i 6=j
‖µi −µj‖.

This is a natural notion of the signal strength for the fitting Gaussian mixture models. The
parameter k from the Moment Matching Assumption (Lemma G.1), which determines the
computational difficulty of the k-NGCA problem, relates to the number of mixing compo-
nents in the Gaussian mixture model instance via the relation k = 2`. In summary, the lower
bounds we prove for the k-NGCA problem automatically yield lower bounds for estimating
Gaussian mixture models.

G.2. Connections to Learning Binary Generalized Linear Models. In this section,
we describe a connection between the problem of learning binary Generalized Linear Models
(GLMs) and the k-NGCA problem. The following lemma provides a construction of a non-
Gaussian measure ν designed such that the likelihood ratio of ν with respect to the standard
Gaussian measure N (0,1) is uniformly bounded. We will show that the k-NGCA problem
with this particular non-Gaussian measure can be reduced to the problem of learning a binary
GLM with a particular link function.

LEMMA G.2. For every k ∈N, there is a positive constant λk > 0 that depends only on k
such that, for any λ ∈ (0, λk], there is a probability measure ν with the following properties:
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1. ν satisfies the Moment Matching Assumption (Assumption 1) with parameter k.
2. ν has a bounded density with respect to µ0 =N (0,1):∣∣∣∣ dν

dµ0
(x)− 1

∣∣∣∣≤ λ

λk
≤ 1.

In particular, ν satisfies the Bounded Signal Strength Assumption (Assumption 2) with
parameters (λ,K = 1/λk) and the Locally Bounded Ratio Assumption (Assumption 3)
with parameters (λ,K = 1/λk, κ= 0).

3. ν satisfies the Minimum Signal Strength Assumption (Assumption 4) with parameters
(λ,k).

4. ν is sub-Gaussian (Assumption 5) with variance proxy ϑ≤C for some universal constant
C .

5. When k is odd, ν satisfies

1

2
·
(

dν

dµ0
(x) +

dν

dµ0
(−x)

)
= 1.

The proof of this result is provided in Appendix G.3.2. We use the above construction
to relate the k-NGCA problem to the problem of learning binary generalized linear models,
which we introduce below. The connection described below is also implicit in the work of
Diakonikolas et al. [15], which studies SQ lower bounds for agnostic learning of half-spaces.

Generalized linear models and k-NGCA. Consider the problem of fitting a binary general-
ized linear model (GLM) with Gaussian covariates. One observes a data set consisting of N
feature-response pairs {(fi, ri) : i ∈ [N ]} ⊂Rd × {0,1} sampled i.i.d. as follows:

fi ∼N (0,Id) , ri | fi ∼Bernoulli

(
ρ

(
〈fi,V 〉√

d

))
.(G.2)

In the above display, V ∈ Rd is the unknown parameter of interest with ‖V ‖ =
√
d, and

ρ : R→ [0,1] is a known but arbitrary regression function. The goal is to estimate the vector
V .

The GLM learning problem is closely related to the k-NGCA problem, because for cer-
tain non-Gaussian measures ν (including those coming from Lemma G.2 with k odd), it is
possible to transform a dataset x1:N sampled from the k-NGCA problem with non-Gaussian
direction V into a dataset {(fi, ri) : i ∈ [N ]} sampled from the GLM (G.2). Consequently,
estimators designed for learning GLMs can be used to solve the k-NGCA problem. Hence,
the lower bounds we prove for k-NGCA immediately yield lower bounds for the GLM learn-
ing problem.

We now describe the transformation that converts a dataset x1:N for the k-NGCA problem
to a dataset {(fi, ri) : i ∈ [N ]} for the GLM learning problem:

ri
i.i.d.∼ Bernoulli

(
1

2

)
, fi = (2ri − 1) ·xi.(G.3)

We verify that (fi, ri) are samples from (G.2). First we observe that conditioned on ri, we
can compute the distribution of fi:

fi | ri = 1∼ µV , fi|ri = 0∼ µ−V ,(G.4)

where µV is the measure from (F.5), and µ−V is the measure defined as follows by its likeli-
hood ratio with respect to µ0 =N (0,Id):

µ−V
dµ0

(x)
def
=
µV
dµ0

(−x)
(F.7)
=

dν

dµ0

(
− 〈x,V 〉√

d

)
.
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If the likelihood ratio of the non-Gaussian distribution ν with respect to N (0,1) satisfies

1

2
·
(

dν

dµ0
(x) +

dν

dµ0
(−x)

)
= 1,(G.5)

then computing the marginal distribution of fi from (G.4) yields fi ∼N (0,Id). The require-
ment in (G.5) is satisfied, for instance, when ν is the non-Gaussian measure constructed in
Lemma G.2 for odd k. Under this condition, an application of Bayes’ rule to (G.4) gives the
conditional distribution of ri | fi:

ri | fi ∼Bernoulli

(
1

2
· dν

dµ0

(
〈fi,V 〉√

d

))
.

This verifies the transformation in (G.3) produces an instance of the GLM learning problem
with the regression function

ρ(ξ) =
1

2
· dν

dµ0
(ξ).(G.6)

Finally, we estimate the parameters λ and k, which respectively determine the statistical and
computational difficulty of the k-NGCA problem in terms of the regression function ρ. Re-
call that when the non-Gaussian measure satisfies the Minimum Signal Strength Assumption
(Assumption 4) and the Bounded Signal Strength Assumption (Assumption 2), we have

λ2 �Var

(
dν

dµ0
(Z)

)
, k = min

{
` ∈N : E

[
dν

dµ0
(Z) ·H`(Z)

]
6= 0

}
, Z ∼N (0,1) .

Hence, (G.6) shows that the statistical difficulty of the GLM learning problem is determined
by

λ2 �Var (ρ(Z)) ,(G.7)

where as the computational difficulty is determined by

k = min{` ∈N : E [ρ(Z) ·H`(Z)] 6= 0} .(G.8)

We note that Var (ρ(Z)) appears to be a natural notion of signal strength for the GLM learn-
ing problem, since if Var (ρ(Z)) = 0, we have ρ(ξ) = 1/2 almost everywhere. This means
that the feature and response are independent and carry no information about the parameter
V . An analog of (G.8) (for the case when k = 2) appears in the work of Mondelli and Mon-
tanari [29, Theorem 2], who show that if E[ρ(Z)H2(Z)] = 0, then a broad class of spectral
estimators fail to have a non-trivial performance in the regimeN � d and λ� 1. Furthermore,
the hard instance constructed in the work of Diakonikolas et al. [15, Proposition 2.1] to prove
SQ lower bounds for agnostic learning of half-spaces has the property that the parameter k
(as defined in (G.8)) is large.

G.3. Constructions of Non-Gaussian Distributions. In this section we provide the
proofs for Lemma G.1 and Lemma G.2.

G.3.1. Proof of Lemma G.1. The proof of Lemma G.1 relies on the following fact.

FACT G.1 (38, Section 2.7). Let k = 2` be even. There is a discrete random variable W
with support size ` such that

EHi(W ) = 0 ∀ 1≤ i≤ k− 1,

and, EHk(W ) = −`!/
√
k!. Furthermore, W is a bounded random variable |W | ≤

√
2k+ 2

and is sub-Gaussian with variance proxy 1.
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With this fact, we can now provide a proof for Lemma G.1.

PROOF OF LEMMA G.1. Let W be any bounded random variable from Fact G.1 with the
property that EHi(W ) = 0 for any 1 ≤ i ≤ k − 1 and EHk(W ) 6= 0. Let Z ∼ N (0,1) be
independent of W . Define:

λk
def
= |EZkHk(Z)| · |EHk(W )|> 0.

For any λ≤ λk, we claim that the law ν of the random variable Wλ defined by

Wλ
def
= γ(λ) ·W +

√
1− γ2(λ) ·Z, γ(λ)

def
=

(
λ

λk

) 1

k

is a non-Gaussian measure with the desired properties.
We begin by computing EHt(Wλ). Recall the generating function for the Hermite Poly-

nomials: for any x,w ∈R, we have

exw−
x2

2 =

∞∑
t=0

xt√
t!
Ht(w).

In particular:

Ht(w) =
1√
t!

dt

dxt
exw−

x2

2

∣∣∣∣
x=0

.(G.9)

Hence,

EHt(Wλ) =
1√
t!

dt

dxt
EexWλ− x

2

2

∣∣∣∣
x=0

=
1√
t!

dt

dxt
EexγW+x

√
1−γ2Z− x2

2

∣∣∣∣
x=0

=
1√
t!

dt

dxt
EexγW−

x2γ2

2

∣∣∣∣
x=0

=
1√
t!
E

dt

dxt
exγW−

x2γ2

2

∣∣∣∣
x=0

.

Applying the differential identity in (G.9) after making the change of variables z = γx, we
obtain,

EHt(Wλ) =
1√
t!
E

dt

dxt
exγW−

x2γ2

2

∣∣∣∣
x=0

= γt(λ) ·EHt(W ).

Recalling the properties of W stated in Fact G.1, we obtain,

EHt(Wλ) =

{
0 if t≤ k− 1;
λ
λk
·EHk(W ) if t= k.

(G.10)

Furthermore, Bonan and Clark [9, Theorem 1] have shown:

C
def
= sup
t∈N0

sup
w∈R

{
|Ht(w)| · e−

w2

2

}
<∞.

Consequently, we have

|EHt(Wλ)| ≤Ce
‖W‖2∞

2 ·
(
λ

λk

) t

k

(G.11)

Using (G.10) and (G.11), we can now establish the desired properties of ν:
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1. By (G.10), we see that EHt(Z) = EHt(Wλ) for any t≤ k − 1. This immediately yields
EZt = EW t

λ for any t≤ k−1. Hence, ν satisfies the Moment Matching Assumption with
parameter k.

2. We expand the likelihood ratio in the Hermite basis:

dν

dµ0
(z) =

∞∑
t=0

(
EHt(Z) · dν

dµ0
(Z)

)
Ht(z)

=

∞∑
t=0

EHt(Wλ) ·Ht(z)

= 1 +

∞∑
t=k

EHt(Wλ) ·Ht(z).

In the above display, in the last step, we used the fact that EHt(Wλ) = 0 for any 1≤ t≤
k− 1. To verify that the second moment of the likelihood ratio is bounded, we note that,

E
(

dν

dµ0
(Z)− 1

)2

=

∞∑
t=k

|EHt(Wλ)|2.

Using the estimates in (G.10) and (G.11) and the assumption λ/λk ≤ 1/2, we obtain,

E
(

dν

dµ0
(Z)− 1

)2

≤ C2 · e‖W‖2∞
λ2
k

· 22/k

22/k − 1
· λ2.(G.12)

This verifies the Bounded Signal Strength Assumption.
3. In order to verify that the likelihood ratio is locally bounded, we begin with the estimate:∣∣∣∣ dν

dµ0
(z)− 1

∣∣∣∣≤ ∞∑
t=k

|EHt(Wλ)| · |Ht(z)| ≤Ce
‖W‖2∞

2

∞∑
t=k

(
λ

λk

) t

k

· |Ht(z)|.

Fact I.2 shows that |Ht(z)| ≤ (1 + |z|)t. Hence,∣∣∣∣ dν

dµ0
(z)− 1

∣∣∣∣≤Ce ‖W‖2∞2

∞∑
t=k

(
λ

λk

) t

k

· (1 + |z|)t.

Under the assumption:

λ

λk
· (1 + |z|)k ≤ 1

2
,(G.13)

we obtain, ∣∣∣∣ dν

dµ0
(z)− 1

∣∣∣∣≤ Ce
‖W‖2∞

2

λk
· 21/k

21/k − 1
· λ · (1 + |z|)k.(G.14)

Inspecting (G.13) and (G.14), we obtain that the Locally Bounded Likelihood Ratio As-
sumption holds with

κ= k, K =
Ce

‖W‖2∞
2

λk
· 21/k

21/k − 1
.

4. Recall that the monomial wk can be written as a linear combination of {Ht(w)}t≤k:

wk =

k∑
t=0

atHt(w), at = EZtHt(Z).



STATISTICAL-COMPUTATIONAL TRADE-OFFS VIA COMMUNICATION COMPLEXITY 65

Hence,

|EZk −EW k
λ |= |ak ·EHk(Wλ)|= λ · |EZ

kHk(Z)| · |EHk(W )|
λk

= λ.

This verifies the Minimum Signal Strength Assumption (Assumption 4).
5. Observe that EetWλ = E[etγ(λ)W ] · et2(1−γ2(λ)/2. Since W is 1 sub-Gaussian, EetWλ ≤
et

2/2, which verifies that ν is 1 sub-Gaussian.

This concludes the proof of this lemma.

G.3.2. Proof of Lemma G.2.

PROOF OF LEMMA G.2. Consider the vector space of polynomials on R. On this vector
space, define the inner product:

〈f, g〉∆
def
=

∫
R
f(x)g(x)∆(x)µ0(dx),

where the weight function ∆(x) is defined as:

∆(x) =

{
1 if |x| ≤ 1;

0 if |x|> 1.
.

Let (H∆
i )i∈N0

denote the orthonormal polynomials obtained by the Gram-Schmidt orthog-
onalization of the ordered linearly independent collection (xi)i∈N0

. In particular, for all
i, j ∈N0,

•
〈
H∆
i ,H

∆
j

〉
∆

= δij ,

• Span({1, x, . . . , xi}) = Span({H∆
0 ,H

∆
1 , . . . ,H

∆
i }),

• The degree of H∆
i is exactly i.

Define

‖H∆
k ·∆‖∞

def
= sup
x∈R
|H∆

k (x)∆(x)|, λk
def
=
|
〈
xk,H∆

k

〉
∆
|

‖H∆
k ·∆‖∞

.

Since polynomials are uniformly bounded on compact sets, we have ‖H∆
k · ∆‖∞ =

sup|x|≤1 |H∆
k (x)| <∞. Furthemore, we observe that λk 6= 0 (otherwise xk lies in the span

of H∆
0:k−1, which is not possible since xk has degree k). With these definitions, we are ready

to construct the measure ν as follows:

dν

dµ0
(x)

def
= 1 +

λ

λk

H∆
k (x) ·∆(x)

‖H∆
k ·∆‖∞

.(G.15)

We first check that the above ν is a valid probability measure. The density defined above is
non-negative for any 0≤ λ≤ λk. Furthermore,∫

dν

dµ0
(x) = 1 +

λ

λk
·
〈
H∆
k ,1

〉
∆

‖H∆
k ·∆‖∞

= 1 +
λ

λk
·
·
√
〈1,1〉∆ ·

〈
H∆
k ,H

∆
0

〉
∆

‖H∆
k ·∆‖∞

(a)
= 1.

In the step marked (a), we used the orthogonality property
〈
H∆
k ,H

∆
0

〉
∆

= 0 for any k ∈
N. Hence ν defines a valid probability measure. Next, we verify each of the claims in the
statement of the lemma.
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1. For any i ≤ k − 1, since xi lies in the span of H∆
1:k−1, we have

〈
xi,H∆

k

〉
∆

= 0. Conse-
quently,∫

xiν(dx) =

∫
xi · dν

dµ0
(x) · µ0(dx) = EZi +

λ

λk
·
〈
xi,H∆

k

〉
∆

‖H∆
k ·∆‖∞

= EZi.

2. This claim is immediate from the formula in (G.15).
3. Following the same steps as in the proof of item (1), we obtain∣∣∣∣∫ xkν(dx)−EZk

∣∣∣∣= λ

λk
·
|
〈
xk,H∆

k

〉
∆
|

‖H∆
k ·∆‖∞

= λ.

4. Observe that∫
|x|i ν(dx) =

∫
|x|i · dν

dµ0
(x) µ0(dx)≤ 2E|Z|i, Z ∼N (0,1) .

Hence, ν is sub-Gaussian with variance proxy ϑ≤C for some universal constant C .
5. An inductive argument shows that H∆

i is an odd function for odd i and an even function
for even i. Hence when k is odd, (G.15) gives:

dν

dµ0
(x) +

dν

dµ0
(−x) = 1,

as claimed.

This concludes the proof of this lemma.

APPENDIX H: CANONICAL CORRELATION ANALYSIS

This appendix presents introduces the order-k Canonical Correlation Analysis (k-CCA)
problem and presents a computational lower bound for this problem. The appendix is orga-
nized as follows:

1. Appendix H.1 formally defines the k-CCA problem inference problem. The computational-
statistical gap in k-CCA is discussed in Appendix H.2

2. A formal statement of the k-CCA computational lower bound appears in Appendix H.3.
3. Appendix H.4 formalizes a connection between k-CCA and the well-studied problem

problem of learning parities with noise. This allows us to obtain a computational lower
bound for learning parities with noise.

4. The proof of the k-CCA computational lower bound is provided in Appendix H.5. The
proof relies on an information bound for the distributed k-CCA problem, which is proved
in Appendix H.6.

H.1. Problem Formulation. In the order-k Canonical Correlation Analysis (k-CCA)
problem, one observes a dataset of N i.i.d. samples x1:N , in which each xi ∈ Rkd consists
of k “views” (or “modes”):

xi = (xi
(1),xi

(2), . . . ,xi
(k))T.

The correlation structure between the different views is such that

E
[
xi

(1) ⊗xi(2) ⊗ · · · ⊗xi(k)
]

=
λ√
dk
V ,(H.1)

where V ∈
⊗kRd is the rank-1 cross-moment tensor:

V =
√
dk · v1 ⊗ v2 ⊗ · · · ⊗ vk,
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for some unit vectors v1,v2, . . . ,vk ∈Rd. Note that ‖V ‖=
√
dk. The parameter λ > 0 is the

signal-to-noise ratio parameter. The goal is to estimate the cross-moment tensor V .
Note that we have not explicitly specified the probability measure µV of xi, as the goal

of estimating correlation structure is often considered in a non-parametric setting. However,
our lower bounds will consider a particular measure µV specified by its likelihood ratio with
respect to µ0 =N (0,Ikd):

dµV
dµ0

(x)
def
= 1 +

λ

λk
· sign

(〈
x(1) ⊗ · · · ⊗x(k),V

〉
√
dk

)
,(H.2a)

where

λk
def
=

(
2

π

) k

2

= (E|Z|)
k

2 , Z ∼N (0,1) .(H.2b)

This is a valid probability distribution that satisfies (H.1) as long as 0≤ λ≤ λk.
Finally, our computational lower bound for k-CCA will hold even under further restric-

tions on V , namely

V =
√
dk · ei1 ⊗ ei2 · · · ⊗ eik(H.3)

for some {i1, i2, . . . , ik} ⊆ [d], where e1,e2, . . . ,ed are the standard basis vectors in Rd. This
restriction is relevant to the connection between k-CCA and the parity learning problem.

H.2. Statistical-Computational Gap in k-CCA. The k-CCA problem exhibits the
same computational gap as the other inference problems studied in this paper. Depending
upon the effective sample size Nλ2, the k-CCA problem exhibits the following three phases:

Impossible phase. When the effective sample size Nλ2� d, there is no consistent estimator
for V . This follows from standard lower bounds based on Fano’s Inequality.1

Conjectured hard phase. In the regime d . Nλ2� dk/2, there is a consistent, but compu-
tationally inefficient estimator for the cross-moment tensor V ; see [16, Theorem 7, Ap-
pendix G.1] for details. We believe that no polynomial-time estimator can recover V in
this phase. In the arXiv version of this paper [16, Proposition 10, Appendix G.2], we give
evidence for this conjecture using the low-degree likelihood ratio framework.

Easy phase. In the regimeNλ2� dk/2, there are polynomial-time estimators for the k-CCA
problem. The correlation structure in (H.1) suggests that V can be estimated by the rank-1
approximation to the empirical cross-moment tensor:

T̂ =
1

N

N∑
i=1

x
(1)
i ⊗x

(2)
i ⊗ · · · ⊗x

(k)
i .

However, computing a rank-1 approximation to an order-k tensor is non-trivial for k ≥ 3.
For even k = 2`, we can reshape T̂ to a d

k

2 × d
k

2 matrix Mat(T̂ ), as was done for k-
ATPCA, where the matricization operation Mat(·) was defined as follows:

(H.4) Mat(T )(i1,i2,...,i`);(j1,j2,j3,...,j`)
def
= Ti1,i2,...,i`,j1,j2,...,j` i1:` ∈ [d], j1:` ∈ [d].

1This follows from similar arguments as those used to prove the corresponding result for k-NGCA in arXiv
version of this paper [16, Proposition 7, Appendix F.2].
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To estimate V , we first estimate Mat(V ) by computing the best rank-1 approximation to
Mat(T̂ ) using SVD:

(Û (L), Û (R))
def
= arg max

‖U (L)‖=1
‖U (R)‖=1

〈
U (L),Mat(T̂ ) ·U (R)

〉
.(H.5a)

We then construct an estimate V̂ of V by reshaping Û (L) ⊗ Û (R) into a tensor:

V̂
def
= Mat−1(Û (L) ⊗ Û (R)).(H.5b)

Under an additional concentration assumption, we analyze this spectral estimator in the
longer arXiv version of this paper [16, Theorem 8, Appendix G.3] and show that when
Nλ2� dk/2, V̂ is a consistent estimator for V .

H.3. Computational Lower Bound for k-CCA. The following is our computational
lower bound for k-CCA.

THEOREM H.1. Consider the k-CCA problem for k ≥ 2 with signal-to-noise ratio λ2 �
d−γ (as d→∞) for any constant γ > 3k/2. Let V̂ ∈

⊗kRd denote any estimator for this
k-CCA problem that can be computed using a memory bounded estimation algorithm with
resource profile (N,T, s) scaling with d as

Nλ2 � dη, T � dτ , s� dµ

for any constants η ≥ 1, τ ≥ 0, µ≥ 0. If

η+ τ + µ < k,

then, for any t ∈R,

lim sup
d→∞

inf
V ∈V

PV

(
|〈V ,V̂ 〉|2

‖V ‖2‖V̂ ‖2
≥ t2

dk

)
≤ 1

t2
.

These results hold even when V and µV are promised to satisfy (H.3) and (H.2).

Theorem H.1 shows that if the signal-to-noise ratio λ is sufficiently small, then memory
bounded estimation algorithms using too few total resources (as measured by the product
Nλ2 · T · s) perform no better than a random guess. Given the close relationship between k-
CCA and k-ATPCA (analogous to that between k-NGCA and k-TPCA), it is not surprising
that Theorem H.1 and Theorem 2 are quantitatively similiar (modulo the condition on the
signal-to-noise ratio). So, most of the implications discussed in Section 6.4 regarding k-
ATPCA continue to hold for k-CCA.

H.4. Connections to Learning Parities. Learning parity functions from labeled exam-
ples is a well-studied problem in computational learning theory with numerous connections
to cryptography and coding theory [4, 7, 8, 6, 28, 17, 36, 26, 24, 32, 19, 18]. In our gen-
eralization of this problem, one observes a data set consisting of N feature-response pairs
{(fi, ri) : i ∈ [N ]} ⊂RD × {0,1} sampled i.i.d. as follows:

fi ∼N (0,ID) , ri | fi ∼Bernoulli

1

2
+

Λ

2
·
k∏
j=1

sign(〈vj ,fi〉)

 .(H.6)
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In the above display, v1,v2, . . . ,vk ∈ RD are unknown parameters with ‖vi‖ = 1, and Λ ∈
[0,1] controls the signal-to-noise ratio of the problem. The goal is to estimate the parameter
V :

V =
√
Dk · v1 ⊗ v2 ⊗ · · · ⊗ vk.

Depending on the assumptions made on k and v1:k, one obtains the following different vari-
ants of the original parity learning problem:

1. If v1 = ei1 ,v2 = ei2 , . . . ,vk = eik for some unknown subset {i1, i2, . . . , ik} ⊂ [D], then
this is the problem of learning k-sparse parities with noise (k-LPN). Here, e1,e2, . . . ,eD
are the standard basis vectors in RD , and we typically consider k � 1.

2. The generalization of k-LPN where k ∈ [D] is arbitrary (possibly growing with D, and
also possibly unknown) is called the problem of learning (non-sparse) parities with noise
(LPN).

3. If v1,v2, . . . ,vk is an unknown collection of mutually orthogonal unit vectors, then this is
the problem of learning k-sparse parities with noise in an unknown basis.

The computational lower bounds for k-CCA derived in this paper have interesting implica-
tions for each of the three variants of the parity problem introduced above. This is because it
is possible the hard instance of k-CCA used to prove the computational lower bounds in this
paper can be transformed into an instance of k-LPN (for odd k). Since k-LPN is the simplest
of the three variants of the parity learning problem introduced above, an estimator for any of
the three variants can be used to solve a k-LPN instance. This means that the lower bounds
for k-CCA derived in this paper immediately yield computational lower bounds for each of
the variants of parity learning problem mentioned above. To make this connection precise,
we give a reduction from the hard instance of k-CCA studied in this paper to k-LPN.

Reduction to k-LPN. In the hard instances of k-CCA considered in Theorem H.1, the
cross-moment tensor has the form V =

√
dkv1 ⊗ v2 ⊗ · · · ⊗ vk where vj = eij for some

i1, i2, . . . , ik ∈ [d], as per (H.3). The dataset x1:N ∈Rkd is sampled i.i.d. from the probability
distribution µV defined via the likliehood ratio in (H.2)

We transform a k-CCA dataset x1:N into the k-LPN dataset {(fi, ri) : i ∈ [N ]} ⊂ Rkd ×
{0,1} as follows:

ri
i.i.d.∼ Bernoulli

(
1

2

)
, fi = (2ri − 1)xi.

Since this specifies the joint distribution of (ri,fi), one can compute the marginal distribution
of fi and the conditional distribution of ri given fi using this information. When k is odd
and if x1:N

i.i.d.∼ µV for V =
√
dk · ei1 ⊗ ei2 · · · ⊗ eik : i1:k ∈ [d], we find that

fi ∼N (0,Ikd) , ri|fi ∼Bernoulli

1

2
+

λ

2λk
·
k∏
j=1

sign(〈vj ,fj〉)

 ,

where

vj =

0,0, . . . ,0︸ ︷︷ ︸
j − 1 times

,eij ,0,0, . . . ,0︸ ︷︷ ︸
k− j times

 ∀ j ∈ [k].

This verifies that {(fi, ri) : i ∈ [N ]} ⊂Rkd×{0,1} is an instance of the k-LPN in dimension
D = kd with signal-to-noise ratio Λ = λ/λk.
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Implications for Learning (Non-Sparse) Parities with Noise. To discuss the implications of
the computational lower bound in Theorem H.1, we focus on the problem of learning non-
sparse parities. Recall that in this problem, one is given a data set consisting of N feature-
response pairs {(fi, ri) : i ∈ [N ]} ⊂RD × {0,1} sampled i.i.d. as follows:

fi ∼N (0,ID) , ri ∼Bernoulli

1

2
+

Λ

2
·
∏
j∈S

sign(fij)

 ,(H.7)

where S ⊂ [D] is the unknown parameter of interest. While this problem can be solved effi-
ciently with N =D samples using Gaussian elimination when Λ = 1 (the noiseless setting),
this problem is believed to exhibit a large computational gap when Λ < 1 (the noisy set-
ting). The MLE for this problem consistently estimates S with a sample size N & D/Λ2,
but requires an exhaustive search over all 2D possible subsets of [D]. No estimator with a
poly(D,1/Λ) sample complexity and poly(D,1/Λ) run-time is currently known. Some no-
table algorithms2 that improve over the run-time of exhaustive search include the following.

1. An algorithm due to Blum, Kalai and Wasserman [6] that solves LPN with N =
2O(D/ log(D)) samples and run-time in the regime Λ≥ 2−O(Dδ) for any δ < 1.3

2. An algorithm due to Lyubashevsky [28] that solves LPN using N .D1+ε and run-time
2O(D/ log log(D)) in the regime Λ≥ 2−O(logδ(D)) for any ε > 0 and δ < 1.

3. An algorithm due to Valiant [36] that solves k-LPN using N .D(1+ε)2k/3/Λ2+ε and run-
time O((D(1+ε)k/3/Λ2+ε)ω) for any ε > 0, where ω < 2.372 is the matrix multiplication
exponent. Note that the exponent on D in the run-time is less than 0.8k.

The SQ framework has been used to provide evidence for the hardness of learning parities
in the work of Kearns [23] and Blum et al. [8]. The latter work shows that any SQ algo-
rithm which learns noisy parities with a sample size N ≤ 2D/3 must make at least 2D/3/2
queries. Using the reduction between k-CCA and k-LPN outlined previously, we can obtain
the following corollary for learning (non-sparse) parities.

COROLLARY H.1. Consider the problem of learning non-sparse parities in dimension
D with signal-to-noise ratio Λ2 �D−γ (as D→∞). Let Ŝ be any estimator of S computed
using a memory bounded estimation algorithm with resource profile (N,T, s) scaling with D
as

NΛ2 �Dη, T �Dτ , s� Dµ

Λα

for any constants η ≥ 1, τ ≥ 0, µ≥ 0, α < 4/3. If

γ >
2(η+ τ + µ+ 2)

4/3− α
,

then

lim
D→∞

inf
S⊂[D]

PS
(
S = Ŝ

)
= 0.

2These works in fact study the Boolean version of the (non-sparse) parity problem where the features are drawn
from Unif

(
{±1}D

)
. However, the Gaussian and Boolean parity problems are statistically and computationally

equivalent. Given a sample (f , y) from the Gaussian parity problem, (sign(f), y) is a sample from the Boolean
parity problem where sign(·) acts entry-wise on f . Likewise, given a sample (b, y) from the Boolean parity
problem, (b� |g|, y) is a sample from the Gaussian parity problem where g ∼N (0,ID) and |g| is the entry-
wise absolute value of g and b� |g| is the entry-wise product of b and |g|.

3Though Blum, Kalai and Wasserman only state their result in the regime Λ� 1, their algorithm works in the

regime Λ≥ 2−O(Dδ) for any δ < 1, as stated in Lyubashevsky [28, Propsition 4].
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Informally, the above corollary shows that for any α < 4/3, there is no memory-bounded
estimation algorithm which solves the parity problem with an effective sample size NΛ2 =
poly(D), a memory state of size s= poly(D)/Λα after making T = poly(D) passes through
the data set, provided the signal-to-noise ratio Λ is sufficiently small.

PROOF OF COROLLARY H.1. Let k ∈ N be a parameter to be determined. Consider an
arbitrary memory bounded estimation algorithm for LPN with signal-to-noise ratio Λ which
has a resource profile (N,T, s) where,

Λ2 �D−γ , NΛ2 �Dη, T �Dτ , s� Dµ

Λα
,

for arbitrary constants η ≥ 1, τ ≥ 0, µ≥ 0, α < 4/3. As a consequence of the reduction from
k-CCA to k-LPN, we obtain using Theorem H.1 that, if we choose k odd such that

k ∈
(
η+ τ + µ+

αγ

2
,
2γ

3

)
,(H.8)

then

lim
D→∞

inf
S⊂[D]
|S|=k

PS
(
S = Ŝ

)
= 0.

Under the assumptions on γ,α stated in the corollary, the interval in (H.8) is non-empty and
has a width > 2. Hence, one can indeed find an odd k ∈ N which satisfies (H.8). Hence, the
claim of the corollary follows.

H.4.1. Comparison to Prior Works. A recent line of work initiated by Steinhardt, Valiant
and Wager [34] and Raz [32] has obtained memory vs. sample-size lower bounds for single-
pass memory-bounded estimation algorithms for learning parities:

1. Raz [32] showed that 1-pass (T = 1) memory-bounded estimation algorithms for learning
noiseless (Λ = 1) parities require either a memory state of size s&D2 or an exponential
sample size N ≥ 2Ω(D), proving a conjecture of Steinhardt, Valiant and Wager [34].

2. Garg et al. [19] studied the problem of learning noisy parities (i.e., Λ ∈ (0,1)) using the
techniques of Raz and showed that 1-pass (T = 1) memory-bounded estimation algo-
rithms for learning noisy parities require either a memory state of size s &D2/Λ or an
exponential sample size N ≥ 2Ω(D).

3. Garg et al. conjectured that 1-pass (T = 1) memory-bounded estimation algorithms for
learning noisy parities require either a memory state of size s&D2/Λ2 or an exponential
sample size N ≥ 2Ω(D). The information-theoretic sample complexity of learning noisy
parities scales as N �D/Λ2. Hence, an interpretation of this conjecture is that any esti-
mation algorithm which learns noisy parities with N = poly(D) sample complexity must
have the capacity to memorize a dataset of size N � D/Λ2 (the information-theoretic
sample complexity).

In comparison to the results discussed above, a key weakness of the lower bound in Corol-
lary H.1 is that it requires the signal-to-noise ratio Λ to decay as a sufficiently large power of
D. In contrast the results of Raz and Garg et al. can allow any Λ ∈ (0,1]. This is a limitation
of the proof approach which relies on the connection between estimation with limited mem-
ory and estimation with limited communication in a distributed setting (recall Fact 1). The
techniques used by Raz and Garg et al. are very different and do not rely on this connection.
On the other hand, an advantage of the lower bounds obtained using communication com-
plexity is that they apply to multi-pass estimation algorithms whereas it seems challenging
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to extend the approach of Raz to the multi-pass setting. The work of Garg, Raz and Tal [18]
is the current state-of-the-art result in this direction and shows that 2-pass (T = 2) memory
bounded estimation algorithms for noiseless parity (Λ = 1) require a memory state of size
s&D3/2 or a sample size of N ≥ 2Ω(

√
D).

H.5. Proof of Computational Lower Bound (Theorem H.1). As with the other main
theorems of this paper, we prove Theorem H.1 by transferring a communication lower bound
for distributed estimation protocols for k-CCA to memory bounded estimators for the same
problem using the reduction in Fact 1.

In the (Bayesian) distributed setup for k-CCA, the cross-moment tensor V is drawn from
the prior

π
def
= Unif

(
{
√
dk · ei1 ⊗ ei2 · · · ⊗ eik : i1, i2, . . . , ik ∈ [d]}

)
.(H.9)

Here, ei denotes the i-th standard basis vector in Rd, so V ∼ π is a uniformly random 1-
sparse tensor. Then, x1:N are sampled i.i.d. from the distribution µV specified in (H.2) and
then distributed across m = N/n ∈ N machines with n samples/machine; n will be suit-
ably chosen to yield Theorem H.1. The execution of a distributed estimation protocol with
parameters (m,n, b) results in a transcript Y ∈ {0,1}mb written on the blackboard.

The following corollary is proved in exactly the same way as Corollary E.1.

COROLLARY H.2 (Fano’s Inequality for k-CCA). For any estimator V̂ (Y ) for k-CCA
computed by a distributed estimation protocol, and for any t ∈R, we have

inf
V ∈V

PV

(
|〈V ,V̂ 〉|2

‖V ‖2‖V̂ ‖2
≥ t2

dk

)
≤ 1

t2
+
√

2Ihel (V ;Y ).

The main technical result is the following information bound for k-CCA.

PROPOSITION H.1. Consider the k-CCA problem with µV as defined in (H.2). Let Y ∈
{0,1}mb be the transcript generated by a distributed estimation protocol for this k-CCA
problem with parameters (m,n, b). There is a finite constant Ck depending only on k, such
that if

n≥Ck · b · d
k

2 and nλ2 ≤ 1

Ck
,

then

Ihel (V ;Y )≤Ck ·
(
b ·m · n · λ2

dk
+m · n2 · λ4

)
.

Proposition H.1 is proved in Appendix H.6. We can now complete the proof of Theo-
rem H.1.

PROOF OF THEOREM H.1. Appealing to the reduction in Fact 1, we note that any
memory-bounded estimator V̂ with resource profile (N,T, s) can be implemented using
a distributed estimation protocol with parameters (N/n,n, sT ) for any n ∈ N such that
m :=N/n ∈N. As assumed in Theorem H.1, we consider the situation when:

η+ τ + µ < k, γ >
3k

2
.(H.10)
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We set n= dξ with

ξ
def
= τ + µ+

k

2
+

1

2
(k− (η+ τ + µ))︸ ︷︷ ︸

>0

> τ + µ+
k

2
.(H.11)

With this choice, we verify that the information bound in Proposition H.1 shows that
Ihel (V ;Y )→ 0. This will yield the claim of the theorem. We begin by observing

γ >
3k

2
=
k

2
+ η+ τ + µ+ (k− η− τ − µ) = η+ ξ +

(k− η− τ − µ)

2
> η+ ξ.(H.12)

Next, we verify the conditions required for Proposition H.1:

1. Since η > τ + µ+ k/2 (cf. (H.11)) we have n� b · dk/2 as required.
2. Since γ > η+ ξ > ξ (cf. (H.12)) we have nλ2� 1 as required.

Now, from the information bound of Proposition H.1,

Ihel (V ;Y )≤Ck ·
(
b ·m · n · λ2

dk
+m · n2 · λ4

)
.

=Ck ·
(
b ·Nλ2 · d−k + (nλ2) · (Nλ2)

)
.

We now check that this bound on Ihel (V ;Y ) vanishes as d→∞:

1. The assumption η+ τ + µ < k (cf. (H.10)) guarantees b ·Nλ2 · d−k→ 0.
2. Since γ > η+ ξ, we have (Nλ2) · (nλ2)→ 0.

This concludes the proof.

REMARK H.1 (Connection with Correlation Detection). Observe that due to the choice
of the prior in (H.9), the instance of k-CCA used to obtain the communication lower bound
is an instance of the correlation detection problem. In this problem, the goal is to find a
k-tuple of coordinates (i1, i2, . . . , ik) ⊂ [d]k in the k vectors (x(1),x(2), . . . ,x(k)) such that
x

(1)
i1
, x

(2)
i2
, . . . , x

(k)
ik

are k-wise correlated using N i.i.d. realizations of (x(1),x(2), . . . ,x(k)).
Communication lower bounds for this problem in the blackboard model (cf. Definition 2)
were obtained in prior work by Dagan and Shamir [13]. This result is sufficient to obtain
Theorem H.1. In this paper, we present another proof of this result using the information
bound in Proposition 1, which is used to derive all communication lower bounds presented
in this paper.

H.6. Proof of Information Bound (Proposition H.1). We now present the proof of
Proposition H.1, the information bound for the distributed k-CCA problem. Recall that in the
distributed k-CCA problem:

1. The unknown rank-1 cross moment tensor V =
√
dk · v1 ⊗ v2 ⊗ · · · ⊗ vk (the parameter

of interest) is drawn from the prior π:

V ∼ π def
= Unif

(
{
√
dk · ei1 ⊗ ei2 · · · ⊗ eik : i1:k ∈ [d]}

)
.

2. A dataset consisting of N = mn samples is drawn i.i.d. from µV , where µV is
the distribution of a single sample from the k-CCA problem. Recall that for x =

(x(1),x(2), . . . ,x(k)) ∈ Rkd and V =
√
dk · v1 ⊗ v2 ⊗ · · · ⊗ vk, µV was defined using

its likelihood ratio with respect to the Gaussian measure µ0 =N (0,Ikd):

dµV
dµ0

(x)
def
= 1 +

λ

λk
· sign

(〈
x(1),v1

〉)
· sign

(〈
x(2),v2

〉)
· · · sign

(〈
x(k),vk

〉)
,

(H.13a)
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where,

λk
def
=

(
2

π

) k

2

= (E|Z|)
k

2 , Z ∼N (0,1) .(H.13b)

3. This dataset is divided among m machines with n samples per machine. We denote the
dataset in one machine by Xi ∈Rd×n, where,

Xi =
[
xi1 xi2 . . . xin

]
,

with xij
i.i.d.∼ µV .

4. The execution of a distributed estimation protocol with parameters (m,n, b) results in a
transcript Y ∈ {0,1}mb written on the blackboard.

The information bound stated in Proposition H.1 is obtained using the general information
bound given in Proposition 1 with the following choices:

Choice of µ0 and µ: We set µ0 = µ = N (0,Ikd). That is, under µ0 = µ, xij
i.i.d.∼ N (0,Id)

for any i ∈ [m], j ∈ [n].
Choice of Z: We choose the event Z as the unrestricted sample space Z = Rkd×n. Since
µ0 = µ, this choice of Z satisfies the requirements of Proposition 1.

With these choices, appealing to the information bound provided in Proposition 1, we obtain:

Ihel (V ;Y )

K
≤

m∑
i=1

E0

[∫ (
E0

[(
dµV
dµ0

(Xi)− 1

)∣∣∣∣Y , (Xj)j 6=i

])2

π(dV )

]
.(H.14)

Hence, we need to analyze:

E0

[∫ (
E0

[(
dµV
dµ0

(Xi)− 1

)∣∣∣∣Y , (Xj)j 6=i

])2

π(dV )

]
,

For any X ∈Rkd×n, X = [x1 x2 · · · xn], S ⊂ [n], we introduce the notation,

LV (XS)
def
=
∏
i∈S

(
dµV
dµ0

(xi)− 1

)
.

In the special case when S = {i}, we will use the simplified notation LV (xi). We consider
the following decomposition: For any X ∈Rkd×n, X = [x1 x2 · · · xn],

dµV
dµ0

(X)− 1 =

n∏
`=1

(
1 +

dµV
dµ0

(x`)− 1

)
− 1

=

n∑
`=1

LV (x`)︸ ︷︷ ︸
Additive Term

+
∑

S⊂[n], |S|≥2

LV (XS)

︸ ︷︷ ︸
Non Additive Term

.

With this decomposition, using the elementary inequality (a+ b)2 ≤ 2a2 + 2b2, we obtain,

E0

[∫ (
E0

[(
dµV
dµ0

(Xi)− 1

)∣∣∣∣Y , (Xj)j 6=i

])2

π(dV )

]
≤ 2 · (I) + 2 · (II),(H.15)
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where,

I
def
= E0

∫ (E0

[
n∑
`=1

LV (xi`)

∣∣∣∣Y , (Xj)j 6=i

])2

π(dV )

 ,
II

def
= E0

∫ E0

 ∑
S⊂[n], |S|≥2

LV ((Xi)S)

∣∣∣∣Y , (Xj)j 6=i

2

π(dV )

 .
In order to control the term (II), we apply Jensen’s Inequality:

II≤
∫

E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

LV ((Xi)S)

∣∣∣∣2
 π(dV ).

The following lemma analyzes the above upper bound on (II).

LEMMA H.1. Let X = [x1 x2 . . . xn] where xi
i.i.d.∼ N (0,Ikd). Suppose that nλ2/λ2

k ≤
1/2. Then,

E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

LV ((X)S)

∣∣∣∣2
≤ 2

(
nλ2

λ2
k

)2

,

where λk is as defined in (H.13).

PROOF OF LEMMA H.1. We have

E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

LV ((X)S)

∣∣∣∣2
=

∑
S1,S2⊂[n]
|S1|≥2,|S2|≥2

E0[LV ((X)S1
) ·LV ((X)S2

)]

Recall that,

LV (XS)
def
=
∏
i∈S

(
dµV
dµ0

(xi)− 1

)
.

We observe that, x1:n are independent and,

E0

[
dµV
dµ0

(xi)− 1

]
= 0.

Hence if S1 6= S2, E0[LV ((X)S1
) ·LV ((X)S2

)] = 0. This gives us:

E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

LV ((X)S)

∣∣∣∣2
=

∑
S⊂[n] |S|≥2

E0[LV ((X)S)2].

We can compute:

E0[LV ((X)S)2] =

(
E0

[(
dµV
dµ0

(x)− 1

)2
])|S|

, x∼N (0,1) ,

(a)
=

(
λ

λk

)2|S|
.
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In step (a), we recalled the formula for the likelihood ratio from (H.13). Hence, we have

E0

∣∣∣∣ ∑
S⊂[n], |S|≥2

LV ((X)S)

∣∣∣∣2
≤ ∑

S⊂[n] |S|≥2

(
λ2

λ2
k

)|S|

=

n∑
s=2

(
n

s

)(
λ2

λ2
k

)s

≤
n∑
s=2

(
nλ2

λ2
k

)s
.

The assumption nλ2/λ2
k ≤ 1/2 guarantees that the above sum is dominated by a Geometric

series, which immediately yields the claim of the lemma.

In order to control the term (I), we recall that when V ∼ π, we have

V =
√
dk · ej1 ⊗ ej2 · · · ⊗ ejk , j1:k

i.i.d.∼ Unif ([d]) .

Consequently, for any x= (x(1),x(2), . . . ,x(k)) ∈Rkd,

LV (x) =
λ

λk
· sign(x

(1)
j1

) · sign(x
(2)
j2

) · · · · sign(x
(k)
jk

).

For each machine i ∈ [m] we can define n i.i.d. tensors Ti1,Ti2, . . . ,Tin as:

Ti`
def
= sign(x

(1)
i` )⊗ sign(x

(2)
i` ) · · · ⊗ sign(x

(k)
i` ),

where the sign(·) operation is understood to act entry-wise on a vector v ∈ Rd to produce
another vector sign(v) ∈ {±1}d. With this notation in place, we observe that we can rewrite
(I) as:

(I) =
λ2

λ2
k

· 1

dk
·E0

∥∥∥∥∥E0

[
n∑
`=1

Ti`

∣∣∣∣Y , (Xj)j 6=i

]∥∥∥∥∥
2
 ,

Linearizing ‖ · ‖ we obtain (c.f. Lemma 1):∥∥∥∥∥E0

[
n∑
`=1

Ti`

∣∣∣∣Y , (Xj)j 6=i

]∥∥∥∥∥= sup
S∈

⊗k Rd
‖S‖≤1

(
E0

[
n∑
`=1

〈Ti`,S〉
∣∣∣∣Y , (Xj)j 6=i

])
.

We will apply the Geometric Inequality framework (Proposition 2) to control the above con-
ditional expectation. In order to do so, we need to understand the concentration behavior of
the random variable:

n∑
`=1

〈Ti`,S〉 .

This is the subject of the following lemma.

LEMMA H.2. Let T ,T1, . . . ,Tn be i.i.d. random tensors distributed as:

T = sign(x(1))⊗ sign(x(2)) · · · ⊗ sign(x(k)),
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where x = (x(1),x(2) . . . ,x(k)) ∼ N (0,Ikd). Then, we have, for any S ∈
⊗kRd with

‖S‖ ≤ 1 and any ζ ∈R with |ζ| ≤ d−
k

2 /2,

logE0 exp

(
ζ

n∑
`=1

〈T`,S〉

)
≤ nζ2.

Furthermore, ∥∥∥∥∥
n∑
`=1

〈T`,S〉

∥∥∥∥∥
4

≤
√

3kn.

where, ∥∥∥∥∥
n∑
`=1

〈T`,S〉

∥∥∥∥∥
4

4

def
= E0

( n∑
`=1

〈T`,S〉

)4


PROOF. The first claim follows from Bernstein’s Inequality (Fact F.1) by observing that
〈Ti,S〉 ≤ ‖Ti‖‖S‖ =

√
dk and that E0 〈Ti,S〉 = 0, E0 〈Ti,S〉2 = 1. In order to obtain the

moment bound, we observe that:
n∑
`=1

〈T`,S〉 ,

is a polynomial of degree k in the kdn i.i.d. Unif ({±1}) random variables (x`
(j))i where

j ∈ [k], ` ∈ [n], i ∈ [d]. Hence by Boolean Hypercontractivity (see for e.g. O’Donnell [31,
Theorem 9.21]) we have∥∥∥∥∥

n∑
`=1

〈T`,S〉

∥∥∥∥∥
2

4

≤ 3k ·E0

( n∑
`=1

〈T`,S〉

)2
= 3kn.

We can now use Geometric Inequalities (Proposition 2) to control:∥∥∥∥∥E0

[
n∑
`=1

Ti`

∣∣∣∣Y = y, (Xj)j 6=i

]∥∥∥∥∥= sup
S∈

⊗k Rd
‖S‖≤1

(
E0

[
n∑
`=1

〈Ti`,S〉
∣∣∣∣Y = y, (Xj)j 6=i

])
.

We consider two cases depending upon whether y ∈R(i)
rare or y ∈R(i)

freq, where,

R(i)
rare

def
=
{
y ∈ {0,1}mb : 0< P0(Y = y|(Xj)j 6=i)≤ 4−b

}
,

R(i)
freq

def
=
{
y ∈ {0,1}mb : P0(Y = y|(Xj)j 6=i)> 4−b

}
.

Case 1: y ∈R(i)
rare. In this situation we apply the moment version of the Geometric Inequality

(Proposition 2, item (1)) with q = 4. Using the moment estimate in Lemma H.2, we obtain,∥∥∥∥∥E0

[
n∑
`=1

Ti`

∣∣∣∣Y = y, (Xj)j 6=i

]∥∥∥∥∥≤
√

3k · n
P0(Y = y|(Xj)j 6=i)

1

4

.(H.16)
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Case 2: y ∈R(i)
freq. In this situation we apply the m.g.f. version of the Geometric Inequality

(Proposition 2, item (2)). Using the m.g.f. estimate in Lemma H.2, we obtain, for any
0< ζ ≤ d−

k

2 /2,∥∥∥∥∥E0

[
n∑
`=1

Ti`

∣∣∣∣Y = y, (Xj)j 6=i

]∥∥∥∥∥≤ nζ +
1

ζ
log

1

P0(Y = y|(Xj)j 6=i)
,

We set:

ζ2 =
1

n
· log

1

P0(Y = y|(Xj)j 6=i)
≤ b · log(4)

n
.

If,

n≥ 2 log(4) · b · d
k

2 ,(H.17)

then this choice is valid, i.e. ζ ≤ d−
k

2 /2. Hence,∥∥∥∥∥E0

[
n∑
`=1

Ti`

∣∣∣∣Y = y, (Xj)j 6=i

]∥∥∥∥∥
2

≤ 4 · n · log
1

P0(Y = y|(Xj)j 6=i)
.(H.18)

With these estimates, we can control the term (I), which we decompose as follows:

(I) =
λ2

λ2
k

· 1

dk
·E0

∥∥∥∥∥E0

[
n∑
`=1

Ti`

∣∣∣∣Y , (Xj)j 6=i

]∥∥∥∥∥
2


=
λ2

λ2
k

· 1

dk
· ((Ia) + (Ib)) ,

(Ia)
def
= E0

 ∑
y∈R(i)

rare

P0(Y = y|(Xj)j 6=i) ·

∥∥∥∥∥E0

[
n∑
`=1

Ti`

∣∣∣∣Y , (Xj)j 6=i

]∥∥∥∥∥
2
 ,

(Ib)
def
= E0

 ∑
y∈R(i)

freq

P0(Y = y|(Xj)j 6=i) ·

∥∥∥∥∥E0

[
n∑
`=1

Ti`

∣∣∣∣Y , (Xj)j 6=i

]∥∥∥∥∥
2
 .

In order to control (Ia), we rely on the estimate (H.16):

(Ia)≤ 3k · n ·E0

 ∑
y∈R(i)

rare

P0(Y = y|(Xj)j 6=i)
1

2


≤ 3k · n · 2−b ·E0[|R(i)

rare|].

Since we assume the communication protocol to be deterministic conditioned on (Xj)j 6=i,
all but b bits of Y are fixed. Consequently, |Rrare| ≤ 2b. Hence,

(Ia)≤ 3k · n.

In order to control (Ib), we rely on the estimate (H.18):

(Ib)≤ 4n ·E0

 ∑
y∈R(i)

freq

P0(Y = y|(Xj)j 6=i) · log
1

P0(Y = y|(Xj)j 6=i)

 .
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Since we assume the communication protocol to be deterministic conditioned on (Xj)j 6=i,
all but b bits of Y are fixed. Hence conditioned on (Xj)j 6=i, the random vector (Y ) has a
support size of at most 2b. The maximum entropy distribution on a given set S is the uniform
distribution, which attains an entropy of log |S|. Hence,∑

(y,z)∈{0,1}b+1

P0(Y = y|(Xj)j 6=i) · log
1

P0(Y = y|(Xj)j 6=i)
≤ b · log(2)

This yields the estimate,

(Ib)≤ 4 log(2) · b · n.

Combining the estimates on the terms Ia, Ib we obtain, (I) ≤ Ck · b · n · λ2/dk, where Ck
is a constant depending only on k. Substituting this estimate on (I) and the estimate on (II)
obtained in Lemma H.1 in (H.15), we obtain,

E0

[∫ (
E0

[(
dµV
dµ0

(Xi)− 1

)∣∣∣∣Y , (Xj)j 6=i

])2

π(dV )

]
≤Ck ·

(
b · n · λ2

dk
+ n2 · λ4

)
.

Plugging the above bound in (H.14) we obtain,

Ihel (V ;Y )

K
≤Ck ·

(
b ·m · n · λ2

dk
+m · n2 · λ4

)
.

This is exactly the information bound claimed in Proposition H.1.

APPENDIX I: MISCELLANEOUS RESULTS

I.1. Additional Technical Facts and Lemmas.

FACT I.1 (Estimates on Partial Exponential Series [25]). We have, for any λ≥ 0 and for
any t ∈N0 such that t+ 1≥ λ, we have

λt

t!
≤
∞∑
i=t

λi

i!
≤ 1

1− λ
t+1

· λ
t

t!

In particular if t≥ (e2λ)∨ log(1/ε)∨ 1, by Stirling’s approximation,
∞∑
i=t

λi

i!
≤ ε.

FACT I.2 (A Bound on Hermite Polynomials). For any k ∈N0, we have

|Hk(z)| ≤ (1 + |z|)k.

PROOF. Hk has the following Taylor series expansion around z = 0 (see for e.g. [12,
Section 2.4]):

Hk(z) =

k∑
i=0

(
k

i

)
·
√
i!√
k!
·Hi(0) · zi.

The values Hi(0) are known explicitly (see for e.g. [12, Section 2.10]):

|Hk(z)| ≤
k∑
i=0

(
k

i

)
· |z|i = (1 + |z|)k.
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FACT I.3 (27, Equation 12). Let V ∼ Unif
(
{±1}d

)
. Define,

V =
1

d

d∑
i=1

Vi.

We have, for any t ∈N0, t≤ d,

EV 2t ≥ (2t)!

2td2t
·
(
d

t

)
≥
(

2

e2
· t
d

)t
.

LEMMA I.1. Let V ∼ Unif
(
{±1}d

)
. Define,

V =
1

d

d∑
i=1

Vi

Then for any t ∈N,

sup
r∈{0,1}d

E

V t ·
∏

i∈[d]:ri=1

Vi

≤ 4t · t
t

2 · d−d
t

2
e,

sup
r∈{0,1}d
‖r‖1≥1

E

V t ·
∏

i∈[d]:ri=1

Vi

≤ 2 · 5t · t
t

2 · d−d
t+1

2
e.

Furthermore if t≤ 2(d− 1) and d≥ 3,

sup
r∈{0,1}d
‖r‖1≥1

E

V t ·
∏

i∈[d]:ri=1

Vi

≥ 5−t · t
t

2 · d−d
t

2
e/2,

sup
r∈{0,1}d
‖r‖1≥1

E

V t ·
∏

i∈[d]:ri=1

Vi

≥ 5−t · t
t

2 · d−d
t+1

2
e/2.

PROOF. Due to coordinate symmetry, degree, and parity considerations, we have

sup
r∈{0,1}d

E

V t ·
∏

i∈[d]:ri=1

Vi

= sup
`∈{0,1,2...,t}
t+` is even

E

V t ·
∏

1≤i≤`
Vi

 ,
sup

r∈{0,1}d
‖r‖1≥1

E

V t ·
∏

i∈[d]:ri=1

Vi

= sup
`∈{1,2...,t}
t+` is even

E

V t ·
∏

1≤i≤`
Vi

 .
Hence, we focus on proving upper and lower bounds on:

E

V t ·
∏

1≤i≤`
Vi

 .
We decompose V as

V =
S1

d
+
S2

d
,
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where S1 = V1 + V2 + · · ·+ V`, S2 = V`+1 + V`+2 + · · ·+ Vd. By the Binomial Theorem,

E

V t ·
∏

1≤i≤`
Vi

=

t∑
i=0

(
t

i

)
· ES

i
2

dt
·E

St−i1

∏
1≤i≤`

Vi

 .
Observing that when t− i < `, we have

E

St−i1

∏
1≤i≤`

Vi

= 0,

and thus

E

V t ·
∏

1≤i≤`
Vi

=

t−∑̀
i=0

(
t

i

)
· ES

i
2

dt
·E

St−i1

∏
1≤i≤`

Vi

 .
We now prove an upper bound and lower bound on the above expression.

Upper Bound: Since S2 is sub-Gaussian with variance proxy d− `, we have (see, e.g.„ 33,
Lemma 1.4)

ESi2 ≤ 2i · i
i

2 · (d− `)
i

2 .

By an analogous argument,

E

St−i1

∏
1≤i≤`

Vi

≤ E[|S1|t−i]≤ 2t−i · (t− i)
t−i
2 · `

t−i
2 .

Hence,

E

V t ·
∏

1≤i≤`
Vi

≤ 2t

dt

t−∑̀
i=0

(
t

i

)
· (t− i)

t−i
2 · i

i

2 · (d− `)
i

2 · `
t−i
2

Using the AM-GM Inequality,

(t− i)t−iii ≤
(

(t− i)2 + i2

t

)t
≤ tt.

Hence,

E

V t ·
∏

1≤i≤`
Vi

≤(4t

d

) t

2

·
t−∑̀
i=0

(
t

i

)
· (d− `)

i

2

d
i

2

· `
t−i
2

d
t−i
2

≤
(

4t

d

) t

2

·
(
`

d

) `

2

·
t−∑̀
i=0

(
t

i

)

≤
(

16t

d

) t

2

·
(
`

d

) `

2

.

Hence,

sup
r∈{0,1}d

E

V t ·
∏

i∈[d]:ri=1

Vi

= sup
`∈{0,1,2...,t}
t+` is even

E

V t ·
∏

1≤i≤`
Vi
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≤
(

16t

d

) t

2

·

 sup
`∈{0,1,2...,t}
t+` is even

(
`

d

) `

2

 .

If `≤ t≤ d/e, the function (`/d)` is decreasing, and hence,

sup
r∈{0,1}d

E

V t ·
∏

i∈[d]:ri=1

Vi

≤ 4t · t
t

2 · d−d
t

2
e.

On the other hand, when t≥ d/e, the same upper bound holds since,

4t · t
t

2 · d−d
t

2
e ≥ 4te−

t

2

√
te
≥ 4te−t ≥ 1,

whereas, since |V | ≤ 1, we always have the trivial upper bound,

sup
r∈{0,1}d

E

V t ·
∏

i∈[d]:ri=1

Vi

≤ 1.

With an analogous argument, we also obtain,

sup
r∈{0,1}d
‖r‖1≥1

E

V t ·
∏

i∈[d]:ri=1

Vi

≤ 2 · 5t · t
t

2 · d−d
t+1

2
e.

Lower Bound: Recall that,

E

V t ·
∏

1≤i≤`
Vi

=

t−∑̀
i=0

(
t

i

)
· ES

i
2

dt
·E

St−i1

∏
1≤i≤`

Vi

 .
For proving the claim of the lemma, it will be sufficient to lower bound the above ex-
pression under the assumption t+ ` is even and ` ∈ {0,1,2}. We observe that each of the
terms in the above sum is non-negative. This is because, ESi2 = 0 when i is odd and, by
expanding St−i1 using the Multinomial Theorem, one sees that:

E

St−i1

∏
1≤i≤`

Vi

≥ 0.

Hence, retaining the term corresponding to i= (t− `) we obtain,

E

V t ·
∏

1≤i≤`
Vi

≥(t
`

)
· ES

t−`
2

dt
·E

S`1 ∏
1≤i≤`

Vi

 .
Expanding S`1 using the Multinomial Theorem and comparing the coefficient of V1 ·V2 · · · ·
V`, we observe,

E

S`1 ∏
1≤i≤`

Vi

= 1.
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Hence,

E

V t ·
∏

1≤i≤`
Vi

≥(t
`

)
· ES

t−`
2

dt
.

Since t+` is assumed to be even, so is t−`. Furthermore since we assume that ` ∈ {0,1,2}
and t≤ 2(d− 1) we have t− `≤ 2(d− `). Hence using by Fact I.3, we have

ESt−`2 ≥
(
d− `
t−`
2

)
· (t− `)!

2
t−`
2

.

This give us,

E

V t ·
∏

1≤i≤`
Vi

≥ 1

2
t−`
2

· t!
`!
·
(
d− `
t−`
2

)
· 1

dt

(a)

≥ 1

2
t−`
2

· t
te−t

`!
·
(

2(d− `)
t− `

) t−`
2

· 1

dt

≥ t
t

2 e−t

`!
·
(

1− `

d

) t

2

· 1

d
t+`

2

(b)

≥ t
t

2 e−t

2
· 3−

t

2 · 1

d
t+`

2

.

In the step marked (a), we used the standard lower bounds for the Binomial coefficient(
n
k

)
≥ (n/k)k and factorial n!≥ nne−n. In the step marked (b), we used the fact that `≤ 2

and d≥ 3. Hence,

sup
r∈{0,1}d

E

V t ·
∏

i∈[d]:ri=1

Vi

= sup
`∈{0,1,2...,t}
t+` is even

E

V t ·
∏

1≤i≤`
Vi

≥ sup
`∈{0,1,2}
t+` is even

5−t

2
· t

t

2 · d−
t+`

2 .

Choosing `= 0 if t is even and `= 1 if t is odd gives us:

sup
r∈{0,1}d

E

V t ·
∏

i∈[d]:ri=1

Vi

≥ 5−t · t
t

2 · d−d
t

2
e/2.

Choosing `= 2 if t is even and `= 1 if t is odd gives us:

sup
r∈{0,1}d
‖r‖1≥1

E

V t ·
∏

i∈[d]:ri=1

Vi

≥ 5−t · t
t

2 · d−d
t+1

2
e/2.

This concludes the proof of this lemma.

I.2. Analysis on Gaussian Space. Consider the functional space L2 (N (0,Id)) defined
as follows:

L2 (N (0,Id))
def
=
{
f : Rd→R : EN (0,Id)f

2(Z)<∞
}
.

The multivariate Hermite polynomials for a complete orthonormal basis for L2 (N (0,Id)).
These are defined as follows: for any c ∈Nd0, define

Hc(z)
def
=

d∏
i=1

Hci(zi),
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where, for any k ∈N0, the Hk are the (probabilist’s) orthonormal Hermite polynomials with
the property

EN (0,1)Hk(Z)Hl(Z) =

{
0 if k 6= l;

1 if k = l.

The orthonormality property is inherited by the multivariate Hermite polynomials:

EN (0,Id)Hc(Z)Hd(Z) =

{
0 if c 6= d;

1 if c= d.

Since these polynomials form an orthonormal basis of L2 (N (0,Id)) any f ∈ L2 (N (0,Id))
admits an expansion of the form:

f(z) =
∑

c∈(N∪{0})d
f̂(c)Hc(z).

In the above display, f̂(c) ∈R are the Hermite (or Fourier) coefficients of f . They satisfy the
usual Parseval’s relation: ∑

c∈Nd0

f̂2(c) = EN (0,Id)f
2(Z).

A particular desirable property of the univariate Hermite polynomials is the following: for
any µ ∈R, k ∈N0 we have

EN (0,1)Hk(µ+Z) =
µk√
k!
.

This implies the following property of multivariate Hermite polynomials which will be par-
ticularly useful for us.

FACT I.4. For any µ ∈Rd and any c ∈Nd0, we have,

EN (0,Id)Hk(µ+Z) =
µc√
c!
.

In the above display, we are using the following notation:

µc
def
=

m∏
i=1

µcii , c!
def
=

m∏
i=1

(ci!).(I.1)

FACT I.5. For any vector u ∈Rd with ‖u‖= 1 we have,

Hi(〈u,x〉) =
∑
c∈Nd0
‖c‖1=i

uc√
c!
Hc(x),

for any x ∈Rd. In the above display, the notations uc and c! are as defined in (I.1).

FACT I.6. Let Z,Z ′ be ρ-correlated standard Gaussian random variables:[
Z
Z ′

]
∼N

([
0
0

]
,

[
1 ρ
ρ 1

])
.

Then, for any i, j ∈N0,

EHi(Z)Hj(Z
′) =

{
ρi if i= j;

0 if i 6= j.
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We will also rely on the Gaussian Hypercontractivity theorem which is usually attributed
to Nelson [30]. Our reference for this result was the book of O’Donnell [31].

FACT I.7 (Gaussian Hypercontractivity [30]). Let Z ∼N (0,Id). Then, for any q ≥ 2,

E

∣∣∣∣∣∣
∑
α∈Nd0

cαHα(Z)

∣∣∣∣∣∣
q

≤

( ∑
α∈W d

(q− 1)‖α‖1 · c2
α

) q

2

The inequality is tight for q = 2.

I.3. Fano’s Inequality for Hellinger Information. In this section, we provide a deriva-
tion of the Fano’s Inequality for Hellinger Information quoted in Fact 2. This result is a minor
modification of a result due to Chen, Guntuboyina and Zhang [11]. Although these authors
derive a version of Fano’s Inequality for Hellinger Information [11, Corollary 7, item (iii)],
it has a slightly more complicated form than the claim of Fact 2. The simpler form stated
in Fact 2 (which suffices for our results) is derived by combining Fano’s Inequality for the
Total Variation (TV) Information proved by Chen, Guntuboyina and Zhang [11, Corollary 7,
item (ii)] with standard a comparison between Hellinger and total variation distances. Specif-
ically, Chen, Guntuboyina and Zhang [11, Corollary 7, item (ii)] show that for any estimator
V̂ : {0,1}mb→ V̂ , we have∫

V
EV [`(V , V̂ (Y ))] π(dV )≥R0(π)− ITV (V ;Y ) ,(I.2)

where ITV (V ;Y ) denotes the Total Variation Information which is defined as:

ITV (V ;Y )
def
= inf

Q

∫
dTV (PV ,Q)π(dV ).

In the above display, dTV (PV ,Q) denotes the total variation distance between the probability
measures PV and Q. Since dTV (PV ,Q)≤ (2d2

hel (PV ,Q))1/2 (see for e.g., [35, Lemma 2.3])
the Total Variation Information can be bounded in terms of the Hellinger Information:

ITV (V ;Y )≤ inf
Q

∫
(2d2

hel (PV ,Q))1/2π(dV )
(a)

≤
(

2 inf
Q

∫
d2
hel (PV ,Q)π(dV )

)1/2

(b)
=
√

2Ihel (V ;Y ).

In the above display step (a) follows from Jensen’s Inequality and step (b) follows from the
definition of Hellinger Information. Substituting the bound ITV (V ;Y )≤

√
2Ihel (V ;Y ) in

(I.2) immediately yields the claim of Fact 2.
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