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Abstract

One widely-studied model of teaching (Goldman
& Kearns, 1995; Shinohara & Miyano, 1991; An-
thony et al., 1992) calls for a teacher to provide
the minimal set of labeled examples that uniquely
specifies a target concept. The assumption is that
the teacher knows the learner’s hypothesis class,
which is often not true of real-life teaching sce-
narios. We consider the problem of teaching a
learner whose representation and hypothesis class
are unknown: that is, the learner is a black box.

We find that a teacher who does not interact with
the learner can do no better than providing ran-
dom examples. However, by interacting with the
black-box learner, a teacher can efficiently find a
set of teaching examples that is a provably good
approximation to the optimal set.

As an illustration, we show how this scheme can
be used to shrink training sets for any family
of classifiers: that is, to find an approximately-
minimal subset of training instances that yields
the same classifier as the entire set.

1. Introduction
The theory of machine learning has focused primarily on
situations where training data consists of random samples
from an underlying distribution, as in the statistical learning
framework (Valiant, 1984), or is chosen in an arbitrary and
possibly adversarial manner, as in online learning (Little-
stone, 1988). In real life, however, data is often chosen by
a teacher who wishes to help the learner. This is likely to
be the case, for instance, when a human is personalizing an
electronic assistant; or when an intelligent tutoring system
is explaining concepts to a human student; or when one ma-
chine is communicating a classifier to another machine with
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a different architecture or representation. To model such
scenarios, several notions of teaching have been developed.

One influential model, introduced independently by Gold-
man & Kearns (1995), Shinohara & Miyano (1991), and
Anthony et al. (1992), is based on the notion of a teaching
set. To define this, let X be any finite instance space andH
any finite set of concepts on X , so that each h ∈ H is of the
form h : X → {0, 1}. Let h∗ ∈ H denote a target concept.
We say S ⊂ X is a teaching set for (h∗,H) if h∗ is the only
concept in H that is consistent with the labeled examples
{(x, h∗(x)) : x ∈ S}. An optimal teacher is then one who
provides the learner with the smallest possible teaching set.

This notion of teaching is related to compression. A simple
learner—human or machine—might have difficulty remem-
bering a large set of examples and finding a hypothesis
consistent with them. The teacher helps by identifying a
concise set of examples that conveys the desired concept.

Consider, for instance, the case of thresholds on the line.
Here data points are real numbers, so X ⊂ R, and the
hypothesis class isH = {hw : w ∈ R}, where

hw(x) =

{
1 if x ≥ w
0 otherwise

For finite X , we need only consider |X | + 1 distinct hy-
potheses. If the target concept is given by threshold w∗, the
optimal teaching set consists of the two points in X nearest
w∗, on either side of it:

In this case, no matter how large X might be, two teaching
examples suffice. Thus the teacher makes learning easier.

This example also illustrates a significant issue with this
notion of teaching: it requires the teacher to know H, the
learner’s hypothesis class. This can be unrealistic in many
scenarios. When teaching a human, one generally has no
idea what the underlying hypotheses might be. And when
teaching a machine, the general type of concept might be
known (a neural net, for instance), but the specifics (num-
ber of layers, number of nodes per layers, other parameter
settings) may be opaque; and even if they were known, it is
unclear how they would be used in choosing a teaching set.
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Under the strong assumption thatH is known, teaching does
not need to be adaptive: the teacher merely serves up the
relevant examples beforehand, and does not need to see
what the learner does with them. We will call this oblivious
teaching. This paper studies two basic questions.

• How well can oblivious teachers perform in situations
where they are not aware of the learner’s concept class?

• Can interaction help in such cases?

1.1. Contributions

We begin with a negative result for oblivious teaching.

We show that an oblivious teacher who does not know the
learner’s concept class must, in general, provide labels on all
of X . This holds even if the teacher knows that the unknown
classH has low VC dimension and small teaching set size.

We then provide two positive results for interactive teaching.

We consider an interactive protocol in which the teacher
provides one teaching example at a time, and in the interim
is allowed to probe the predictions of the learner’s current
model, rather like giving the learner a quiz. We show that
without knowing H, such a teacher can efficiently pick a
teaching set of size at most O(t · log |X | · log |H|), where t
is the optimal teaching set size forH.

We also look at a setting in which the teacher not only probes
the learner’s prediction, but also the learner’s uncertainty
levels. We show bounds on the number of teaching examples
needed that depend only on the VC dimension ofH and its
disagreement coefficient (Hanneke, 2011).

One interesting use of our teaching algorithm is in shrinking
a training set T : finding a subset S ⊂ T that yields the
same final classifier. This can be useful in situations where
the computational complexity of training scales poorly (e.g.
quadratically) with the number of training instances. Our
method can be used with any black-box learner. It con-
structs S incrementally by adding a few examples at a time,
assessing the resulting classifier, and then deciding whether
more examples are needed. In this way, it never needs to
train on more than |S| instances. We illustrate its behavior
in experiments with kernel machines and neural nets.

1.2. From finite to infinite

The notion of teaching set is defined for finite instance
spaces and concept classes. To see what this means for
more general spaces, suppose we have an arbitrary instance
space X o and that there is some distribution P on this space.
Suppose also that the possibly-infinite concept classHo has
VC dimension d. Then, we can drawm = O(d/ε) examples
at random from P and treat these as a finite instance space
X ; by standard generalization bounds, with high probability

over the choice of examples, any h ∈ H that agrees with
the target concept h∗ on all of X will have error ≤ ε on
distribution P . Moreover, since |X | = m, we know by VC
bounds (Sauer, 1972) that the effective size of the hypothe-
sis class is at most N = O(md), and we can set H to this
finite set of candidate concepts.

These equivalences, |X | = O(d/ε) andH = O(|X |d), are
useful in interpreting the bounds we obtain. Our lower
bound then says that an oblivious teacher will need to use
a teaching set of size Ω(d/ε), which could be very large
for small ε. On the other hand, an interactive teacher can
find a teaching set of size O(td log2(d/ε)), which has only
a logarithmic dependence on 1/ε.

1.3. Related work: models of teaching

The literature on teaching can be organized along two main
dimensions: whether the learner is required to be consistent
with all teaching examples and whether the teacher has full
knowledge of the learner (Zhu et al., 2018).

Earlier theoretical work on teaching assumes both, such as
the classic teaching dimension (Goldman & Kearns, 1995;
Shinohara & Miyano, 1991), the recursive teaching dimen-
sion (Zilles et al., 2011; Hu et al., 2017) and the preference-
based teaching dimension (Gao et al., 2017). Recently, there
has been growing interest in settings where both dimensions
are negative: for instance, the learner is a convex empirical
risk minimizer (e.g., Liu & Zhu, 2016), or the teacher does
not target a specific learner (Zhu et al., 2017), or the teacher
does not know the learner’s hyper-parameters or hypothesis
space (Liu et al., 2017). Of particular relevance is recent
work by Liu et al. (2018), which assumes the teacher and
the learner use different linear feature spaces. The teacher
cannot fully observe the learner’s linear model but knows
the learner’s algorithm and can employ active querying to
learn the mapping between feature spaces.

In contrast, the present work assumes the learner is consis-
tent with teaching examples but does not require knowledge
of its concept class or learning algorithm. This setting is
closer to that of classical learning theory and offers a crisp
characterization of teaching black-box learners.

1.4. Related work: sample compression

The notion of sample compression was introduced by Little-
stone & Warmuth (1986) and has been the subject of much
further work (e.g., Floyd & Warmuth, 1995; Moran & Yehu-
dayoff, 2016). It is centered on an intriguing question: for a
given concept classH, is it possible to design (1) a learning
algorithm A that operates on labeled samples of some fixed
size k, and (2) a procedure that, given any labeled data set,
chooses a subset of size k such that when A is applied to
this subset, it produces a classifier consistent with the full
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data set? A recent result of Moran & Yehudayoff (2016)
showed that if H has VC dimension d, then k = d2d is
always achievable. The results in our paper can be thought
of as a form of adaptive sample compression, where the
concept classH is unknown and the learning algorithm A
is fixed in advance and also unknown.

2. Lower bounds for oblivious teaching
Suppose the teacher knows only that the learner’s concept
class is one of H1, . . . ,Hk, but not which one. They all
contain the target h∗, and suppose they each have teaching
sets of size t. What can an oblivious teacher do?

One option is to provide a teaching set for the union of the
concept classes,H1 ∪ · · · ∪ Hk. This could have size up to
tk. We’ll see that, in general, an oblivious teacher can do
no better than this. Thus, if k is large, the teacher simply
has to provide labels for all of X .

We will demonstrate this lower bound through two examples
that illustrate different problems with oblivious teaching.

2.1. Example 1: Decision stumps

It might seem that, even without knowing H exactly, the
teacher would still be able to select examples near the true
decision boundary. We’ll see that this is not the case. The
different hypothesis classes could effectively deal with very
different representations of the data, so that the identities
of the “boundary examples” change dramatically from one
hypothesis class to the next.

The instance space will be a finite set X ⊂ Rk, to be spec-
ified shortly. The concept classes H1, . . . ,Hk consist of
thresholds along individual coordinates: Hi consists of all
functions hi,w : X → {0, 1} of the form

hi,w(x) =

{
1 if xi > w;
0 otherwise.

where w ∈ R. That is, the hypotheses inHi only use the ith
coordinate of the data. Each Hi has VC dimension 1 and
has a teaching set of size 2.

We select X so that every point in it has either all positive
coordinates or all negative coordinates. The target concept
h∗ is 1 if the coordinates are all positive and 0 if all negative.
Thus h∗ lies in everyHi: in particular, h∗ = hi,0 for all i.

Set X = {x(1), x(2), . . . , x(k),−x(1), . . . ,−x(k)}, where
the x(i) ∈ Rk+ are defined as follows:

• The values of the k features of x(i) are 2, 3, 4, . . . , k,
in that order, with a 1 inserted in the ith position.

• Thus x(1) = (1, 2, 3, . . . , k), x(2) = (2, 1, 3, . . . , k),
x(3) = (2, 3, 1, . . . , k), and x(k) = (2, 3, 4, . . . , k, 1).

Along any coordinate i, the correct threshold is 0, and the
minimal teaching set consists of the two examples closest
to 0, on either side of it. These are −x(i), x(i), whose ith
coordinates have values −1, 1 respectively. In other words:
forHi, the optimal teaching set consists of −x(i) and x(i).

However, the only teaching set that works for every Hi
simultaneously is all of X .

Theorem 1 In the construction above, the concept classes
H1, . . . ,Hk each have VC dimension 1 and teaching set
size 2. If an oblivious teacher does not know which of these
concept classes is being used by the learner, the smallest
possible teaching set it can provide is all of X , of size 2k.

PROOF: Consider any teaching set that leaves out some
point in X , say x(i). Then, if the learner happens to have
concept class Hi, it can consistently set the threshold to
be 1.5 along the ith coordinate, since the k − 1 positive
instances it has seen all have ith coordinate ≥ 2. Thus it
will get x(i) wrong. �

Thus in this situation, the minimal teaching set has size tk,
where t is the teaching set size of each individualHi.

2.2. Example 2: All-but-one rules

In the previous example, the different concept classes Hi
dealt with different representations of the input, and the
resulting differences in boundary regions created problems
for the teacher. But even if the different hypothesis classes
work with the same representation of the input, they might
focus on different regions of the input space, in the sense of
allowing a more detailed boundary in those regions. In such
cases, a teaching set would need to provide the necessary
level of detail in all of these regions.

To see a situation of this type, let X be a finite instance
space. Define the target hypothesis h∗ to be identically zero.
For any x′ ∈ X , define hypothesis hx′ : X → {0, 1} to be
zero everywhere except x′, that is,

hx′(x) =

{
1 if x = x′;
0 otherwise.

For any subset S ⊆ X , define hypothesis class H(S) =
{h∗} ∪ {hx : x ∈ S}. Now, partition X into k subsets
S1, . . . , Sk of size |X |/k and defineHj = H(Sj).

Theorem 2 In the construction above, each Hj has VC
dimension 1 and teaching set size t = |X |/k. If an oblivious
teacher does not know which of these concept classes is
being used by the learner, the smallest teaching set it can
provide is all of X , of size tk.

PROOF: Each hypothesis classHj = H(Sj) has a teaching
set of size t = |Sj |, consisting of {(x, 0) : x ∈ Sj}. There
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is no smaller teaching set: if x ∈ Sj is left out of the set,
then the concepts h∗ and hx will both be consistent.

Likewise, if the teacher does not know which ofH1, . . . ,Hk
is being used by the learner, its minimal teaching set must
consist of all points in X . Suppose, on the contrary, that it
leaves out a particular x, and that x ∈ Sj . Then a learner
usingHj could choose hx as a consistent hypothesis. �

3. Teaching by probing the learner’s
predictions

We now consider scenarios in which the teacher has no
knowledge of the learner’s concept class other than an upper
bound on its size or VC dimension. It does not, for instance,
have a shortlist of possibilities H1, . . . ,Hk, as in the pre-
vious section. Nevertheless, if the teacher is allowed to
interact with the learner, it can come up with a teaching set
that is provably within a factor log |X | · log |H| of optimal.

Here is a model in which the teacher and learner communi-
cate in rounds of interaction.

On each round,

• The teacher supplies one or more teaching exam-
ples (x, y) ∈ X × {0, 1} to the learner.

• The learner gives the teacher a black-box classifier
h : X → {0, 1} that is consistent with all the
teaching examples it has seen so far.

The idea here is that the teacher cannot look inside the black
box classifier, but can test it on examples to get a sense of
where its mistakes lie.

If the learner is a machine, this is a natural setup. If the
learner is a human, probing the black box corresponds to
giving the learner a quiz. In either case, we distinguish
teaching examples from probes to the black box. It is of
primary interest to keep the former small: they constitute a
summary of what is important, and the learner is required
to be consistent with them. But we also want the number of
probes to be polynomially bounded.

We will say that an interactive teaching strategy of the type
above is a (t, p)-protocol if it ultimately yields a teaching
set of size t after making at most p probes.

3.1. A generic interactive teaching procedure

Suppose the learner’s hypothesis classH has optimal teach-
ing set size t. The teacher has no information about H,
except that it contains h∗. We will see that there is an ef-
ficient interactive protocol of the type above in which the

teacher needs to provide at most O(t · log |X | · log |H|)
teaching examples before the learner converges to h∗.

The key idea is as follows. Teaching is essentially a set
cover problem: each teaching example eliminates some sub-
optimal hypotheses inH, and a teaching set is a collection
of examples that eliminate, or “cover”, all sub-optimal hy-
potheses. By this view, optimal teaching is equivalent to
minimum set cover. However, in our setting, the set to be
covered—the set of sub-optimal hypotheses—is unknown,
sinceH is unknown, and this would seem to be a major prob-
lem. But there is an alternative online formulation of the
set cover problem, in which the elements to be covered are
not provided beforehand but appear one at a time, and must
be covered immediately. An elegant algorithm is known for
online set cover (Alon et al., 2009), and we will see that it
can be simulated in our setting.

The resulting learning algorithm is shown in Figure 1. It is
a randomized procedure that begins by drawing values Tx,
one for each x ∈ X , from a suitable exponential distribution.
Then the interaction loop begins. A key quantity computed
by the algorithm, for any learner-supplied black-box classi-
fier h, is the set of misclassified points,

∆(h) = {x ∈ X : h(x) 6= h∗(x)}.

Roughly speaking, the points x that are most likely to be
chosen as teaching examples are those that have been mis-
classified multiple times by the learner’s models, and for
which Tx happens to be small.

Theorem 3 Let t be the size of an optimal teaching set for
H. Pick any 0 < δ < 1. With probability at least 1 − δ,
the algorithm of Figure 1 halts after at most t log(2|X |)
iterations. The number of teaching examples it provides is
in expectation at most

(1 + t lg(2|X |)) ·
(

ln |H|+ ln
1

δ

)
.

The algorithm of Figure 1 is efficient and yields a teaching
set of size O(t · log |X | · log |H|), despite having no knowl-
edge of the concept classH. This can be significantly better
than a teaching set of all |X | points, as we have seen would
be needed by an oblivious teacher.

Along the way, the teacher makes O(t · |X | · log |X |) probes
to intermediate classifiers provided by the learner. This is
polynomial, but is nonetheless significant, and consequently
this algorithm is better for teaching machines than humans.
In fact, we will later see (Section 5) that probing all of X is
inevitable when the teacher does not knowH.
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1. Let S = ∅ (teaching set)

2. For each x ∈ X :

• Initialize weight w(x) = 1/m

• Choose threshold Tx from an exponential distribution with rate λ = ln(N/δ)

3. Repeat until done:

• Learner provides some h : X → {0, 1} as a black box
• By probing the black box, determine ∆(h) = {x ∈ X : h(x) 6= h∗(x)}
• If ∆(h) = ∅: halt and accept h
• While w(∆(h)) < 1:

– Double each w(x), for x ∈ ∆(h)

– If this doubling causes w(x) to exceed Tx for the first time, add x to S and provide (x, h∗(x)) as a
teaching example to the learner

Figure 1. The teacher’s algorithm. Here m = |X | and N = |H|. For S ⊂ X , we define w(S) =
∑

x∈S w(x).

3.2. Proof of Theorem 3

The proof follows that of the original online set cover algo-
rithm (Alon et al., 2009), with some additional subtleties. A
proof sketch is provided here, with details in the appendix.

Lemma 4 Let t be the size of an optimal teaching set for
H. Then the total number of doubling steps performed by
the algorithm is at most t · lg(2m), and at any point in time,∑

x∈X
w(x) ≤ 1 + t · lg(2m).

PROOF: First, w(x) ≤ 2 for all x, always. This is because
w(x) increases only during a doubling step, which happens
only if x belongs to a subset of X of total weight < 1.

Let T ∗ ⊂ X denote an optimal teaching set, of size t. By
definition, T ∗ must intersect ∆(h) for all h 6= h∗. Now,
a doubling step doubles the weight of each x ∈ ∆(h),
and thus some element of T ∗. And since the weight of an
individual point begins at 1/m and never exceeds 2, the
total number of doubling steps cannot exceed t · lg(2m).

During each doubling step, w(∆(h)), and thus
∑
x w(x),

increases by at most 1. The lemma follows by noting that
the initial value of this summation is 1, and there are at most
t · lg(2m) doubling steps. �

Lemma 5 With probability at least 1− δ, at the end of any
iteration of the main loop, any hypothesis h 6= h∗ with
w(∆(h)) ≥ 1 is invalidated by the teaching examples.

PROOF IDEA: Fix any h 6= h∗ and consider the first
time at which w(∆(h)) ≥ 1. Recall that the thresholds

Tx are drawn from an exponential distribution with rate
λ = ln(N/δ). The probability, over random choice of
thresholds, that no point in ∆(h) is chosen as a teaching
example is∏

x∈∆(h)

Pr(w(x) ≤ Tx) =
∏

x∈∆(h)

exp(−λw(x))

= exp(−λw(∆(h)))

≤ exp(−λ) =
δ

N
.

Now take a union bound over all N hypotheses inH. �

Lemma 6 The expected total number of teaching examples
provided is at most (1 + t lg(2m)) ln(N/δ).

PROOF IDEA: Pick any x ∈ X ; suppose that during a
particular round of doubling its weight increases from w
to w′. The probability it is chosen as a teaching example
during that doubling is

Pr(Tx ≤ w′ | Tx > w) = 1− Pr(Tx > w′ | Tx > w)

= 1− exp(−λ(w′ − w))

≤ λ(w′ − w).

Thus the expected number of teaching examples chosen
during a round of doubling is at most λ times the increase
in total weight during the doubling. The result then follows
by applying Lemma 4. �

4. Teaching by probing the learner’s
uncertainty

Suppose that the learner communicates not just a classifier
but also its uncertainty. We model this by allowing the
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teacher two forms of communication with the learner:

• Teaching example. The teacher provides a labeled
example (x, h∗(x)). The learner must subsequently
adopt this as a hard constraint.

• Uncertainty-rated probe. The teacher makes a query x,
and the learner answers according to its current version
space:

– 0 or 1 if everything in the version space agrees on
this label

– ? if there is disagreement within the version space

We will use the notation (t, p)-protocol if a teaching set of
size t is produced after at most p uncertainty-rated probes.

To make the notion of disagreement precise, let V de-
note the current version space of the learner: that is, the
set of hypotheses in H that are consistent with all teach-
ing examples seen so far. We define DIS(V ) = {x ∈
X : there exist h, h′ ∈ V for which h(x) 6= h′(x)}. The
uncertainty-rated probe then returns ? if x ∈ DIS(V ).

If the learner is a machine, it can easily return a black box
that computes uncertainty probes. This is no harder than
learning: if S is the set of labeled teaching examples so far,
an uncertainty probe on x ∈ X can be performed efficiently,
as follows:

• Let S0 = S ∪ {(x, 0)}. Check if there is a hypothesis
inH that perfectly fits S0.

• Let S1 = S ∪ {(x, 1)}. Check if there is a hypothesis
inH that perfectly fits S1.

• If both succeed: return ?. If only S0 succeeds: return
0. If only S1 succeeds: return 1.

If the learner is human, the uncertainty probe model is less
reasonable, and it would make sense to consider a version
with weaker requirements, for instance where the learner
answers ? if there is a substantial amount of disagreement on
the label, with respect to its (unknown) prior over concepts.

4.1. Teaching by simulating the Cohn-Atlas-Ladner
active learner

Uncertainty-rated probes permit a teaching strategy that
simulates the active learning algorithm of Cohn et al. (1994):

1. Teacher randomly permutes instance space X

2. For each x ∈ X , in this order:

• Teacher probes the learner on x

• If learner returns ?: teacher provides (x, h∗(x))
as a teaching example.

Using an analysis by Hanneke (2011), we show that
this method constructs a teaching set of expected size
θ · (log2 |X |+ log |X | · log |H|), where

θ = sup
r>0

∣∣⋃
h∈H:|∆(h)|≤r ∆(h)

∣∣
r

is the disagreement coefficient of h∗ within H. (Recall
∆(h) = {x ∈ X : h(x) 6= h∗(x)}.)

Hanneke introduced the disagreement coefficient to bound
the label complexity of active learning. To get some intu-
ition for it in our context, consider k hypotheses h1, . . . , hk
that all differ from h∗ on the same number of points, and sup-
pose the hypothesis class is just H = {h1, . . . , hk, h

∗}. If
∆(hi)∩∆(hj) = ∅ for all i 6= j (so θ = k), then a teaching
set must contain at least one point from each ∆(hi). If, on
the other hand, the ∆(hi) overlap substantially (so θ � k),
then just a few random points in ∆(h1) ∪ · · · ∪∆(hk) are
likely to constitute a teaching set.

In many cases, θ has a bound that is independent of the
cardinality of X ; see Hanneke (2014) for several examples.
For instance, for thresholds on the line, θ = 2.

Theorem 7 The teaching strategy that simulates the Cohn-
Atlas-Ladner algorithm constructs a teaching set for (h∗,H)
with expected cardinalityO(θ·(log2 |X |+log |X |·log |H|)).

Thus, a (θ · (log2 |X |+ log |X | · log |H|), |X |)-protocol is
always achievable. A more careful analysis of Hanneke
(2011) replaces the log2 |X | with log |X | · log log |X |.

4.2. Proof of Theorem 7

Let x1, x2, . . . , xm be the random ordering of X used by
the teacher (with m = |X |), and for any 1 ≤ k ≤ m,
let Hk = {h ∈ H : ∆(h) ∩ {x1, . . . , xk} 6= ∅} be the
hypotheses inH that disagree with h∗ on at least one of the
first k points.

Lemma 8 The set of teaching examples provided through
time k is a teaching set for (h∗,Hk).

PROOF: Take any h ∈ Hk, and consider the first xi ∈
∆(h) ∩ {x1, . . . , xk}. When the teacher probes the learner
on xi, the learner must return ?, as h(xi) 6= h∗(xi). So
(xi, h

∗(xi)) is provided as a teaching example. �

Lemma 8 implies that the final set of teaching examples is
indeed a teaching set for (h∗,H). It remains to bound the
(expected) number of teaching examples.

Define rk,δ = (m/k) ln(|H|/δ).
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Lemma 9 Pick any δ ∈ (0, 1) and any 1 ≤ k ≤ m. With
probability at least 1 − δ, every hypothesis h ∈ H that
agrees with h∗ on x1, . . . , xk has |∆(h)| ≤ rk,δ .

PROOF: Pick a h ∈ H with |∆(h)| > rk,δ . The probability
that it agrees with x1, . . . , xk is at most (1−|∆(h)|/m)k ≤
exp(−|∆(h)|k/m) < δ/|H|. Now apply a union bound
over all such h. �

Lemma 10 The expected number of teaching examples is
at most 2 + θ · ln(m) · ln(|H|m).

PROOF: Let Ek be the 1− δ probability event of Lemma 9,
and let Qk be the event that the learner returns ? when
probed on xk. We’ll show that Pr(Qk) is at most the prob-
ability that: either Ek−1 does not happen, or xk ∈ Xk,δ =
∪h∈H:|∆(h)|≤rk−1,δ

∆(h). Indeed, if Qk happens, then by
Lemma 8, there is some h ∈ H that agrees with h∗ on
x1, . . . , xk−1, but h(xk) 6= h∗(xk). If Ek−1 holds, then
any such hypothesis h ∈ H must have |∆(h)| ≤ rk−1,δ.
This line of reasoning gives the bound

Pr(Qk) ≤ Pr(¬Ek−1 ∨ xk ∈ Xk,δ)

≤ Pr(¬Ek−1) +
|Xk,δ|
m

≤ δ + θ · rk−1,δ

m
.

Summing Pr(Qk) from k = 1, . . . ,m and choosing δ =
1/m proves the claim. �

5. A lower bound on the number of probes
In both our teaching procedures, all of X is probed. To see
why this is necessary, recall the hypothesis classesH(S) of
Section 2.2 and consider |X | classes of the formH({x}) =
{h∗, hx}, where x is a single element of X . Each such class
has a teaching set of size 1, consisting of the labeled example
(x, 0). If the teacher does not know which of these concept
classes is used by the learner, then every x must either be
probed or supplied as a teaching example; otherwise, the
teacher cannot be sure that the learner is not using hx.

6. Experimental illustration
In this section, we use Algorithm 1 to shrink several syn-
thetic and real datasets, that is, to find subsets (teaching sets)
of the data that yield the same final classifier. This can be
useful for reducing storage/transmission costs of training
data, or in situations where the computational complexity
of training scales poorly with the number of samples.

Suppose the learning algorithm has running time T (n),
where n is the size of the training set. Algorithm 1 builds a
teaching set incrementally, in iterations that involve adding
a few points, invoking the learning algorithm, and evaluat-
ing the classifier that results. If the teaching set sizes along

the way are t1 < t2 < · · · < tk, the total training time is
T (t1) + · · ·+T (tk), which can be much smaller than T (n).

Synthetic data We looked at synthetic data in the form of
moons, circles, and mixtures. For each, we generated two-
dimensional separable and non-separable datasets of 4000
points each, by varying the level of noise. We then tested
Algorithm 1 using SVM learners with linear, quadratic, and
RBF kernels. For each simulation we report: (1) the support
vectors (SVs) of each learner; (2) the teaching points (TPs),
as decided by the algorithm; (3) the points that are both
support vectors and teaching points (TPs AND SVs); and
(4) teaching curves.

For a support vector machine, it is always possible to create
a teaching set of size two by choosing the points so that
their perpendicular bisector is the boundary; the maximum-
margin objective function will then yield exactly the target
classifier. However, any given data set is unlikely to contain
such a pair of points. Thus in our examples, the size of the
optimal teaching set is not known, although it is certainly
upper-bounded by the number of support vectors.

Some of the results are shown in Figure 2. For instance,
the top left-hand panel shows the result of the teaching
algorithm on the moon-shaped data. There are 123 support
vectors in the full data set, but a teaching set of just 19
points is found. As can be seen on the right, these points
are picked in five batches: the first batch has two points
and already brings the accuracy above 75%. Overall, the
learning algorithm is called five times, on data sets of size
2, 10, 13, 17, 19; and we get the same effect as calling it on
the entire set of 4000 points.

The full range of experiments on synthetic data can be seen
in Figures 3 to 20 in the appendix.

Real datasets We also looked at the MNIST and fashion
MNIST (Xiao et al., 2017) datasets, both with 60K points.

1. On MNIST, we used an SVM with a quadratic kernel.
This data has 32,320 support vectors, and a teaching set
of 4,445 points is found (almost all support vectors).

2. On fashion MNIST, we used a convolutional network
with 4 different layers of 2d convolutions (32, 64, 128,
128) each followed by a ReLU and a max pooling layer.

The bottom panel of Figure 2 shows the teaching curves for
these two data sets. In either case, the accuracy achieved on
the full training set is below 100%.

For all experiments we used the same termination criterion:
the algorithm terminated when it got within .01 of the ac-
curacy of the learner that was trained using the full data.
Also, to initialize the weight Tx of each data point we set
the confidence parameter δ of Algorithm 1 to .1.
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Figure 2. Top: ‘Moon’ data with RBF kernel SVM; Middle: ‘Mixtures’ data with quadratic kernel; Bottom: MNIST (quadratic SVM) and
Fashion MNIST (convolutional neural net). Shown: support vectors (SV), teaching points (TP), regular points (RP).
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A. Proof details for Theorem 3
In what follows, let Wi(x) denote the weight of point x ∈ X at the end of round i of the main loop. If there are I rounds in
all, then Wo(x) = 1/m and the final weight of x is W (x) = WI(x). For any set Xo ⊂ X , let Wi(Xo) =

∑
x∈XoWi(x).

Each x has an associated exponentially-distributed threshold Tx. Given the memory-less property of the exponential, we can
decide on its value gradually: Is it more than 0.05? If so, is it more than 0.1? And so on. In particular, it is only when the
weight of x increases from Wi−1(x) to Wi(x) that we will ask, is Tx > Wi(x)? Accordingly, let Fi be the sigma-field of
all indicator events {1(Tx > Wi′(x)) : x ∈ X, 1 ≤ i′ ≤ i}. This captures the information about the thresholds that has
been revealed up to and including the end of round i.

Note that Wi(x) ∈ Fi−1: by the end of round i− 1, the weight of x at the end of round i is fully determined.

A.1. Proof of Lemma 5

Pick any h ∈ H and let Xo = ∆(h). Define Zi to be 1 if no point in Xo is chosen during rounds 1, 2, . . . , i. Note that
Zi ∈ Fi and that Wi(x) ∈ Fi−1 for x ∈ X . Thus

E[Zi|Fi−1] = Zi−1 · Pr(no point in Xo chosen in round i|Zi−1,Fi−1)

= Zi−1 ·
∏
x∈Xo

Pr(Tx > Wi(x)|Tx > Wi−1(x))

= Zi−1 ·
∏
x∈Xo

e−λ(Wi(x)−Wi−1(x))

= Zi−1e
−λ(Wi(Xo)−Wi−1(Xo)).

This implies that Yi = eλWi(Xo)Zi is a martingale with respect to (Fi):

E[eλWi(Xo)Zi|Fi−1] = eλWi(Xo)E[Zi|Fi−1] = eλWi−1(Xo)Zi−1.

Now, for the very first round,

E[Z1|Fo] =
∏
x∈Xo

e−λW1(x) = e−λW1(Xo),

and thus E[Y1] = 1. Therefore, E[Yi] = 1 for all i.

Let M denote the first round i in which Wi(Xo) ≥ 1. Since {M ≤ i} ∈ Fi−1, it is a stopping time and we have E[YM ] = 1,
so that

1 = E[YM ] = E[eλWM (Xo)ZM ] ≥ E[eλZM ] = eλPr(ZM = 1).

Thus Pr(ZM = 1) ≤ e−λ = δ/N . We finish by taking a union bound over all h ∈ H.

A.2. Proof of Lemma 6

Let Mi denote the number of teaching examples selected in the ith round of doubling. Then

E[Mi|Fi−1] =
∑
x∈X

Pr(x chosen in round i|x not chosen before,Fi−1)

≤
∑
x∈X

(1− e−λ(Wi(x)−Wi−1(x)))

≤
∑
x∈X

λ(Wi(x)−Wi−1(x)) = λ(Wi(X )−Wi−1(X )).

Since the total weight of X increases by at most 2 during any round, this is ≤ 2λ. The conclusion then follows from the
bound on the number of rounds (Lemma 4). To shave off a factor of two, consider rounds of doubling, in which the total
weight increases by at most 1, rather than rounds of the algorithm.
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B. Experimental results
Below, we give the full set of experimental results on synthetic and real datasets.

(a) (b)

Figure 3. Moon-shaped dataset (separable), Linear kernel

(a) (b)

Figure 4. Moon-shaped dataset (separable), Quadratic kernel
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(a) (b)

Figure 5. Moon-shaped dataset (separable), RBF kernel

(a) (b)

Figure 6. Moon-shaped dataset (non-separable), Linear kernel
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(a) (b)

Figure 7. Moon-shaped dataset (non-separable), Quadratic kernel

(a) (b)

Figure 8. Moon-shaped dataset (non-separable), RBF kernel
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(a) (b)

Figure 9. Circular dataset (separable), Linear kernel

(a) (b)

Figure 10. Circular dataset (separable), Quadratic kernel
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(a) (b)

Figure 11. Circular dataset (separable), RBF kernel

(a) (b)

Figure 12. Circular dataset (non-separable), Linear kernel
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(a) (b)

Figure 13. Circular dataset (non-separable), Quadratic kernel

(a) (b)

Figure 14. Circular dataset (non-separable), RBF kernel
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(a) (b)

Figure 15. Mixtures of Gaussians dataset (separable), Linear kernel

(a) (b)

Figure 16. Mixtures of Gaussians dataset (separable), Quadratic kernel
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(a) (b)

Figure 17. Mixtures of Gaussians dataset (separable), RBF kernel

(a) (b)

Figure 18. Mixtures of Gaussians dataset (non-separable), Linear kernel
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(a) (b)

Figure 19. Mixtures of Gaussians dataset (non-separable), Quadratic kernel

(a) (b)

Figure 20. Mixtures of Gaussians dataset (non-separable), RBF kernel
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(a) (b)

Figure 21. (a) MNIST data set, quadratic kernel SVM (b) Fashion MNIST data set, convolutional neural network

# SVs 32,320
# TPs 4,445

#TPs AND SVs 4,357

Table 1. Number of SVs, TPs, and points that are both SVs and TPs on MNIST.


