
Learning without correspondence

Daniel Hsu

Computer Science Department & Data Science Institute
Columbia University

Introduction

Example #1: unlinked data sources

• Two separate data sources about same entities:
Sex Age Height

M 20 180

F 24 162.5

F 22 160

F 23 167.5

Disease

1

0

0

1

• First source contains covariates (sex, age, height, …).
• Second source contains response variable (disease status).

To learn: relationship between response and covariates.

Record linkage unknown.

1

Example #1: unlinked data sources

• Two separate data sources about same entities:
Sex Age Height

M 20 180

F 24 162.5

F 22 160

F 23 167.5

Disease

1

0

0

1

???

• First source contains covariates (sex, age, height, …).
• Second source contains response variable (disease status).

To learn: relationship between response and covariates.

Record linkage unknown.

1

Example #2: flow cytometry

1. Suspended cells in fluid.
2. Cells pass through laser, one at a time; measure emitted light.

1*4%4

"

÷i*y
l%%t

g¥o*ny
÷¥ "

f"¥%¥F
Few

HEE

,

FINE
'

To learn: relationship between measurements and cell properties.

Order in which cells pass through laser is unknown.

2

Example #2: flow cytometry

1. Suspended cells in fluid.
2. Cells pass through laser, one at a time; measure emitted light.

1*4%4

"

÷i*y
l%%t

g¥o*ny
÷¥ "

f"¥%¥F
Few

HEE

,

FINE
'

To learn: relationship between measurements and cell properties.

Order in which cells pass through laser is unknown.

2

Example #3: unassigned distance geometry

1. Unknown arrangement of n points in Euclidean space.

Assigned and unassigned distance geometry: applications to… 365

5.2 DGP in nanostructures

The Nanostructure Problem is the problem of finding, at high precision, the atomic
positions of molecular, biomolecular or solid state systems when it is difficult or
impractical to grow a single crystal or even a polycrystal sample (Billinge and Levin
2007). The meaning of high precision is context dependent, however a typical require-
ment in a solid state system is the determination of the positions of all atoms in a
nanostructure to better than 2% for each interatomic distance in the nanostructure,
and in some cases even higher resolution is necessary. High resolution is required
as the function of nanostructured materials and complex molecules is highly sensi-
tive to small changes in the interatomic distances, making it essential to determine
nanostructure to high precision to enable understanding and design of materials.
Nanostructure problems are encountered in a wide variety of materials, including
complex molecules, nanoparticles, polymers, proteins, non-crystalline motifs embed-
ded in a crystalline matrix and many others (see Fig. 12 for three examples). We
consider single phase problems where one nanostructure is dominant, though exten-
sions to multiphase nanostructures are possible once the single phase case can be
solved efficiently.

The pair-distribution function (PDF) method is a versatile and readily available
approach to probing the local atomic structure of nanostructured materials (Egami
and Billinge 2012). PDF results can be extracted from X-ray, neutron or electron
total scattering data and in many cases the data can be collected efficiently. The major

Fig. 12 (Color online) Examples of nanostructured materials. a Nanostructured bulk materials. b Inter-
calated mesoporous materials. c Discrete nanoparticles. In each case, ball-and-stick renditions of possible
structures are shown on the top, and TEM images of examples are shown on the bottom. From Billinge and
Levin (2007)

123

(Image credit: Billinge, Duxbury, Gonçalves, Lavor, & Mucherino, 2016)

2. Measure distribution of pairwise distances among the n points
(using high-energy X-rays).

To learn: original arrangement of the n points.

Assignment of distances to pairs of points is unknown.

3

Example #3: unassigned distance geometry

1. Unknown arrangement of n points in Euclidean space.

Assigned and unassigned distance geometry: applications to… 365

5.2 DGP in nanostructures

The Nanostructure Problem is the problem of finding, at high precision, the atomic
positions of molecular, biomolecular or solid state systems when it is difficult or
impractical to grow a single crystal or even a polycrystal sample (Billinge and Levin
2007). The meaning of high precision is context dependent, however a typical require-
ment in a solid state system is the determination of the positions of all atoms in a
nanostructure to better than 2% for each interatomic distance in the nanostructure,
and in some cases even higher resolution is necessary. High resolution is required
as the function of nanostructured materials and complex molecules is highly sensi-
tive to small changes in the interatomic distances, making it essential to determine
nanostructure to high precision to enable understanding and design of materials.
Nanostructure problems are encountered in a wide variety of materials, including
complex molecules, nanoparticles, polymers, proteins, non-crystalline motifs embed-
ded in a crystalline matrix and many others (see Fig. 12 for three examples). We
consider single phase problems where one nanostructure is dominant, though exten-
sions to multiphase nanostructures are possible once the single phase case can be
solved efficiently.

The pair-distribution function (PDF) method is a versatile and readily available
approach to probing the local atomic structure of nanostructured materials (Egami
and Billinge 2012). PDF results can be extracted from X-ray, neutron or electron
total scattering data and in many cases the data can be collected efficiently. The major

Fig. 12 (Color online) Examples of nanostructured materials. a Nanostructured bulk materials. b Inter-
calated mesoporous materials. c Discrete nanoparticles. In each case, ball-and-stick renditions of possible
structures are shown on the top, and TEM images of examples are shown on the bottom. From Billinge and
Levin (2007)

123

(Image credit: Billinge, Duxbury, Gonçalves, Lavor, & Mucherino, 2016)

2. Measure distribution of pairwise distances among the n points
(using high-energy X-rays).

To learn: original arrangement of the n points.

Assignment of distances to pairs of points is unknown.

3

Learning without correspondence

Observation:
Correspondence information is missing in many natural settings.

Question:
How does this affect machine learning / statistical estimation?

We give a theoretical treatment in context of two simple problems:

1. Linear regression without correspondence
(Joint work with Kevin Shi and Xiaorui Sun; NIPS 2017.)

2. Correspondence retrieval (generalization of phase retrieval)
(Joint work with Alexandr Andoni, Kevin Shi, and Xiaorui Sun; COLT 2017.)

4

Learning without correspondence

Observation:
Correspondence information is missing in many natural settings.

Question:
How does this affect machine learning / statistical estimation?

We give a theoretical treatment in context of two simple problems:

1. Linear regression without correspondence
(Joint work with Kevin Shi and Xiaorui Sun; NIPS 2017.)

2. Correspondence retrieval (generalization of phase retrieval)
(Joint work with Alexandr Andoni, Kevin Shi, and Xiaorui Sun; COLT 2017.)

4

Learning without correspondence

Observation:
Correspondence information is missing in many natural settings.

Question:
How does this affect machine learning / statistical estimation?

We give a theoretical treatment in context of two simple problems:

1. Linear regression without correspondence
(Joint work with Kevin Shi and Xiaorui Sun; NIPS 2017.)

2. Correspondence retrieval (generalization of phase retrieval)
(Joint work with Alexandr Andoni, Kevin Shi, and Xiaorui Sun; COLT 2017.)

4

Our contributions

1. Linear regression without correspondence
• Strong NP-hardness of least squares problem.
• Polynomial-time approximation scheme in constant dimensions.
• Information-theoretic signal-to-noise lower bounds.
• Polynomial-time algorithm in noise-free average case setting.

2. Correspondence retrieval
• Measurement-optimal recovery algorithm in noise-free setting.
• Robust recovery algorithm in noisy setting.

5

Linear regression without correspondence

Linear regression without correspondence

y1

y2

yn

...

x>1

x>2

x>n

...

Feature vectors: x1, x2, . . . , xn ∈ Rd

Labels: y1, y2, . . . , yn ∈ R

6

Linear regression without correspondence

y1

y2

yn

...
=

ε1

ε2

εn

...
+β∗

x>1

x>2

x>n

...

Classical linear regression:
yi = x⊤

i β∗ + εi, i = 1, . . . , n.

6

Linear regression without correspondence

=

ε1

ε2

εn

...
+

y1

y2

yn

...
β∗

x>π∗(1)

x>π∗(2)

x>π∗(n)

...

Linear regression without correspondence:
yi = x⊤

π∗(i)β
∗ + εi, i = 1, . . . , n.

6

Model for linear regression without correspondence

Unnikrishnan, Haghighatshoar, & Vetterli, 2015; Pananjady, Wainwright, & Courtade

2016; Elhami, Scholefield, Haro, & Vetterli, 2017; Abid, Poon, & Zou, 2017; …

• Feature vectors: x1, x2, . . . , xn ∈ Rd

• Labels: y1, y2, . . . , yn ∈ R
• Model:

yi = x⊤
π∗(i)β

∗ + εi , i = 1, . . . , n.

• Linear function: β∗ ∈ Rd

• Permutation: π∗ ∈ Sn

• Errors: ε1, ε2, . . . , εn ∈ R.

• Goal: “learn” β∗.

Correspondence between (xi)n
i=1 and (yi)n

i=1 is unknown.

7

Model for linear regression without correspondence

Unnikrishnan, Haghighatshoar, & Vetterli, 2015; Pananjady, Wainwright, & Courtade

2016; Elhami, Scholefield, Haro, & Vetterli, 2017; Abid, Poon, & Zou, 2017; …

• Feature vectors: x1, x2, . . . , xn ∈ Rd

• Labels: y1, y2, . . . , yn ∈ R
• Model:

yi = x⊤
π∗(i)β

∗ + εi , i = 1, . . . , n.

• Linear function: β∗ ∈ Rd

• Permutation: π∗ ∈ Sn

• Errors: ε1, ε2, . . . , εn ∈ R.

• Goal: “learn” β∗.

Correspondence between (xi)n
i=1 and (yi)n

i=1 is unknown.

7

Model for linear regression without correspondence

Unnikrishnan, Haghighatshoar, & Vetterli, 2015; Pananjady, Wainwright, & Courtade

2016; Elhami, Scholefield, Haro, & Vetterli, 2017; Abid, Poon, & Zou, 2017; …

• Feature vectors: x1, x2, . . . , xn ∈ Rd

• Labels: y1, y2, . . . , yn ∈ R
• Model:

yi = x⊤
π∗(i)β

∗ + εi , i = 1, . . . , n.

• Linear function: β∗ ∈ Rd

• Permutation: π∗ ∈ Sn

• Errors: ε1, ε2, . . . , εn ∈ R.

• Goal: “learn” β∗.

Correspondence between (xi)n
i=1 and (yi)n

i=1 is unknown.

7

Questions

1. Can we determine if there is a good linear fit to the data?
(Least squares approximation.)

2. When is it possible to recover the “correct” β∗?
(When is the “best” linear fit actually meaningful?)

8

Questions

1. Can we determine if there is a good linear fit to the data?
(Least squares approximation.)

2. When is it possible to recover the “correct” β∗?
(When is the “best” linear fit actually meaningful?)

8

Least squares approximation

Least squares problem

Given (xi)n
i=1 from Rd and (yi)n

i=1 from R, minimize

F (β, π) :=
n∑

i=1

(
x⊤

i β − yπ(i)
)2

.

• d = 1: O(n log n)-time algorithm.
(Observed by Pananjady, Wainwright, & Courtade, 2016.)

• d = Ω(n): (strongly) NP-hard to decide if min F = 0.
Reduction from 3-PARTITION (H., Shi, & Sun, 2017).

Naïve brute-force search: Ω(|Sn|) = Ω(n!).

Least squares with known correspondence: O(nd2) time.

9

Least squares problem

Given (xi)n
i=1 from Rd and (yi)n

i=1 from R, minimize

F (β, π) :=
n∑

i=1

(
x⊤

i β − yπ(i)
)2

.

• d = 1: O(n log n)-time algorithm.
(Observed by Pananjady, Wainwright, & Courtade, 2016.)

• d = Ω(n): (strongly) NP-hard to decide if min F = 0.
Reduction from 3-PARTITION (H., Shi, & Sun, 2017).

Naïve brute-force search: Ω(|Sn|) = Ω(n!).

Least squares with known correspondence: O(nd2) time.

9

Least squares problem

Given (xi)n
i=1 from Rd and (yi)n

i=1 from R, minimize

F (β, π) :=
n∑

i=1

(
x⊤

i β − yπ(i)
)2

.

• d = 1: O(n log n)-time algorithm.
(Observed by Pananjady, Wainwright, & Courtade, 2016.)

• d = Ω(n): (strongly) NP-hard to decide if min F = 0.
Reduction from 3-PARTITION (H., Shi, & Sun, 2017).

Naïve brute-force search: Ω(|Sn|) = Ω(n!).

Least squares with known correspondence: O(nd2) time.

9

Least squares problem

Given (xi)n
i=1 from Rd and (yi)n

i=1 from R, minimize

F (β, π) :=
n∑

i=1

(
x⊤

i β − yπ(i)
)2

.

• d = 1: O(n log n)-time algorithm.
(Observed by Pananjady, Wainwright, & Courtade, 2016.)

• d = Ω(n): (strongly) NP-hard to decide if min F = 0.
Reduction from 3-PARTITION (H., Shi, & Sun, 2017).

Naïve brute-force search: Ω(|Sn|) = Ω(n!).

Least squares with known correspondence: O(nd2) time.

9

Least squares problem

Given (xi)n
i=1 from Rd and (yi)n

i=1 from R, minimize

F (β, π) :=
n∑

i=1

(
x⊤

i β − yπ(i)
)2

.

• d = 1: O(n log n)-time algorithm.
(Observed by Pananjady, Wainwright, & Courtade, 2016.)

• d = Ω(n): (strongly) NP-hard to decide if min F = 0.
Reduction from 3-PARTITION (H., Shi, & Sun, 2017).

Naïve brute-force search: Ω(|Sn|) = Ω(n!).

Least squares with known correspondence: O(nd2) time.

9

Least squares problem (d = 1)

Given (xi)n
i=1 and (yi)n

i=1 from R, minimize

F (β, π) :=
n∑

i=1

(
xiβ − yπ(i)

)2
.

y1

y2

yn

...

x1

x2

xn

...

25β2 − 20β + 5+ · · · > 25β2 − 22β + 5+ · · ·

10

Least squares problem (d = 1)

Given (xi)n
i=1 and (yi)n

i=1 from R, minimize

F (β, π) :=
n∑

i=1

(
xiβ − yπ(i)

)2
.

x1

x2

xn

...

y1

y2

yn

...

()
−(

(
−

−

β

β

β

)

)

2

2

2

Cost with π(i) = i for all i = 1, . . . , n.

25β2 − 20β + 5+ · · · > 25β2 − 22β + 5+ · · ·

10

Least squares problem (d = 1)

Given (xi)n
i=1 and (yi)n

i=1 from R, minimize

F (β, π) :=
n∑

i=1

(
xiβ − yπ(i)

)2
.

3

4

6

...

2

1

7

...

(
−(

(
−

−

β

β

β

))

)

2

2

2

Cost with π(i) = i for all i = 1, . . . , n.

25β2 − 20β + 5+ · · · > 25β2 − 22β + 5+ · · ·

10

Least squares problem (d = 1)

Given (xi)n
i=1 and (yi)n

i=1 from R, minimize

F (β, π) :=
n∑

i=1

(
xiβ − yπ(i)

)2
.

3

4

6

...

2

1

7

...

(
−(

(
−

−

β

β

β

))

)

2

2

2

If β > 0, then can improve cost with π(1) = 2 and π(2) = 1.

25β2 − 20β + 5+ · · · > 25β2 − 22β + 5+ · · ·

10

Least squares problem (d = 1)

Given (xi)n
i=1 and (yi)n

i=1 from R, minimize

F (β, π) :=
n∑

i=1

(
xiβ − yπ(i)

)2
.

3

4

6

...

2

1

7

...

(
−(

(
−

−

β

β

β

3

4

6

...

1

2

7

...

(
−(

(
−

−

β

β

β

>

))

)

2

2

2

))

)

2

2

2

If β > 0, then can improve cost with π(1) = 2 and π(2) = 1.

25β2 − 20β + 5+ · · · > 25β2 − 22β + 5+ · · ·

10

Algorithm for least squares problem (d = 1) [PWC’16]

1. “Guess” sign of optimal β. (Only two possibilities.)

2. Assuming WLOG that x1β ≤ x2β · · · ≤ xnβ,
find optimal π such that yπ(1) ≤ yπ(2) ≤ · · · ≤ yπ(n)
(via sorting).

3. Solve classical least squares problem

min
β∈R

n∑
i=1

(xiβ − yπ(i))2

to get optimal β.

Overall running time: O(n log n).

What about d > 1?

11

Algorithm for least squares problem (d = 1) [PWC’16]

1. “Guess” sign of optimal β. (Only two possibilities.)
2. Assuming WLOG that x1β ≤ x2β · · · ≤ xnβ,

find optimal π such that yπ(1) ≤ yπ(2) ≤ · · · ≤ yπ(n)
(via sorting).

3. Solve classical least squares problem

min
β∈R

n∑
i=1

(xiβ − yπ(i))2

to get optimal β.

Overall running time: O(n log n).

What about d > 1?

11

Algorithm for least squares problem (d = 1) [PWC’16]

1. “Guess” sign of optimal β. (Only two possibilities.)
2. Assuming WLOG that x1β ≤ x2β · · · ≤ xnβ,

find optimal π such that yπ(1) ≤ yπ(2) ≤ · · · ≤ yπ(n)
(via sorting).

3. Solve classical least squares problem

min
β∈R

n∑
i=1

(xiβ − yπ(i))2

to get optimal β.

Overall running time: O(n log n).

What about d > 1?

11

Algorithm for least squares problem (d = 1) [PWC’16]

1. “Guess” sign of optimal β. (Only two possibilities.)
2. Assuming WLOG that x1β ≤ x2β · · · ≤ xnβ,

find optimal π such that yπ(1) ≤ yπ(2) ≤ · · · ≤ yπ(n)
(via sorting).

3. Solve classical least squares problem

min
β∈R

n∑
i=1

(xiβ − yπ(i))2

to get optimal β.

Overall running time: O(n log n).

What about d > 1?

11

Algorithm for least squares problem (d = 1) [PWC’16]

1. “Guess” sign of optimal β. (Only two possibilities.)
2. Assuming WLOG that x1β ≤ x2β · · · ≤ xnβ,

find optimal π such that yπ(1) ≤ yπ(2) ≤ · · · ≤ yπ(n)
(via sorting).

3. Solve classical least squares problem

min
β∈R

n∑
i=1

(xiβ − yπ(i))2

to get optimal β.

Overall running time: O(n log n).

What about d > 1?

11

Alternating minimization

Pick initial β̂ ∈ Rd (e.g., randomly).
Loop until convergence:

π̂ ← arg min
π∈Sn

n∑
i=1

(
x⊤

i β̂ − yπ(i)
)2

.

β̂ ← arg min
β∈Rd

n∑
i=1

(
x⊤

i β − yπ̂(i)
)2

.

• Each loop-iteration efficiently computable.
• But can get stuck in local minima.

So try many initial β̂ ∈ Rd.
(Open: How many restarts? How many iterations?)

12

Alternating minimization

Pick initial β̂ ∈ Rd (e.g., randomly).
Loop until convergence:

π̂ ← arg min
π∈Sn

n∑
i=1

(
x⊤

i β̂ − yπ(i)
)2

.

β̂ ← arg min
β∈Rd

n∑
i=1

(
x⊤

i β − yπ̂(i)
)2

.

• Each loop-iteration efficiently computable.

• But can get stuck in local minima.

So try many initial β̂ ∈ Rd.
(Open: How many restarts? How many iterations?)

12

Alternating minimization

Pick initial β̂ ∈ Rd (e.g., randomly).
Loop until convergence:

π̂ ← arg min
π∈Sn

n∑
i=1

(
x⊤

i β̂ − yπ(i)
)2

.

β̂ ← arg min
β∈Rd

n∑
i=1

(
x⊤

i β − yπ̂(i)
)2

.

• Each loop-iteration efficiently computable.
• But can get stuck in local minima.

So try many initial β̂ ∈ Rd.
(Open: How many restarts? How many iterations?)

12

Alternating minimization

(Image credit: Wolfram|Alpha)

• Each loop-iteration efficiently computable.
• But can get stuck in local minima.

So try many initial β̂ ∈ Rd.
(Open: How many restarts? How many iterations?)

12

Wolfram|Alpha

Alternating minimization

(Image credit: Wolfram|Alpha)

• Each loop-iteration efficiently computable.
• But can get stuck in local minima. So try many initial β̂ ∈ Rd.

(Open: How many restarts? How many iterations?)

12

Wolfram|Alpha

Approximation result

Theorem (H., Shi, & Sun, 2017)
There is an algorithm that given any inputs (xi)n

i=1, (yi)n
i=1,

and ϵ ∈ (0, 1), returns a (1+ ϵ)-approximate solution to the
least squares problem in time(

n

ϵ

)O(d)
+ poly(n, d) .

Recall: Brute-force solution needs Ω(n!) time.

(No other previous algorithm with approximation guarantee.)

13

Approximation result

Theorem (H., Shi, & Sun, 2017)
There is an algorithm that given any inputs (xi)n

i=1, (yi)n
i=1,

and ϵ ∈ (0, 1), returns a (1+ ϵ)-approximate solution to the
least squares problem in time(

n

ϵ

)O(d)
+ poly(n, d) .

Recall: Brute-force solution needs Ω(n!) time.

(No other previous algorithm with approximation guarantee.)

13

Statistical recovery of β∗:
algorithms and lower-bounds

Motivation

When does the best fit model shed light on the “truth” (π∗ & β∗)?

Approach: Study question in context of statistical model for data.

1. Understand information-theoretic limits on recovering truth.
2. Natural “average-case” setting for algorithms.

14

Motivation

When does the best fit model shed light on the “truth” (π∗ & β∗)?

Approach: Study question in context of statistical model for data.

1. Understand information-theoretic limits on recovering truth.
2. Natural “average-case” setting for algorithms.

14

Motivation

When does the best fit model shed light on the “truth” (π∗ & β∗)?

Approach: Study question in context of statistical model for data.

1. Understand information-theoretic limits on recovering truth.
2. Natural “average-case” setting for algorithms.

14

Statistical model

=

ε1

ε2

εn

...
+

y1

y2

yn

...
β∗

x>π∗(1)

x>π∗(2)

x>π∗(n)

...

Assume (xi)n
i=1 iid from P and (εi)n

i=1 iid from N(0, σ2).

Recoverability of β∗ depends on signal-to-noise ratio:

SNR := ∥β∗∥22
σ2

.

Classical setting (where π∗ is known):
Just need SNR ≳ d/n to approximately recover β∗.

15

Statistical model

=

ε1

ε2

εn

...
+

y1

y2

yn

...
β∗

x>π∗(1)

x>π∗(2)

x>π∗(n)

...

Assume (xi)n
i=1 iid from P and (εi)n

i=1 iid from N(0, σ2).

Recoverability of β∗ depends on signal-to-noise ratio:

SNR := ∥β∗∥22
σ2

.

Classical setting (where π∗ is known):
Just need SNR ≳ d/n to approximately recover β∗.

15

Statistical model

=

ε1

ε2

εn

...
+

y1

y2

yn

...
β∗

x>π∗(1)

x>π∗(2)

x>π∗(n)

...

Assume (xi)n
i=1 iid from P and (εi)n

i=1 iid from N(0, σ2).

Recoverability of β∗ depends on signal-to-noise ratio:

SNR := ∥β∗∥22
σ2

.

Classical setting (where π∗ is known):
Just need SNR ≳ d/n to approximately recover β∗.

15

High-level intuition

Suppose β∗ is either e1 = (1, 0, 0, . . . , 0) or e2 = (0, 1, 0, . . . , 0).

=

ε1

ε2

εn

...
+

y1

y2

yn

...
β∗

x>π∗(1)

x>π∗(2)

x>π∗(n)

...

π∗ known: distinguishability of e1 and e2 can improve with n.

π∗ unknown: distinguishability is less clear.

HyiIn
i=1 =

Hxi,1In
i=1 + N(0, σ2) if β∗ = e1,Hxi,2In
i=1 + N(0, σ2) if β∗ = e2.

(H·I denotes unordered multi-set.)

16

High-level intuition

Suppose β∗ is either e1 = (1, 0, 0, . . . , 0) or e2 = (0, 1, 0, . . . , 0).

=

ε1

ε2

εn

...
+

y1

y2

yn

...
β∗

...

x>π∗(1)

x>π∗(2)

x>π∗(n)

π∗ known: distinguishability of e1 and e2 can improve with n.

π∗ unknown: distinguishability is less clear.

HyiIn
i=1 =

Hxi,1In
i=1 + N(0, σ2) if β∗ = e1,Hxi,2In
i=1 + N(0, σ2) if β∗ = e2.

(H·I denotes unordered multi-set.)

16

High-level intuition

Suppose β∗ is either e1 = (1, 0, 0, . . . , 0) or e2 = (0, 1, 0, . . . , 0).

=

ε1

ε2

εn

...
+

y1

y2

yn

...
β∗

...

x>π∗(1)

x>π∗(2)

x>π∗(n)

π∗ known: distinguishability of e1 and e2 can improve with n.

π∗ unknown: distinguishability is less clear.

HyiIn
i=1 =

Hxi,1In
i=1 + N(0, σ2) if β∗ = e1,Hxi,2In
i=1 + N(0, σ2) if β∗ = e2.

(H·I denotes unordered multi-set.)

16

High-level intuition

Suppose β∗ is either e1 = (1, 0, 0, . . . , 0) or e2 = (0, 1, 0, . . . , 0).

=

ε1

ε2

εn

...
+

y1

y2

yn

...
β∗

...

x>π∗(1)

x>π∗(2)

x>π∗(n)

π∗ known: distinguishability of e1 and e2 can improve with n.

π∗ unknown: distinguishability is less clear.

HyiIn
i=1 =

Hxi,1In
i=1 + N(0, σ2) if β∗ = e1,Hxi,2In
i=1 + N(0, σ2) if β∗ = e2.

(H·I denotes unordered multi-set.) 16

Effect of noise

Without noise (P = N(0, Id))

-6 -4 -2 0 2 4 6

0

10

20

30

40

50

60

-6 -4 -2 0 2 4 6

0

10

20

30

40

50

60

Hxi,1In
i=1 Hxi,2In

i=1

With noise

-6 -4 -2 0 2 4 6

0

10

20

30

40

50

60

??? + N(0, σ2)

17

Effect of noise

Without noise (P = N(0, Id))

-6 -4 -2 0 2 4 6

0

10

20

30

40

50

60

-6 -4 -2 0 2 4 6

0

10

20

30

40

50

60

Hxi,1In
i=1 Hxi,2In

i=1

With noise

-6 -4 -2 0 2 4 6

0

10

20

30

40

50

60

??? + N(0, σ2) 17

Lower bound on SNR

Theorem (H., Shi, & Sun, 2017)
For P = N(0, Id), no estimator β̂ can guarantee

E
[
∥β̂ − β∗∥2

]
≤ ∥β

∗∥2
3

unless
SNR ≥ C · d

log log(n)
.

“Known correspondence” setting: SNR ≳ d/n suffices.

Another theorem: for P = Uniform([−1, 1]d), must have
SNR ≥ 1/9, even as n→∞.

18

Lower bound on SNR

Theorem (H., Shi, & Sun, 2017)
For P = N(0, Id), no estimator β̂ can guarantee

E
[
∥β̂ − β∗∥2

]
≤ ∥β

∗∥2
3

unless
SNR ≥ C · d

log log(n)
.

“Known correspondence” setting: SNR ≳ d/n suffices.

Another theorem: for P = Uniform([−1, 1]d), must have
SNR ≥ 1/9, even as n→∞.

18

Lower bound on SNR

Theorem (H., Shi, & Sun, 2017)
For P = N(0, Id), no estimator β̂ can guarantee

E
[
∥β̂ − β∗∥2

]
≤ ∥β

∗∥2
3

unless
SNR ≥ C · d

log log(n)
.

“Known correspondence” setting: SNR ≳ d/n suffices.

Another theorem: for P = Uniform([−1, 1]d), must have
SNR ≥ 1/9, even as n→∞.

18

High SNR regime

Previous works (Unnikrishnan, Haghighatshoar, & Vetterli, 2015;
Pananjady, Wainwright, & Courtade, 2016):

If SNR≫ poly(n), then can recover π∗ (and β∗, approximately)
using Maximum Likelihood Estimation, i.e., least squares.

Related (d = 1): broken random sample (DeGroot and Goel, 1980).
Estimate sign of correlation between xi and yi.

Have estimator for sign(β∗) that is correct w.p. 1− Õ(SNR−1/4).

Does high SNR also permit efficient algorithms?

(Recall: our approximate MLE algorithm has running time nO(d).)

19

High SNR regime

Previous works (Unnikrishnan, Haghighatshoar, & Vetterli, 2015;
Pananjady, Wainwright, & Courtade, 2016):

If SNR≫ poly(n), then can recover π∗ (and β∗, approximately)
using Maximum Likelihood Estimation, i.e., least squares.

Related (d = 1): broken random sample (DeGroot and Goel, 1980).
Estimate sign of correlation between xi and yi.

Have estimator for sign(β∗) that is correct w.p. 1− Õ(SNR−1/4).

Does high SNR also permit efficient algorithms?

(Recall: our approximate MLE algorithm has running time nO(d).)

19

High SNR regime

Previous works (Unnikrishnan, Haghighatshoar, & Vetterli, 2015;
Pananjady, Wainwright, & Courtade, 2016):

If SNR≫ poly(n), then can recover π∗ (and β∗, approximately)
using Maximum Likelihood Estimation, i.e., least squares.

Related (d = 1): broken random sample (DeGroot and Goel, 1980).
Estimate sign of correlation between xi and yi.

Have estimator for sign(β∗) that is correct w.p. 1− Õ(SNR−1/4).

Does high SNR also permit efficient algorithms?

(Recall: our approximate MLE algorithm has running time nO(d).)

19

High SNR regime

Previous works (Unnikrishnan, Haghighatshoar, & Vetterli, 2015;
Pananjady, Wainwright, & Courtade, 2016):

If SNR≫ poly(n), then can recover π∗ (and β∗, approximately)
using Maximum Likelihood Estimation, i.e., least squares.

Related (d = 1): broken random sample (DeGroot and Goel, 1980).
Estimate sign of correlation between xi and yi.

Have estimator for sign(β∗) that is correct w.p. 1− Õ(SNR−1/4).

Does high SNR also permit efficient algorithms?

(Recall: our approximate MLE algorithm has running time nO(d).)

19

Average-case recovery with very high SNR

Noise-free setting (SNR =∞)

= β∗

y0

y1

yn

...

x>π∗(0)

x>π∗(1)

x>π∗(n)

...

Assume (xi)n
i=0 iid from N(0, Id).

Also assume π∗(0) = 0.

If n + 1 ≥ d, then recovery of π∗ gives exact recovery of β∗ (a.s.).

We’ll assume n + 1 ≥ d + 1 (i.e., n ≥ d).

Claim: n ≥ d suffices to recover π∗ with high probability.

20

Noise-free setting (SNR =∞)

= β∗

y0

y1

yn

...

x>0
x>π∗(1)

x>π∗(n)

...

Assume (xi)n
i=0 iid from N(0, Id).

Also assume π∗(0) = 0.

If n + 1 ≥ d, then recovery of π∗ gives exact recovery of β∗ (a.s.).

We’ll assume n + 1 ≥ d + 1 (i.e., n ≥ d).

Claim: n ≥ d suffices to recover π∗ with high probability.

20

Noise-free setting (SNR =∞)

= β∗

y0

y1

yn

...

x>0
x>π∗(1)

x>π∗(n)

...

Assume (xi)n
i=0 iid from N(0, Id).

Also assume π∗(0) = 0.

If n + 1 ≥ d, then recovery of π∗ gives exact recovery of β∗ (a.s.).

We’ll assume n + 1 ≥ d + 1 (i.e., n ≥ d).

Claim: n ≥ d suffices to recover π∗ with high probability.

20

Noise-free setting (SNR =∞)

= β∗

y0

y1

yn

...

x>0
x>π∗(1)

x>π∗(n)

...

Assume (xi)n
i=0 iid from N(0, Id).

Also assume π∗(0) = 0.

If n + 1 ≥ d, then recovery of π∗ gives exact recovery of β∗ (a.s.).

We’ll assume n + 1 ≥ d + 1 (i.e., n ≥ d).

Claim: n ≥ d suffices to recover π∗ with high probability.

20

Noise-free setting (SNR =∞)

= β∗

y0

y1

yn

...

x>0
x>π∗(1)

x>π∗(n)

...

Assume (xi)n
i=0 iid from N(0, Id).

Also assume π∗(0) = 0.

If n + 1 ≥ d, then recovery of π∗ gives exact recovery of β∗ (a.s.).

We’ll assume n + 1 ≥ d + 1 (i.e., n ≥ d).

Claim: n ≥ d suffices to recover π∗ with high probability.

20

Result on exact recovery

Theorem (H., Shi, & Sun, 2017)
In the noise-free setting, there is a poly(n, d)-time⋆

algorithm that returns π∗ and β∗ with high probability.

⋆Assuming problem is appropriately discretized.

21

Main idea: hidden subset

Measurements:

y0 = x⊤
0β∗ ; yi = x⊤

π∗(i)β
∗ , i = 1, . . . , n .

For simplicity: assume n = d, and xi = ei for i = 1, . . . , d, so

Hy1, . . . , ydI = Hβ∗
1 , . . . , β∗

dI .

We also know:

y0 = x⊤
0β∗ =

d∑
j=1

x0,jβ∗
j .

22

Main idea: hidden subset

Measurements:

y0 = x⊤
0β∗ ; yi = x⊤

π∗(i)β
∗ , i = 1, . . . , n .

For simplicity: assume n = d, and xi = ei for i = 1, . . . , d, so

Hy1, . . . , ydI = Hβ∗
1 , . . . , β∗

dI .

We also know:

y0 = x⊤
0β∗ =

d∑
j=1

x0,jβ∗
j .

22

Main idea: hidden subset

Measurements:

y0 = x⊤
0β∗ ; yi = x⊤

π∗(i)β
∗ , i = 1, . . . , n .

For simplicity: assume n = d, and xi = ei for i = 1, . . . , d, so

Hy1, . . . , ydI = Hβ∗
1 , . . . , β∗

dI .

We also know:

y0 = x⊤
0β∗ =

d∑
j=1

x0,jβ∗
j .

22

Reduction to Subset Sum

y0 = x⊤
0β∗ =

d∑
j=1

x0,jβ∗
j

=
d∑

i=1

d∑
j=1

x0,jyi · 1{π∗(i) = j}

x0,1

x0,2

x0,n

...

y1

...

y2

yn

• d2 “source” numbers ci,j := x0,jyi, “target” sum y0.
The subset {ci,j : π∗(i) = j} adds up to y0.

Subset Sum problem.

23

Reduction to Subset Sum

y0 = x⊤
0β∗ =

d∑
j=1

x0,jβ∗
j

=
d∑

i=1

d∑
j=1

x0,jyi · 1{π∗(i) = j}

x0,1

x0,2

x0,n

...
...

??? y1

y2

yn

• d2 “source” numbers ci,j := x0,jyi, “target” sum y0.
The subset {ci,j : π∗(i) = j} adds up to y0.

Subset Sum problem.

23

Reduction to Subset Sum

y0 = x⊤
0β∗ =

d∑
j=1

x0,jβ∗
j

=
d∑

i=1

d∑
j=1

x0,jyi · 1{π∗(i) = j}

x0,1

x0,2

x0,n

...
...

??? y1

y2

yn

• d2 “source” numbers ci,j := x0,jyi, “target” sum y0.
The subset {ci,j : π∗(i) = j} adds up to y0.

Subset Sum problem.

23

Reduction to Subset Sum

y0 = x⊤
0β∗ =

d∑
j=1

x0,jβ∗
j

=
d∑

i=1

d∑
j=1

x0,jyi · 1{π∗(i) = j}

x0,1

x0,2

x0,n

...
...

??? y1

y2

yn

• d2 “source” numbers ci,j := x0,jyi, “target” sum y0.
The subset {ci,j : π∗(i) = j} adds up to y0.

Subset Sum problem.

23

NP-Completeness of Subset Sum (a.k.a. “Knapsack”)

(Karp, 1972)

24

Easiness of Subset Sum

• But Subset Sum is only “weakly” NP-hard
(efficient algorithm exists for unary-encoded inputs).

• Lagarias & Odlyzko (1983): solving certain random
instances can be reduced to solving Approximate Shortest
Vector Problem in lattices.

• Lenstra, Lenstra, & Lovász (1982): efficient algorithm to
solve Approximate SVP.

• Our algorithm is based on similar reduction but requires a
somewhat different analysis.

25

Easiness of Subset Sum

• But Subset Sum is only “weakly” NP-hard
(efficient algorithm exists for unary-encoded inputs).

• Lagarias & Odlyzko (1983): solving certain random
instances can be reduced to solving Approximate Shortest
Vector Problem in lattices.

• Lenstra, Lenstra, & Lovász (1982): efficient algorithm to
solve Approximate SVP.

• Our algorithm is based on similar reduction but requires a
somewhat different analysis.

25

Easiness of Subset Sum

• But Subset Sum is only “weakly” NP-hard
(efficient algorithm exists for unary-encoded inputs).

• Lagarias & Odlyzko (1983): solving certain random
instances can be reduced to solving Approximate Shortest
Vector Problem in lattices.

• Lenstra, Lenstra, & Lovász (1982): efficient algorithm to
solve Approximate SVP.

• Our algorithm is based on similar reduction but requires a
somewhat different analysis.

25

Easiness of Subset Sum

• But Subset Sum is only “weakly” NP-hard
(efficient algorithm exists for unary-encoded inputs).

• Lagarias & Odlyzko (1983): solving certain random
instances can be reduced to solving Approximate Shortest
Vector Problem in lattices.

• Lenstra, Lenstra, & Lovász (1982): efficient algorithm to
solve Approximate SVP.

• Our algorithm is based on similar reduction but requires a
somewhat different analysis.

25

Reducing subset sum to shortest vector problem

Lagarias & Odlyzko (1983): random instances of Subset Sum
efficiently solvable when N source numbers c1, . . . , cN chosen
independently and u.a.r. from sufficiently wide interval of Z.

Main idea: (w.h.p.) every incorrect subset will “miss” the target
sum T by noticeable amount.

Reduction: construct lattice basis in RN+1 such that

• correct subset of basis vectors gives short lattice vector v⋆;
• any other lattice vector ̸∝ v⋆ is more than 2N/2-times longer.

[
b0 b1 · · · bN

]
:=

 0 IN

MT −Mc1 · · · −McN

for sufficiently large M > 0.

26

Reducing subset sum to shortest vector problem

Lagarias & Odlyzko (1983): random instances of Subset Sum
efficiently solvable when N source numbers c1, . . . , cN chosen
independently and u.a.r. from sufficiently wide interval of Z.

Main idea: (w.h.p.) every incorrect subset will “miss” the target
sum T by noticeable amount.

Reduction: construct lattice basis in RN+1 such that

• correct subset of basis vectors gives short lattice vector v⋆;
• any other lattice vector ̸∝ v⋆ is more than 2N/2-times longer.

[
b0 b1 · · · bN

]
:=

 0 IN

MT −Mc1 · · · −McN

for sufficiently large M > 0.

26

Reducing subset sum to shortest vector problem

Lagarias & Odlyzko (1983): random instances of Subset Sum
efficiently solvable when N source numbers c1, . . . , cN chosen
independently and u.a.r. from sufficiently wide interval of Z.

Main idea: (w.h.p.) every incorrect subset will “miss” the target
sum T by noticeable amount.

Reduction: construct lattice basis in RN+1 such that

• correct subset of basis vectors gives short lattice vector v⋆;
• any other lattice vector ̸∝ v⋆ is more than 2N/2-times longer.

[
b0 b1 · · · bN

]
:=

 0 IN

MT −Mc1 · · · −McN

for sufficiently large M > 0.

26

Our random subset sum instance

Catch: Our source numbers ci,j = yix
⊤
j x0 are not independent,

and not uniformly distributed on some wide interval of Z.

• Instead, have some joint density derived from N(0, 1).

• To show that Lagarias & Odlyzko reduction still works, use
Gaussian anti-concentration for quadratic and quartic forms.

Key lemma: (w.h.p.) for every Z ∈ Zd×d that is not an
integer multiple of permutation matrix corresponding to π∗,∣∣∣∣∣∣y0 −

∑
i,j

Zi,j · ci,j

∣∣∣∣∣∣ ≥ 1
2poly(d) · ∥β

∗∥2 .

27

Our random subset sum instance

Catch: Our source numbers ci,j = yix
⊤
j x0 are not independent,

and not uniformly distributed on some wide interval of Z.

• Instead, have some joint density derived from N(0, 1).

• To show that Lagarias & Odlyzko reduction still works, use
Gaussian anti-concentration for quadratic and quartic forms.

Key lemma: (w.h.p.) for every Z ∈ Zd×d that is not an
integer multiple of permutation matrix corresponding to π∗,∣∣∣∣∣∣y0 −

∑
i,j

Zi,j · ci,j

∣∣∣∣∣∣ ≥ 1
2poly(d) · ∥β

∗∥2 .

27

Our random subset sum instance

Catch: Our source numbers ci,j = yix
⊤
j x0 are not independent,

and not uniformly distributed on some wide interval of Z.

• Instead, have some joint density derived from N(0, 1).

• To show that Lagarias & Odlyzko reduction still works, use
Gaussian anti-concentration for quadratic and quartic forms.

Key lemma: (w.h.p.) for every Z ∈ Zd×d that is not an
integer multiple of permutation matrix corresponding to π∗,∣∣∣∣∣∣y0 −

∑
i,j

Zi,j · ci,j

∣∣∣∣∣∣ ≥ 1
2poly(d) · ∥β

∗∥2 .

27

Our random subset sum instance

Catch: Our source numbers ci,j = yix
⊤
j x0 are not independent,

and not uniformly distributed on some wide interval of Z.

• Instead, have some joint density derived from N(0, 1).

• To show that Lagarias & Odlyzko reduction still works, use
Gaussian anti-concentration for quadratic and quartic forms.

Key lemma: (w.h.p.) for every Z ∈ Zd×d that is not an
integer multiple of permutation matrix corresponding to π∗,∣∣∣∣∣∣y0 −

∑
i,j

Zi,j · ci,j

∣∣∣∣∣∣ ≥ 1
2poly(d) · ∥β

∗∥2 .

27

Some remarks

• In general, x1, . . . , xn are not e1, . . . , ed, but similar reduction
works via Moore-Penrose pseudoinverse.

• Algorithm strongly exploits assumption of noise-free
measurements. Unlikely to tolerate much noise.

Open problem:
robust efficient algorithm in high SNR setting.

28

Some remarks

• In general, x1, . . . , xn are not e1, . . . , ed, but similar reduction
works via Moore-Penrose pseudoinverse.

• Algorithm strongly exploits assumption of noise-free
measurements. Unlikely to tolerate much noise.

Open problem:
robust efficient algorithm in high SNR setting.

28

Correspondence retrieval

Correspondence retrieval problem

Goal: recover k unknown “signals” β∗
1 , . . . , β∗

k ∈ Rd.

Measurements: (xi,Yi) for i = 1, . . . , n, where

• (xi) iid from N(0, Id);
• Yi = Hx⊤

i β∗
1 + εi,1, . . . , x⊤

i β∗
k + εi,kI as unordered multi-set;

• (εi,j) iid from N(0, σ2).

Correspondence across measurements is lost.

29

Correspondence retrieval problem

Goal: recover k unknown “signals” β∗
1 , . . . , β∗

k ∈ Rd.

Measurements: (xi,Yi) for i = 1, . . . , n, where

• (xi) iid from N(0, Id);
• Yi = Hx⊤

i β∗
1 + εi,1, . . . , x⊤

i β∗
k + εi,kI as unordered multi-set;

• (εi,j) iid from N(0, σ2).

Correspondence across measurements is lost.

29

Correspondence retrieval problem

Goal: recover k unknown “signals” β∗
1 , . . . , β∗

k ∈ Rd.

Measurements: (xi,Yi) for i = 1, . . . , n, where

• (xi) iid from N(0, Id);
• Yi = Hx⊤

i β∗
1 + εi,1, . . . , x⊤

i β∗
k + εi,kI as unordered multi-set;

• (εi,j) iid from N(0, σ2).

Correspondence across measurements is lost.

xi

β∗
3

β∗
2

β∗
1

29

Correspondence retrieval problem

Goal: recover k unknown “signals” β∗
1 , . . . , β∗

k ∈ Rd.

Measurements: (xi,Yi) for i = 1, . . . , n, where

• (xi) iid from N(0, Id);
• Yi = Hx⊤

i β∗
1 + εi,1, . . . , x⊤

i β∗
k + εi,kI as unordered multi-set;

• (εi,j) iid from N(0, σ2).

Correspondence across measurements is lost.

xi

β∗
3

β∗
2

β∗
1

29

Special cases

• k = 1: classical linear regression regression model.

• k = 2 and β∗
1 = −β∗

2 : (real variant of) phase retrieval.

Note that Hx⊤
i β∗,−x⊤

i β∗I has same information as |x⊤
i β∗|.

Existing methods require n > 2d.

30

Special cases

• k = 1: classical linear regression regression model.
• k = 2 and β∗

1 = −β∗
2 : (real variant of) phase retrieval.

Note that Hx⊤
i β∗,−x⊤

i β∗I has same information as |x⊤
i β∗|.

Existing methods require n > 2d.

30

Algorithmic results (Andoni, H., Shi, & Sun, 2017)

• Noise-free setting (i.e., σ = 0):
Algorithm based on reduction to Subset Sum that requires
n ≥ d + 1, which is optimal.

• General setting:
Method-of-moments algorithm that requires n ≥ d · poly(k).

I.e., based on forming averages over the data, like:

1
n

n∑
i=1

 ∑
yj∈Yi

y2j

xix
⊤
i .

Questions: SNR limits? Sub-optimality of “method-of-moments”?

31

Algorithmic results (Andoni, H., Shi, & Sun, 2017)

• Noise-free setting (i.e., σ = 0):
Algorithm based on reduction to Subset Sum that requires
n ≥ d + 1, which is optimal.

• General setting:
Method-of-moments algorithm that requires n ≥ d · poly(k).

I.e., based on forming averages over the data, like:

1
n

n∑
i=1

 ∑
yj∈Yi

y2j

xix
⊤
i .

Questions: SNR limits? Sub-optimality of “method-of-moments”?

31

Algorithmic results (Andoni, H., Shi, & Sun, 2017)

• Noise-free setting (i.e., σ = 0):
Algorithm based on reduction to Subset Sum that requires
n ≥ d + 1, which is optimal.

• General setting:
Method-of-moments algorithm that requires n ≥ d · poly(k).
I.e., based on forming averages over the data, like:

1
n

n∑
i=1

 ∑
yj∈Yi

y2j

xix
⊤
i .

Questions: SNR limits? Sub-optimality of “method-of-moments”?

31

Algorithmic results (Andoni, H., Shi, & Sun, 2017)

• Noise-free setting (i.e., σ = 0):
Algorithm based on reduction to Subset Sum that requires
n ≥ d + 1, which is optimal.

• General setting:
Method-of-moments algorithm that requires n ≥ d · poly(k).
I.e., based on forming averages over the data, like:

1
n

n∑
i=1

 ∑
yj∈Yi

y2j

xix
⊤
i .

Questions: SNR limits? Sub-optimality of “method-of-moments”?

31

Closing remarks and open problems

Closing remarks and open problems

Learning without correspondence is challenging for computation
and statistics.

• Computational and information-theoretic hardness show
striking contrast to “known correspondence” settings.

• New (and unexpected?) algorithmic techniques in
worst-case and average-case settings.

• Open problems:
Close gap between SNR lower and upper bounds?
Lower bounds for correspondence retrieval?
Faster/more robust algorithms?
(Smoothed) analysis of alternating minimization?

32

Closing remarks and open problems

Learning without correspondence is challenging for computation
and statistics.

• Computational and information-theoretic hardness show
striking contrast to “known correspondence” settings.

• New (and unexpected?) algorithmic techniques in
worst-case and average-case settings.

• Open problems:
Close gap between SNR lower and upper bounds?
Lower bounds for correspondence retrieval?
Faster/more robust algorithms?
(Smoothed) analysis of alternating minimization?

32

Closing remarks and open problems

Learning without correspondence is challenging for computation
and statistics.

• Computational and information-theoretic hardness show
striking contrast to “known correspondence” settings.

• New (and unexpected?) algorithmic techniques in
worst-case and average-case settings.

• Open problems:
Close gap between SNR lower and upper bounds?
Lower bounds for correspondence retrieval?
Faster/more robust algorithms?
(Smoothed) analysis of alternating minimization?

32

Closing remarks and open problems

Learning without correspondence is challenging for computation
and statistics.

• Computational and information-theoretic hardness show
striking contrast to “known correspondence” settings.

• New (and unexpected?) algorithmic techniques in
worst-case and average-case settings.

• Open problems:
Close gap between SNR lower and upper bounds?
Lower bounds for correspondence retrieval?
Faster/more robust algorithms?
(Smoothed) analysis of alternating minimization?

32

Acknowledgements

Collaborators: Alexandr Andoni (Columbia), Kevin Shi (Columbia),
Xiaorui Sun (Microsoft Research).

Funding: NSF (DMR-1534910, IIS-1563785), Sloan Research Fellowship,
Bloomberg Data Science Research Grant.

Hospitality: Simons Institute for the Theory of Computing (UCB).

Thank you

33

34

Beating brute-force search: “realizable” case

“Realizable” case: Suppose there exist β⋆ ∈ Rd and π⋆ ∈ Sn s.t.

yπ⋆(i) = x⊤
i β⋆ , i ∈ [n] .

Solution is determined by action of π⋆ on d points
(assume dim(span(xi)d

i=1) = d).

Algorithm:

• Find subset of d linearly independent points xi1 , xi2 , . . . , xid
.

• “Guess” values of π⋆(ij) ∈ [d], j ∈ [d].
• Solve linear system yπ⋆(ij) = x⊤

ij
β, j ∈ [d], for β ∈ Rd.

• To check correctness of β̂: compute ŷi := x⊤
i β̂, i ∈ [n], and

check if minπ∈Sn

∑n
i=1 (yπ(i) − ŷi)2 = 0.

“Guess” means “enumerate over
(n

d

)
choices”; rest is poly(n, d).

35

Beating brute-force search: “realizable” case

“Realizable” case: Suppose there exist β⋆ ∈ Rd and π⋆ ∈ Sn s.t.

yπ⋆(i) = x⊤
i β⋆ , i ∈ [n] .

Solution is determined by action of π⋆ on d points
(assume dim(span(xi)d

i=1) = d).

Algorithm:

• Find subset of d linearly independent points xi1 , xi2 , . . . , xid
.

• “Guess” values of π⋆(ij) ∈ [d], j ∈ [d].
• Solve linear system yπ⋆(ij) = x⊤

ij
β, j ∈ [d], for β ∈ Rd.

• To check correctness of β̂: compute ŷi := x⊤
i β̂, i ∈ [n], and

check if minπ∈Sn

∑n
i=1 (yπ(i) − ŷi)2 = 0.

“Guess” means “enumerate over
(n

d

)
choices”; rest is poly(n, d).

35

Beating brute-force search: “realizable” case

“Realizable” case: Suppose there exist β⋆ ∈ Rd and π⋆ ∈ Sn s.t.

yπ⋆(i) = x⊤
i β⋆ , i ∈ [n] .

Solution is determined by action of π⋆ on d points
(assume dim(span(xi)d

i=1) = d).

Algorithm:

• Find subset of d linearly independent points xi1 , xi2 , . . . , xid
.

• “Guess” values of π⋆(ij) ∈ [d], j ∈ [d].
• Solve linear system yπ⋆(ij) = x⊤

ij
β, j ∈ [d], for β ∈ Rd.

• To check correctness of β̂: compute ŷi := x⊤
i β̂, i ∈ [n], and

check if minπ∈Sn

∑n
i=1 (yπ(i) − ŷi)2 = 0.

“Guess” means “enumerate over
(n

d

)
choices”; rest is poly(n, d).

35

Beating brute-force search: “realizable” case

“Realizable” case: Suppose there exist β⋆ ∈ Rd and π⋆ ∈ Sn s.t.

yπ⋆(i) = x⊤
i β⋆ , i ∈ [n] .

Solution is determined by action of π⋆ on d points
(assume dim(span(xi)d

i=1) = d).

Algorithm:

• Find subset of d linearly independent points xi1 , xi2 , . . . , xid
.

• “Guess” values of π⋆(ij) ∈ [d], j ∈ [d].
• Solve linear system yπ⋆(ij) = x⊤

ij
β, j ∈ [d], for β ∈ Rd.

• To check correctness of β̂: compute ŷi := x⊤
i β̂, i ∈ [n], and

check if minπ∈Sn

∑n
i=1 (yπ(i) − ŷi)2 = 0.

“Guess” means “enumerate over
(n

d

)
choices”; rest is poly(n, d).

35

Beating brute-force search: general case

General case: solution may not be determined by only d points.

But, for any RHS b ∈ Rn, there exist xi1 , xi2 , . . . , xid
s.t. every

β̂ ∈ arg minβ∈Rd

∑d
j=1 (x⊤

ij
β − bij)2 satisfies

n∑
i=1

(x⊤
i β̂ − bi)

2 ≤ (d + 1) · min
β∈Rd

n∑
i=1

(x⊤
i β − bi)2 .

=⇒ nO(d)-time algorithm with approximation ratio d + 1,

or nÕ(d/ϵ)-time algorithm with approximation ratio 1+ ϵ.

Better way to get 1+ ϵ: exploit first-order optimality conditions
(i.e., “normal equations”) and ϵ-nets.

Overall time: (n/ϵ)O(k) + poly(n, d) for k = dim(span(xi)n
i=1).

36

Beating brute-force search: general case

General case: solution may not be determined by only d points.

But, for any RHS b ∈ Rn, there exist xi1 , xi2 , . . . , xid
s.t. every

β̂ ∈ arg minβ∈Rd

∑d
j=1 (x⊤

ij
β − bij)2 satisfies

n∑
i=1

(x⊤
i β̂ − bi)

2 ≤ (d + 1) · min
β∈Rd

n∑
i=1

(x⊤
i β − bi)2 .

=⇒ nO(d)-time algorithm with approximation ratio d + 1,

or nÕ(d/ϵ)-time algorithm with approximation ratio 1+ ϵ.

Better way to get 1+ ϵ: exploit first-order optimality conditions
(i.e., “normal equations”) and ϵ-nets.

Overall time: (n/ϵ)O(k) + poly(n, d) for k = dim(span(xi)n
i=1).

36

Beating brute-force search: general case

General case: solution may not be determined by only d points.

But, for any RHS b ∈ Rn, there exist xi1 , xi2 , . . . , xid
s.t. every

β̂ ∈ arg minβ∈Rd

∑d
j=1 (x⊤

ij
β − bij)2 satisfies

n∑
i=1

(x⊤
i β̂ − bi)

2 ≤ (d + 1) · min
β∈Rd

n∑
i=1

(x⊤
i β − bi)2 .

=⇒ nO(d)-time algorithm with approximation ratio d + 1,

or nÕ(d/ϵ)-time algorithm with approximation ratio 1+ ϵ.

Better way to get 1+ ϵ: exploit first-order optimality conditions
(i.e., “normal equations”) and ϵ-nets.

Overall time: (n/ϵ)O(k) + poly(n, d) for k = dim(span(xi)n
i=1).

36

Beating brute-force search: general case

General case: solution may not be determined by only d points.

But, for any RHS b ∈ Rn, there exist xi1 , xi2 , . . . , xid
s.t. every

β̂ ∈ arg minβ∈Rd

∑d
j=1 (x⊤

ij
β − bij)2 satisfies

n∑
i=1

(x⊤
i β̂ − bi)

2 ≤ (d + 1) · min
β∈Rd

n∑
i=1

(x⊤
i β − bi)2 .

=⇒ nO(d)-time algorithm with approximation ratio d + 1,

or nÕ(d/ϵ)-time algorithm with approximation ratio 1+ ϵ.

Better way to get 1+ ϵ: exploit first-order optimality conditions
(i.e., “normal equations”) and ϵ-nets.

Overall time: (n/ϵ)O(k) + poly(n, d) for k = dim(span(xi)n
i=1). 36

Lower bound proof sketch

We show that no estimator can confidently distinguish between
β∗ = e1 and β∗ = −e1, where e1 = (1, 0, . . . , 0)⊤.

Let Pβ∗ be the data distribution with parameter β∗ ∈ {e1,−e1}.

Task: show Pe1 and P−e1 are “close”, then appeal to Le Cam’s
standard “two-point argument”:

max
β∗∈{e1,−e1}

EPβ∗ ∥β̂ − β∗∥2 ≥ 1− ∥Pe1 − P−e1∥tv .

Key idea: conditional means of HyiIn
i=1 given (xi)n

i=1, under Pe1

and P−e1 , are close as unordered multi-sets.

37

Lower bound proof sketch

We show that no estimator can confidently distinguish between
β∗ = e1 and β∗ = −e1, where e1 = (1, 0, . . . , 0)⊤.

Let Pβ∗ be the data distribution with parameter β∗ ∈ {e1,−e1}.

Task: show Pe1 and P−e1 are “close”, then appeal to Le Cam’s
standard “two-point argument”:

max
β∗∈{e1,−e1}

EPβ∗ ∥β̂ − β∗∥2 ≥ 1− ∥Pe1 − P−e1∥tv .

Key idea: conditional means of HyiIn
i=1 given (xi)n

i=1, under Pe1

and P−e1 , are close as unordered multi-sets.

37

Lower bound proof sketch

We show that no estimator can confidently distinguish between
β∗ = e1 and β∗ = −e1, where e1 = (1, 0, . . . , 0)⊤.

Let Pβ∗ be the data distribution with parameter β∗ ∈ {e1,−e1}.

Task: show Pe1 and P−e1 are “close”, then appeal to Le Cam’s
standard “two-point argument”:

max
β∗∈{e1,−e1}

EPβ∗ ∥β̂ − β∗∥2 ≥ 1− ∥Pe1 − P−e1∥tv .

Key idea: conditional means of HyiIn
i=1 given (xi)n

i=1, under Pe1

and P−e1 , are close as unordered multi-sets.

37

Proof sketch (continued)

Generative process for Pβ∗ :

1. Draw (xi)n
i=1

iid∼ Uniform([−1, 1]d), (εi)n
i=1

iid∼ N(0, σ2).
2. Set ui := x⊤

i β∗ for i ∈ [n].
3. Set yi := u(i) + εi for i ∈ [n], where u(1) ≤ u(2) ≤ · · · ≤ u(n).

Conditional distribution of y = (y1, y2, . . . , yn) given (xi)n
i=1:

Under Pe1 : y | (xi)n
i=1 ∼ N(u↑, σ2In)

Under P−e1 : y | (xi)n
i=1 ∼ N(−u↓, σ2In)

where u↑ = (u(1), u(2), . . . , u(n)) and u↓ = (u(n), u(n−1), . . . , u(1)).

Data processing: Lose information by going from y to HyiIn
i=1.

38

Proof sketch (continued)

Generative process for Pβ∗ :

1. Draw (xi)n
i=1

iid∼ Uniform([−1, 1]d), (εi)n
i=1

iid∼ N(0, σ2).

2. Set ui := x⊤
i β∗ for i ∈ [n].

3. Set yi := u(i) + εi for i ∈ [n], where u(1) ≤ u(2) ≤ · · · ≤ u(n).

Conditional distribution of y = (y1, y2, . . . , yn) given (xi)n
i=1:

Under Pe1 : y | (xi)n
i=1 ∼ N(u↑, σ2In)

Under P−e1 : y | (xi)n
i=1 ∼ N(−u↓, σ2In)

where u↑ = (u(1), u(2), . . . , u(n)) and u↓ = (u(n), u(n−1), . . . , u(1)).

Data processing: Lose information by going from y to HyiIn
i=1.

38

Proof sketch (continued)

Generative process for Pβ∗ :

1. Draw (xi)n
i=1

iid∼ Uniform([−1, 1]d), (εi)n
i=1

iid∼ N(0, σ2).
2. Set ui := x⊤

i β∗ for i ∈ [n].

3. Set yi := u(i) + εi for i ∈ [n], where u(1) ≤ u(2) ≤ · · · ≤ u(n).

Conditional distribution of y = (y1, y2, . . . , yn) given (xi)n
i=1:

Under Pe1 : y | (xi)n
i=1 ∼ N(u↑, σ2In)

Under P−e1 : y | (xi)n
i=1 ∼ N(−u↓, σ2In)

where u↑ = (u(1), u(2), . . . , u(n)) and u↓ = (u(n), u(n−1), . . . , u(1)).

Data processing: Lose information by going from y to HyiIn
i=1.

38

Proof sketch (continued)

Generative process for Pβ∗ :

1. Draw (xi)n
i=1

iid∼ Uniform([−1, 1]d), (εi)n
i=1

iid∼ N(0, σ2).
2. Set ui := x⊤

i β∗ for i ∈ [n].
3. Set yi := u(i) + εi for i ∈ [n], where u(1) ≤ u(2) ≤ · · · ≤ u(n).

Conditional distribution of y = (y1, y2, . . . , yn) given (xi)n
i=1:

Under Pe1 : y | (xi)n
i=1 ∼ N(u↑, σ2In)

Under P−e1 : y | (xi)n
i=1 ∼ N(−u↓, σ2In)

where u↑ = (u(1), u(2), . . . , u(n)) and u↓ = (u(n), u(n−1), . . . , u(1)).

Data processing: Lose information by going from y to HyiIn
i=1.

38

Proof sketch (continued)

Generative process for Pβ∗ :

1. Draw (xi)n
i=1

iid∼ Uniform([−1, 1]d), (εi)n
i=1

iid∼ N(0, σ2).
2. Set ui := x⊤

i β∗ for i ∈ [n].
3. Set yi := u(i) + εi for i ∈ [n], where u(1) ≤ u(2) ≤ · · · ≤ u(n).

Conditional distribution of y = (y1, y2, . . . , yn) given (xi)n
i=1:

Under Pe1 : y | (xi)n
i=1 ∼ N(u↑, σ2In)

Under P−e1 : y | (xi)n
i=1 ∼ N(−u↓, σ2In)

where u↑ = (u(1), u(2), . . . , u(n)) and u↓ = (u(n), u(n−1), . . . , u(1)).

Data processing: Lose information by going from y to HyiIn
i=1.

38

Proof sketch (continued)

Generative process for Pβ∗ :

1. Draw (xi)n
i=1

iid∼ Uniform([−1, 1]d), (εi)n
i=1

iid∼ N(0, σ2).
2. Set ui := x⊤

i β∗ for i ∈ [n].
3. Set yi := u(i) + εi for i ∈ [n], where u(1) ≤ u(2) ≤ · · · ≤ u(n).

Conditional distribution of y = (y1, y2, . . . , yn) given (xi)n
i=1:

Under Pe1 : y | (xi)n
i=1 ∼ N(u↑, σ2In)

Under P−e1 : y | (xi)n
i=1 ∼ N(−u↓, σ2In)

where u↑ = (u(1), u(2), . . . , u(n)) and u↓ = (u(n), u(n−1), . . . , u(1)).

Data processing: Lose information by going from y to HyiIn
i=1.

38

Proof sketch (continued)

By data processing inequality,

KL
(

Pe1(· | (xi)n
i=1), P−e1(· | (xi)n

i=1)
)

≤ KL
(

N(u↑, σ2In), N(−u↓, σ2In)
)

= ∥u↑ − (−u↓)∥22
2σ2 = SNR

2 · ∥u↑ + u↓∥22 .

Some computations show that

med ∥u↑ + u↓∥22 ≤ 4 .

By conditioning + Pinsker’s inequality,

∥Pe1 − P−e1∥tv ≤ 1
2 + 1

2 med

√
SNR
4 · ∥u↑ + u↓∥22 ≤

1
2 + 1

2
√

SNR .

39

Proof sketch (continued)

By data processing inequality,

KL
(

Pe1(· | (xi)n
i=1), P−e1(· | (xi)n

i=1)
)

≤ KL
(

N(u↑, σ2In), N(−u↓, σ2In)
)

= ∥u↑ − (−u↓)∥22
2σ2

= SNR
2 · ∥u↑ + u↓∥22 .

Some computations show that

med ∥u↑ + u↓∥22 ≤ 4 .

By conditioning + Pinsker’s inequality,

∥Pe1 − P−e1∥tv ≤ 1
2 + 1

2 med

√
SNR
4 · ∥u↑ + u↓∥22 ≤

1
2 + 1

2
√

SNR .

39

Proof sketch (continued)

By data processing inequality,

KL
(

Pe1(· | (xi)n
i=1), P−e1(· | (xi)n

i=1)
)

≤ KL
(

N(u↑, σ2In), N(−u↓, σ2In)
)

= ∥u↑ − (−u↓)∥22
2σ2 = SNR

2 · ∥u↑ + u↓∥22 .

Some computations show that

med ∥u↑ + u↓∥22 ≤ 4 .

By conditioning + Pinsker’s inequality,

∥Pe1 − P−e1∥tv ≤ 1
2 + 1

2 med

√
SNR
4 · ∥u↑ + u↓∥22 ≤

1
2 + 1

2
√

SNR .

39

Proof sketch (continued)

By data processing inequality,

KL
(

Pe1(· | (xi)n
i=1), P−e1(· | (xi)n

i=1)
)

≤ KL
(

N(u↑, σ2In), N(−u↓, σ2In)
)

= ∥u↑ − (−u↓)∥22
2σ2 = SNR

2 · ∥u↑ + u↓∥22 .

Some computations show that

med ∥u↑ + u↓∥22 ≤ 4 .

By conditioning + Pinsker’s inequality,

∥Pe1 − P−e1∥tv ≤ 1
2 + 1

2 med

√
SNR
4 · ∥u↑ + u↓∥22 ≤

1
2 + 1

2
√

SNR .

39

Proof sketch (continued)

By data processing inequality,

KL
(

Pe1(· | (xi)n
i=1), P−e1(· | (xi)n

i=1)
)

≤ KL
(

N(u↑, σ2In), N(−u↓, σ2In)
)

= ∥u↑ − (−u↓)∥22
2σ2 = SNR

2 · ∥u↑ + u↓∥22 .

Some computations show that

med ∥u↑ + u↓∥22 ≤ 4 .

By conditioning + Pinsker’s inequality,

∥Pe1 − P−e1∥tv ≤ 1
2 + 1

2 med

√
SNR
4 · ∥u↑ + u↓∥22 ≤

1
2 + 1

2
√

SNR .

39

Result on exact recovery

Theorem (H., Shi, & Sun, 2017)
Fix any β∗ ∈ Rd and π∗ ∈ Sn, and assume n ≥ d. Suppose
(xi)n

i=0 are drawn iid from N(0, Id), and (yi)n
i=0 satisfy

y0 = x⊤
0β∗ ; yi = x⊤

π∗(i)β
∗ , i = 1, . . . , n .

There is a poly(n, d)-time‡ algorithm that, given inputs
(xi)n

i=0 and (yi)n
i=0, returns π∗ and β∗ with high probability.

‡Assuming problem is appropriately discretized.

40

Reducing subset sum to shortest vector problem

Lagarias & Odlyzko (1983): random instances of Subset Sum
efficiently solvable when N source numbers chosen independently
and u.a.r. from sufficiently wide interval of Z.

Main idea: (w.h.p.) every incorrect subset will “miss” the target
sum T by noticeable amount.

Reduction: construct lattice basis in RN+1 such that

• correct subset of basis vectors gives short lattice vector v⋆;
• any other lattice vector ̸∝ v⋆ is more than 2N/2-times longer.

[
b0 b1 · · · bN

]
:=

 0 IN

MT −Mc1 · · · −McN

for sufficiently large M > 0.

41

Reducing subset sum to shortest vector problem

Lagarias & Odlyzko (1983): random instances of Subset Sum
efficiently solvable when N source numbers chosen independently
and u.a.r. from sufficiently wide interval of Z.

Main idea: (w.h.p.) every incorrect subset will “miss” the target
sum T by noticeable amount.

Reduction: construct lattice basis in RN+1 such that

• correct subset of basis vectors gives short lattice vector v⋆;
• any other lattice vector ̸∝ v⋆ is more than 2N/2-times longer.

[
b0 b1 · · · bN

]
:=

 0 IN

MT −Mc1 · · · −McN

for sufficiently large M > 0.

41

Reducing subset sum to shortest vector problem

Lagarias & Odlyzko (1983): random instances of Subset Sum
efficiently solvable when N source numbers chosen independently
and u.a.r. from sufficiently wide interval of Z.

Main idea: (w.h.p.) every incorrect subset will “miss” the target
sum T by noticeable amount.

Reduction: construct lattice basis in RN+1 such that

• correct subset of basis vectors gives short lattice vector v⋆;
• any other lattice vector ̸∝ v⋆ is more than 2N/2-times longer.

[
b0 b1 · · · bN

]
:=

 0 IN

MT −Mc1 · · · −McN

for sufficiently large M > 0.

41

Our random subset sum instance

Catch: Our source numbers ci,j = yix
⊤
j x0 are not independent,

and not uniformly distributed on some wide interval of Z.

• Instead, have some joint density derived from N(0, 1).

• To show that Lagarias & Odlyzko reduction still works, need
Gaussian anti-concentration for quadratic and quartic forms.

Key lemma: (w.h.p.) for every Z ∈ Zd×d that is not an
integer multiple of permutation matrix corresponding to π∗,∣∣∣∣∣∣y0 −

∑
i,j

Zi,j · ci,j

∣∣∣∣∣∣ ≥ 1
2poly(d) · ∥β

∗∥2 .

42

Our random subset sum instance

Catch: Our source numbers ci,j = yix
⊤
j x0 are not independent,

and not uniformly distributed on some wide interval of Z.

• Instead, have some joint density derived from N(0, 1).

• To show that Lagarias & Odlyzko reduction still works, need
Gaussian anti-concentration for quadratic and quartic forms.

Key lemma: (w.h.p.) for every Z ∈ Zd×d that is not an
integer multiple of permutation matrix corresponding to π∗,∣∣∣∣∣∣y0 −

∑
i,j

Zi,j · ci,j

∣∣∣∣∣∣ ≥ 1
2poly(d) · ∥β

∗∥2 .

42

Our random subset sum instance

Catch: Our source numbers ci,j = yix
⊤
j x0 are not independent,

and not uniformly distributed on some wide interval of Z.

• Instead, have some joint density derived from N(0, 1).

• To show that Lagarias & Odlyzko reduction still works, need
Gaussian anti-concentration for quadratic and quartic forms.

Key lemma: (w.h.p.) for every Z ∈ Zd×d that is not an
integer multiple of permutation matrix corresponding to π∗,∣∣∣∣∣∣y0 −

∑
i,j

Zi,j · ci,j

∣∣∣∣∣∣ ≥ 1
2poly(d) · ∥β

∗∥2 .

42

Our random subset sum instance

Catch: Our source numbers ci,j = yix
⊤
j x0 are not independent,

and not uniformly distributed on some wide interval of Z.

• Instead, have some joint density derived from N(0, 1).

• To show that Lagarias & Odlyzko reduction still works, need
Gaussian anti-concentration for quadratic and quartic forms.

Key lemma: (w.h.p.) for every Z ∈ Zd×d that is not an
integer multiple of permutation matrix corresponding to π∗,∣∣∣∣∣∣y0 −

∑
i,j

Zi,j · ci,j

∣∣∣∣∣∣ ≥ 1
2poly(d) · ∥β

∗∥2 .

42

	Introduction
	Examples
	Our contributions

	Linear regression without correspondence
	Linear model
	Questions

	Least squares approximation
	Least squares problem
	Motivating algorithms
	Approximation result

	Statistical recovery of bold0mu mumu *: algorithms and lower-bounds
	Statistical model
	High-level intuition
	Lower bound on SNR
	High SNR regime

	Average-case recovery with very high SNR
	Noise-free setting
	Hidden subset

	Correspondence retrieval
	Closing remarks and open problems
	Beating brute-force search
	Lower bound proof sketch
	Lagarias & Odlyzko

