Learning without correspondence

Daniel Hsu

Computer Science Department & Data Science Institute Columbia University

Introduction

Example #1: unlinked data sources

• Two separate data sources about same entities:

Sex	Age	Height	Disease
Μ	20	180	1
F	24	162.5	0
F	22	160	0
F	23	167.5	1

- First source contains covariates (sex, age, height, ...).
- Second source contains response variable (disease status).

Example #1: unlinked data sources

Two separate data sources about same entities:

Sex	Age	Height		Disease
Μ	20	180	???	1
F	24	162.5	\sim	0
F	22	160	\sim	0
F	23	167.5		1

- First source contains covariates (sex, age, height, ...).
- Second source contains response variable (disease status).

To learn: relationship between response and covariates.

Record linkage unknown.

- 1. Suspended cells in fluid.
- 2. Cells pass through laser, one at a time; measure emitted light.

- 1. Suspended cells in fluid.
- 2. Cells pass through laser, one at a time; measure emitted light.

To learn: relationship between measurements and cell properties.

Order in which cells pass through laser is unknown.

Example #3: unassigned distance geometry

1. Unknown arrangement of n points in Euclidean space.

(Image credit: Billinge, Duxbury, Gonçalves, Lavor, & Mucherino, 2016)

2. Measure distribution of *pairwise distances* among the *n* points (using high-energy X-rays).

Example #3: unassigned distance geometry

1. Unknown arrangement of n points in Euclidean space.

(Image credit: Billinge, Duxbury, Gonçalves, Lavor, & Mucherino, 2016)

2. Measure distribution of *pairwise distances* among the *n* points (using high-energy X-rays).

To learn: original arrangement of the n points.

Assignment of distances to pairs of points is unknown.

Observation:

Correspondence information is missing in many natural settings.

Observation:

Correspondence information is missing in many natural settings.

Question:

How does this affect machine learning / statistical estimation?

Observation:

Correspondence information is missing in many natural settings.

Question:

How does this affect machine learning / statistical estimation?

We give a theoretical treatment in context of two simple problems:

1. Linear regression without correspondence

(Joint work with Kevin Shi and Xiaorui Sun; NIPS 2017.)

2. **Correspondence retrieval** (generalization of *phase retrieval*) (Joint work with Alexandr Andoni, Kevin Shi, and Xiaorui Sun; COLT 2017.)

- Strong NP-hardness of least squares problem.
- Polynomial-time approximation scheme in constant dimensions.
- Information-theoretic signal-to-noise lower bounds.
- Polynomial-time algorithm in noise-free average case setting.

2. Correspondence retrieval

- Measurement-optimal recovery algorithm in noise-free setting.
- Robust recovery algorithm in noisy setting.

Model for linear regression without correspondence

Unnikrishnan, Haghighatshoar, & Vetterli, 2015; Pananjady, Wainwright, & Courtade 2016; Elhami, Scholefield, Haro, & Vetterli, 2017; Abid, Poon, & Zou, 2017; ...

- Feature vectors: $oldsymbol{x}_1, oldsymbol{x}_2, \dots, oldsymbol{x}_n \in \mathbb{R}^d$
- Labels: $y_1, y_2, \ldots, y_n \in \mathbb{R}$
- Model:

$$y_i = \boldsymbol{x}_{\pi^*(i)}^\top \boldsymbol{\beta}^* + \varepsilon_i, \quad i = 1, \dots, n.$$

- Linear function: $\boldsymbol{\beta}^* \in \mathbb{R}^d$
- Permutation: $\pi^* \in S_n$
- Errors: $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \in \mathbb{R}$.

Model for linear regression without correspondence

Unnikrishnan, Haghighatshoar, & Vetterli, 2015; Pananjady, Wainwright, & Courtade 2016; Elhami, Scholefield, Haro, & Vetterli, 2017; Abid, Poon, & Zou, 2017; ...

- Feature vectors: $oldsymbol{x}_1, oldsymbol{x}_2, \dots, oldsymbol{x}_n \in \mathbb{R}^d$
- Labels: $y_1, y_2, \ldots, y_n \in \mathbb{R}$
- Model:

$$y_i = \boldsymbol{x}_{\pi^*(i)}^\top \boldsymbol{\beta}^* + \varepsilon_i, \quad i = 1, \dots, n.$$

- Linear function: $\boldsymbol{\beta}^* \in \mathbb{R}^d$
- Permutation: $\pi^* \in S_n$
- Errors: $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \in \mathbb{R}$.
- Goal: "learn" β^* .

Model for linear regression without correspondence

Unnikrishnan, Haghighatshoar, & Vetterli, 2015; Pananjady, Wainwright, & Courtade 2016; Elhami, Scholefield, Haro, & Vetterli, 2017; Abid, Poon, & Zou, 2017; ...

- Feature vectors: $oldsymbol{x}_1, oldsymbol{x}_2, \dots, oldsymbol{x}_n \in \mathbb{R}^d$
- Labels: $y_1, y_2, \ldots, y_n \in \mathbb{R}$
- Model:

$$y_i = \boldsymbol{x}_{\pi^*(i)}^\top \boldsymbol{\beta}^* + \varepsilon_i, \quad i = 1, \dots, n.$$

- Linear function: $\boldsymbol{\beta}^* \in \mathbb{R}^d$
- Permutation: $\pi^* \in S_n$
- Errors: $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \in \mathbb{R}$.
- Goal: "learn" β^* .

Correspondence between $(x_i)_{i=1}^n$ and $(y_i)_{i=1}^n$ is **unknown**.

1. Can we determine if there is a good linear fit to the data? (Least squares approximation.)

- Can we determine if there is a good linear fit to the data? (Least squares approximation.)
- 2. When is it possible to recover the "correct" β^* ? (When is the "best" linear fit actually meaningful?)

Least squares approximation

Given $(\boldsymbol{x}_i)_{i=1}^n$ from \mathbb{R}^d and $(y_i)_{i=1}^n$ from \mathbb{R} , minimize $F(\boldsymbol{\beta}, \pi) := \sum_{i=1}^n \left(\boldsymbol{x}_i^\top \boldsymbol{\beta} - y_{\pi(i)} \right)^2.$

Given $(\boldsymbol{x}_i)_{i=1}^n$ from \mathbb{R}^d and $(y_i)_{i=1}^n$ from \mathbb{R} , minimize $F(\boldsymbol{\beta}, \pi) := \sum_{i=1}^n \left(\boldsymbol{x}_i^\top \boldsymbol{\beta} - y_{\pi(i)} \right)^2.$

• d = 1: $O(n \log n)$ -time algorithm.

(Observed by Pananjady, Wainwright, & Courtade, 2016.)

Given $(\boldsymbol{x}_i)_{i=1}^n$ from \mathbb{R}^d and $(y_i)_{i=1}^n$ from \mathbb{R} , minimize $F(\boldsymbol{\beta}, \pi) := \sum_{i=1}^n \left(\boldsymbol{x}_i^\top \boldsymbol{\beta} - y_{\pi(i)} \right)^2.$

• d = 1: $O(n \log n)$ -time algorithm.

(Observed by Pananjady, Wainwright, & Courtade, 2016.)

• $d = \Omega(n)$: (strongly) NP-hard to decide if min F = 0. Reduction from 3-PARTITION (<u>H.</u>, Shi, & Sun, 2017).

Given $(\boldsymbol{x}_i)_{i=1}^n$ from \mathbb{R}^d and $(y_i)_{i=1}^n$ from \mathbb{R} , minimize $F(\boldsymbol{\beta}, \pi) := \sum_{i=1}^n \left(\boldsymbol{x}_i^\top \boldsymbol{\beta} - y_{\pi(i)} \right)^2.$

• d = 1: $O(n \log n)$ -time algorithm.

(Observed by Pananjady, Wainwright, & Courtade, 2016.)

• $d = \Omega(n)$: (strongly) NP-hard to decide if min F = 0. Reduction from 3-PARTITION (<u>H.</u>, Shi, & Sun, 2017).

Naïve brute-force search: $\Omega(|S_n|) = \Omega(n!)$.

Given $(\boldsymbol{x}_i)_{i=1}^n$ from \mathbb{R}^d and $(y_i)_{i=1}^n$ from \mathbb{R} , minimize $F(\boldsymbol{\beta}, \pi) := \sum_{i=1}^n \left(\boldsymbol{x}_i^\top \boldsymbol{\beta} - y_{\pi(i)} \right)^2.$

• d = 1: $O(n \log n)$ -time algorithm.

(Observed by Pananjady, Wainwright, & Courtade, 2016.)

 d = Ω(n): (strongly) NP-hard to decide if min F = 0. Reduction from 3-PARTITION (<u>H.</u>, Shi, & Sun, 2017).

Naïve brute-force search: $\Omega(|S_n|) = \Omega(n!)$.

Least squares with known correspondence: $O(nd^2)$ time.

Given $(\boldsymbol{x}_i)_{i=1}^n$ and $(y_i)_{i=1}^n$ from \mathbb{R} , minimize

$$F(\beta,\pi) := \sum_{i=1}^n \left(x_i \beta - y_{\pi(i)} \right)^2 \,.$$

x_1	y_1	
x_2	y_2	
:	:	
x_n	y_n	

Given $(\boldsymbol{x}_i)_{i=1}^n$ and $(y_i)_{i=1}^n$ from \mathbb{R} , minimize

$$F(\beta,\pi) := \sum_{i=1}^n \left(x_i \beta - y_{\pi(i)} \right)^2 \,.$$

$$egin{array}{rcl} x_1eta & - & y_1 ig)^2 \ x_2eta & - & y_2 ig)^2 \ dots & dots \ x_neta & - & y_n ig)^2 \end{array}$$

Cost with $\pi(i) = i$ for all $i = 1, \ldots, n$.

Given $(\boldsymbol{x}_i)_{i=1}^n$ and $(y_i)_{i=1}^n$ from \mathbb{R} , minimize

$$F(\beta,\pi) := \sum_{i=1}^n \left(x_i \beta - y_{\pi(i)} \right)^2 \,.$$

$$\left[egin{array}{cccc} 3\,eta & - & 2 \ 1 & 4\,eta & - & 1 \ 1 & 2 \ ec & e$$

Cost with $\pi(i) = i$ for all $i = 1, \ldots, n$.

Given $(\boldsymbol{x}_i)_{i=1}^n$ and $(y_i)_{i=1}^n$ from \mathbb{R} , minimize

$$F(\beta,\pi) := \sum_{i=1}^n \left(x_i \beta - y_{\pi(i)} \right)^2 \,.$$

If $\beta > 0$, then can improve cost with $\pi(1) = 2$ and $\pi(2) = 1$.

Given $(\boldsymbol{x}_i)_{i=1}^n$ and $(y_i)_{i=1}^n$ from \mathbb{R} , minimize

$$F(\beta,\pi) := \sum_{i=1}^n \left(x_i \beta - y_{\pi(i)} \right)^2.$$

If $\beta > 0$, then can improve cost with $\pi(1) = 2$ and $\pi(2) = 1$.

 $25\beta^2 - 20\beta + 5 + \cdots > 25\beta^2 - 22\beta + 5 + \cdots$

1. "Guess" sign of optimal β . (Only two possibilities.)

- 1. "Guess" sign of optimal β . (Only two possibilities.)
- 2. Assuming WLOG that $x_1\beta \leq x_2\beta \cdots \leq x_n\beta$, find optimal π such that $y_{\pi(1)} \leq y_{\pi(2)} \leq \cdots \leq y_{\pi(n)}$ (via sorting).

- 1. "Guess" sign of optimal β . (Only two possibilities.)
- 2. Assuming WLOG that $x_1\beta \leq x_2\beta \cdots \leq x_n\beta$, find optimal π such that $y_{\pi(1)} \leq y_{\pi(2)} \leq \cdots \leq y_{\pi(n)}$ (via sorting).
- 3. Solve classical least squares problem

$$\min_{\beta \in \mathbb{R}} \sum_{i=1}^{n} (x_i \beta - y_{\pi(i)})^2$$

to get optimal β .

- 1. "Guess" sign of optimal β . (Only two possibilities.)
- 2. Assuming WLOG that $x_1\beta \leq x_2\beta \cdots \leq x_n\beta$, find optimal π such that $y_{\pi(1)} \leq y_{\pi(2)} \leq \cdots \leq y_{\pi(n)}$ (via sorting).
- 3. Solve classical least squares problem

$$\min_{\beta \in \mathbb{R}} \sum_{i=1}^{n} (x_i \beta - y_{\pi(i)})^2$$

to get optimal β .

Overall running time: $O(n \log n)$.
Algorithm for least squares problem (d = 1) [PWC'16]

- 1. "Guess" sign of optimal β . (Only two possibilities.)
- 2. Assuming WLOG that $x_1\beta \leq x_2\beta \cdots \leq x_n\beta$, find optimal π such that $y_{\pi(1)} \leq y_{\pi(2)} \leq \cdots \leq y_{\pi(n)}$ (via sorting).
- 3. Solve classical least squares problem

$$\min_{\beta \in \mathbb{R}} \sum_{i=1}^{n} (x_i \beta - y_{\pi(i)})^2$$

to get optimal β .

Overall running time: $O(n \log n)$.

What about d > 1?

Pick initial $\hat{\boldsymbol{\beta}} \in \mathbb{R}^d$ (e.g., randomly). Loop until convergence:

$$\hat{\pi} \leftarrow rgmin_{\pi \in S_n} \sum_{i=1}^n \left(oldsymbol{x}_i^ op \hat{oldsymbol{eta}} - y_{\pi(i)}
ight)^2 , \ \hat{oldsymbol{eta}} \leftarrow rgmin_{oldsymbol{eta} \in \mathbb{R}^d} \sum_{i=1}^n \left(oldsymbol{x}_i^ op oldsymbol{eta} - y_{\hat{\pi}(i)}
ight)^2 ,$$

Pick initial $\hat{\boldsymbol{\beta}} \in \mathbb{R}^d$ (e.g., randomly). Loop until convergence:

$$\hat{\pi} \leftarrow rgmin_{\pi \in S_n} \sum_{i=1}^n \left(\boldsymbol{x}_i^{\mathsf{T}} \hat{\boldsymbol{\beta}} - y_{\pi(i)} \right)^2 .$$

 $\hat{\boldsymbol{\beta}} \leftarrow rgmin_{\boldsymbol{\beta} \in \mathbb{R}^d} \sum_{i=1}^n \left(\boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta} - y_{\hat{\pi}(i)} \right)^2 .$

• Each loop-iteration efficiently computable.

Pick initial $\hat{\boldsymbol{\beta}} \in \mathbb{R}^d$ (e.g., randomly). Loop until convergence:

$$\hat{\pi} \leftarrow rgmin_{\pi \in S_n} \sum_{i=1}^n \left(oldsymbol{x}_i^{ op} \hat{oldsymbol{eta}} - y_{\pi(i)}
ight)^2 .$$

 $\hat{oldsymbol{eta}} \leftarrow rgmin_{oldsymbol{eta} \in \mathbb{R}^d} \sum_{i=1}^n \left(oldsymbol{x}_i^{ op} oldsymbol{eta} - y_{\hat{\pi}(i)}
ight)^2 .$

- Each loop-iteration efficiently computable.
- But can get stuck in local minima.

(Image credit: Wolfram|Alpha)

- Each loop-iteration efficiently computable.
- But can get stuck in local minima.

(Image credit: Wolfram|Alpha)

- Each loop-iteration efficiently computable.
- But can get stuck in local minima. So try many initial β̂ ∈ ℝ^d.
 (Open: How many restarts? How many iterations?)

Theorem (<u>H.</u>, Shi, & Sun, 2017)

There is an algorithm that given any inputs $(x_i)_{i=1}^n$, $(y_i)_{i=1}^n$, and $\epsilon \in (0, 1)$, returns a $(1 + \epsilon)$ -approximate solution to the least squares problem in time

$$\left(\frac{n}{\epsilon}\right)^{O(d)} + \operatorname{poly}(n,d).$$

Theorem (<u>H.</u>, Shi, & Sun, 2017)

There is an algorithm that given any inputs $(x_i)_{i=1}^n$, $(y_i)_{i=1}^n$, and $\epsilon \in (0, 1)$, returns a $(1 + \epsilon)$ -approximate solution to the least squares problem in time

$$\left(\frac{n}{\epsilon}\right)^{O(d)} + \operatorname{poly}(n,d).$$

Recall: Brute-force solution needs $\Omega(n!)$ time.

(No other previous algorithm with approximation guarantee.)

Statistical recovery of β^* : algorithms and lower-bounds

When does the best fit model shed light on the "truth" ($\pi^* \& \beta^*$)?

When does the best fit model shed light on the "truth" ($\pi^* \& \beta^*$)? **Approach**: Study question in context of statistical model for data.

When does the best fit model shed light on the "truth" ($\pi^* \& \beta^*$)? **Approach**: Study question in context of statistical model for data.

- 1. Understand information-theoretic limits on recovering truth.
- 2. Natural "average-case" setting for algorithms.

Statistical model

Statistical model

Recoverability of β^* depends on **signal-to-noise ratio**:

$$\mathsf{SNR} := \frac{\|\boldsymbol{\beta}^*\|_2^2}{\sigma^2}.$$

Statistical model

Recoverability of β^* depends on signal-to-noise ratio:

$$\mathsf{SNR} := \frac{\|oldsymbol{eta}^*\|_2^2}{\sigma^2}.$$

Classical setting (where π^* is known): Just need SNR $\gtrsim d/n$ to approximately recover β^* .

High-level intuition

High-level intuition

Suppose β^* is either $e_1 = (1, 0, 0, \dots, 0)$ or $e_2 = (0, 1, 0, \dots, 0)$.

High-level intuition

Suppose β^* is either $e_1 = (1, 0, 0, \dots, 0)$ or $e_2 = (0, 1, 0, \dots, 0)$.

 π^* known: distinguishability of e_1 and e_2 can improve with n.

Suppose β^* is either $e_1 = (1, 0, 0, ..., 0)$ or $e_2 = (0, 1, 0, ..., 0)$.

 π^* known: distinguishability of e_1 and e_2 can improve with n.

 π^* **unknown**: distinguishability is less clear.

$$\langle y_i \rangle_{i=1}^n = \begin{cases} \langle x_{i,1} \rangle_{i=1}^n + \mathcal{N}(0,\sigma^2) & \text{if } \beta^* = e_1, \\ \langle x_{i,2} \rangle_{i=1}^n + \mathcal{N}(0,\sigma^2) & \text{if } \beta^* = e_2. \end{cases}$$

 $((\cdot)$ denotes *unordered multi-set*.)

Effect of noise

Effect of noise

Lower bound on SNR

Theorem (H., Shi, & Sun, 2017)
For
$$\mathbb{P} = \mathbb{N}(0, I_d)$$
, no estimator $\hat{\beta}$ can guarantee
 $\mathbb{E} \left[\|\hat{\beta} - \beta^*\|_2 \right] \leq \frac{\|\beta^*\|_2}{3}$
unless
SNR $\geq C \cdot \frac{d}{\log \log(n)}$.

18

Lower bound on SNR

Theorem (H_, Shi, & Sun, 2017)
For
$$\mathbb{P} = \mathbb{N}(0, \mathbf{I}_d)$$
, no estimator $\hat{\beta}$ can guarantee

$$\mathbb{E} \left[\| \hat{\beta} - \beta^* \|_2 \right] \leq \frac{\| \beta^* \|_2}{3}$$
unless
SNR $\geq C \cdot \frac{d}{\log \log(n)}$.

"Known correspondence" setting: SNR $\geq d/n$ suffices.

Lower bound on SNR

Theorem (H., Shi, & Sun, 2017)
For
$$\mathbb{P} = \mathbb{N}(0, I_d)$$
, no estimator $\hat{\beta}$ can guarantee
 $\mathbb{E} \left[\|\hat{\beta} - \beta^*\|_2 \right] \leq \frac{\|\beta^*\|_2}{3}$
unless
SNR $\geq C \cdot \frac{d}{\log \log(n)}$.

"Known correspondence" setting: SNR $\geq d/n$ suffices.

Another theorem: for $\mathbb{P} = \text{Uniform}([-1, 1]^d)$, must have $SNR \ge 1/9$, even as $n \to \infty$.

High SNR regime

Previous works (Unnikrishnan, Haghighatshoar, & Vetterli, 2015; Pananjady, Wainwright, & Courtade, 2016):

If SNR $\gg poly(n)$, then can recover π^* (and β^* , approximately) using Maximum Likelihood Estimation, i.e., least squares.

Previous works (Unnikrishnan, Haghighatshoar, & Vetterli, 2015; Pananjady, Wainwright, & Courtade, 2016):

If SNR $\gg poly(n)$, then can recover π^* (and β^* , approximately) using Maximum Likelihood Estimation, i.e., least squares.

Related (d = 1): broken random sample (DeGroot and Goel, 1980). Estimate sign of correlation between x_i and y_i .

Have estimator for sign(β^*) that is correct w.p. $1 - \tilde{O}(SNR^{-1/4})$.

Previous works (Unnikrishnan, Haghighatshoar, & Vetterli, 2015; Pananjady, Wainwright, & Courtade, 2016):

If SNR $\gg poly(n)$, then can recover π^* (and β^* , approximately) using Maximum Likelihood Estimation, i.e., least squares.

Related (d = 1): broken random sample (DeGroot and Goel, 1980). Estimate sign of correlation between x_i and y_i .

Have estimator for sign(β^*) that is correct w.p. $1 - \tilde{O}(SNR^{-1/4})$.

Does high SNR also permit efficient algorithms?

(Recall: our approximate MLE algorithm has running time $n^{O(d)}$.)

Average-case recovery with very high SNR

If $n + 1 \ge d$, then recovery of π^* gives exact recovery of β^* (a.s.).

If $n + 1 \ge d$, then recovery of π^* gives exact recovery of β^* (a.s.). We'll assume $n + 1 \ge d + 1$ (i.e., $n \ge d$).

If $n + 1 \ge d$, then recovery of π^* gives exact recovery of β^* (a.s.). We'll assume $n + 1 \ge d + 1$ (i.e., $n \ge d$).

Claim: $n \ge d$ suffices to recover π^* with high probability.

Theorem (<u>H.</u>, Shi, & Sun, 2017)

In the noise-free setting, there is a poly(n, d)-time^{*} algorithm that returns π^* and β^* with high probability.

*Assuming problem is appropriately discretized.

Main idea: hidden subset

Measurements:

$$y_0 = x_0^{\top} \beta^*; \qquad y_i = x_{\pi^*(i)}^{\top} \beta^*, \quad i = 1, \dots, n.$$
Measurements:

$$y_0 = x_0^{\top} \beta^*; \qquad y_i = x_{\pi^*(i)}^{\top} \beta^*, \quad i = 1, \dots, n.$$

For simplicity: assume n = d, and $x_i = e_i$ for $i = 1, \ldots, d$, so

$$\langle y_1,\ldots,y_d \rangle = \langle \beta_1^*,\ldots,\beta_d^* \rangle.$$

Measurements:

$$y_0 = x_0^{\top} \beta^*; \qquad y_i = x_{\pi^*(i)}^{\top} \beta^*, \quad i = 1, \dots, n.$$

For simplicity: assume n = d, and $x_i = e_i$ for $i = 1, \ldots, d$, so

$$\langle y_1,\ldots,y_d \rangle = \langle \beta_1^*,\ldots,\beta_d^* \rangle.$$

We also know:

$$y_0 = x_0^{ op} oldsymbol{\beta}^* = \sum_{j=1}^d x_{0,j} eta_j^*.$$

$$y_{0} = x_{0}^{\top} \beta^{*} = \sum_{j=1}^{d} x_{0,j} \beta_{j}^{*}$$
$$= \sum_{i=1}^{d} \sum_{j=1}^{d} x_{0,j} y_{i} \cdot \mathbf{1} \{ \pi^{*}(i) = j \}$$

$x_{0,1}$	y_1
$x_{0,2}$	y_2
:	:
$x_{0,n}$	y_n

$$y_{0} = \boldsymbol{x}_{0}^{\mathsf{T}} \boldsymbol{\beta}^{*} = \sum_{j=1}^{d} x_{0,j} \beta_{j}^{*}$$
$$= \sum_{i=1}^{d} \sum_{j=1}^{d} x_{0,j} y_{i} \cdot \mathbf{1} \{ \pi^{*}(i) = j \}$$

• d^2 "source" numbers $c_{i,j} := x_{0,j}y_i$, "target" sum y_0 . The subset $\{c_{i,j} : \pi^*(i) = j\}$ adds up to y_0 .

• d^2 "source" numbers $c_{i,j} := x_{0,j}y_i$, "target" sum y_0 . The subset $\{c_{i,j} : \pi^*(i) = j\}$ adds up to y_0 .

Subset Sum problem.

NP-Completeness of Subset Sum (a.k.a. "Knapsack")

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS⁺

Richard M. Karp

University of California at Berkeley

18. KNAPSACK INPUT: $(a_1, a_2, \dots, a_r, b) \in \mathbb{Z}^{n+1}$ PROPERTY: $\Sigma = x = b$ has a 0-1 solution.

(Karp, 1972)

 But Subset Sum is only "weakly" NP-hard (efficient algorithm exists for unary-encoded inputs).

- But Subset Sum is only "weakly" NP-hard (efficient algorithm exists for unary-encoded inputs).
- Lagarias & Odlyzko (1983): solving certain random instances can be reduced to solving Approximate Shortest Vector Problem in lattices.

- But Subset Sum is only "weakly" NP-hard (efficient algorithm exists for unary-encoded inputs).
- Lagarias & Odlyzko (1983): solving certain random instances can be reduced to solving Approximate Shortest Vector Problem in lattices.
- Lenstra, Lenstra, & Lovász (1982): efficient algorithm to solve Approximate SVP.

- But Subset Sum is only "weakly" NP-hard (efficient algorithm exists for unary-encoded inputs).
- Lagarias & Odlyzko (1983): solving certain random instances can be reduced to solving Approximate Shortest Vector Problem in lattices.
- Lenstra, Lenstra, & Lovász (1982): efficient algorithm to solve Approximate SVP.
- Our algorithm is based on similar reduction but requires a somewhat different analysis.

Lagarias & Odlyzko (1983): random instances of Subset Sum *efficiently solvable* when N source numbers c_1, \ldots, c_N chosen independently and u.a.r. from sufficiently wide interval of \mathbb{Z} .

Lagarias & Odlyzko (1983): random instances of Subset Sum *efficiently solvable* when N source numbers c_1, \ldots, c_N chosen independently and u.a.r. from sufficiently wide interval of \mathbb{Z} .

Main idea: (w.h.p.) every incorrect subset will "miss" the target sum T by noticeable amount.

Lagarias & Odlyzko (1983): random instances of Subset Sum *efficiently solvable* when N source numbers c_1, \ldots, c_N chosen independently and u.a.r. from sufficiently wide interval of \mathbb{Z} .

Main idea: (w.h.p.) every incorrect subset will "miss" the target sum T by noticeable amount.

Reduction: construct lattice basis in \mathbb{R}^{N+1} such that

- correct subset of basis vectors gives short lattice vector v_{\star} ;
- any other lattice vector $\not\propto \boldsymbol{v}_{\star}$ is more than $2^{N/2}$ -times longer.

$$\begin{bmatrix} \boldsymbol{b}_0 \mid \boldsymbol{b}_1 \mid \cdots \mid \boldsymbol{b}_N \end{bmatrix} \coloneqq \begin{bmatrix} 0 \mid \boldsymbol{I}_N \\ MT \mid -Mc_1 \mid \cdots \mid -Mc_N \end{bmatrix}$$

for sufficiently large M > 0.

• Instead, have some joint density derived from N(0, 1).

- Instead, have some joint density derived from N(0, 1).
- To show that Lagarias & Odlyzko reduction still works, use Gaussian anti-concentration for quadratic and quartic forms.

- Instead, have some joint density derived from N(0, 1).
- To show that Lagarias & Odlyzko reduction still works, use Gaussian anti-concentration for quadratic and quartic forms.

Key lemma: (w.h.p.) for every $Z \in \mathbb{Z}^{d \times d}$ that is not an integer multiple of permutation matrix corresponding to π^* ,

$$\left| y_0 - \sum_{i,j} Z_{i,j} \cdot c_{i,j} \right| \geq \frac{1}{2^{\operatorname{poly}(d)}} \cdot \| oldsymbol{eta}^* \|_2$$

 In general, x₁,..., x_n are not e₁,..., e_d, but similar reduction works via Moore-Penrose pseudoinverse.

- In general, x₁,..., x_n are not e₁,..., e_d, but similar reduction works via Moore-Penrose pseudoinverse.
- Algorithm strongly exploits assumption of noise-free measurements. Unlikely to tolerate much noise.

Open problem:

robust efficient algorithm in high SNR setting.

Correspondence retrieval

Goal: recover k unknown "signals" $\beta_1^*, \ldots, \beta_k^* \in \mathbb{R}^d$.

Goal: recover k unknown "signals" $\beta_1^*, \ldots, \beta_k^* \in \mathbb{R}^d$.

Measurements: $(\boldsymbol{x}_i, \mathcal{Y}_i)$ for $i = 1, \ldots, n$, where

- (\boldsymbol{x}_i) iid from $\mathrm{N}(0, \boldsymbol{I}_d)$;
- $\mathcal{Y}_i = (x_i^{\mathsf{T}} \beta_1^* + \varepsilon_{i,1}, \dots, x_i^{\mathsf{T}} \beta_k^* + \varepsilon_{i,k})$ as unordered multi-set;
- $(\varepsilon_{i,j})$ iid from $N(0, \sigma^2)$.

Correspondence across measurements is lost.

Goal: recover k unknown "signals" $\beta_1^*, \ldots, \beta_k^* \in \mathbb{R}^d$.

Measurements: $(\boldsymbol{x}_i, \mathcal{Y}_i)$ for $i = 1, \ldots, n$, where

- (\boldsymbol{x}_i) iid from $N(0, \boldsymbol{I}_d)$;
- $\mathcal{Y}_i = (x_i^{\mathsf{T}} \beta_1^* + \varepsilon_{i,1}, \dots, x_i^{\mathsf{T}} \beta_k^* + \varepsilon_{i,k})$ as unordered multi-set;
- $(\varepsilon_{i,j})$ iid from $N(0, \sigma^2)$.

Correspondence across measurements is lost.

Goal: recover k unknown "signals" $\beta_1^*, \ldots, \beta_k^* \in \mathbb{R}^d$.

Measurements: $(\boldsymbol{x}_i, \mathcal{Y}_i)$ for $i = 1, \ldots, n$, where

- (\boldsymbol{x}_i) iid from $N(0, \boldsymbol{I}_d)$;
- $\mathcal{Y}_i = (x_i^{\mathsf{T}} \beta_1^* + \varepsilon_{i,1}, \dots, x_i^{\mathsf{T}} \beta_k^* + \varepsilon_{i,k})$ as unordered multi-set;
- $(\varepsilon_{i,j})$ iid from $N(0, \sigma^2)$.

Correspondence across measurements is lost.

• k = 1: classical linear regression regression model.

- k = 1: classical linear regression regression model.
- k = 2 and β₁^{*} = −β₂^{*}: (real variant of) phase retrieval.
 Note that (x_i^Tβ^{*}, −x_i^Tβ^{*}) has same information as |x_i^Tβ^{*}|.
 Existing methods require n > 2d.

 Noise-free setting (i.e., σ = 0): Algorithm based on reduction to Subset Sum that requires n ≥ d + 1, which is optimal.

- Noise-free setting (i.e., σ = 0): Algorithm based on reduction to Subset Sum that requires n ≥ d + 1, which is optimal.
- General setting:

Method-of-moments algorithm that requires $n \ge d \cdot \operatorname{poly}(k)$.

- Noise-free setting (i.e., σ = 0): Algorithm based on reduction to Subset Sum that requires n ≥ d + 1, which is optimal.
- General setting:

Method-of-moments algorithm that requires $n \ge d \cdot \text{poly}(k)$. I.e., based on forming averages over the data, like:

$$rac{1}{n}\sum_{i=1}^n\left(\sum_{y_j\in\mathcal{Y}_i}y_j^2
ight)oldsymbol{x}_ioldsymbol{x}_i^{ op}.$$

- Noise-free setting (i.e., σ = 0): Algorithm based on reduction to Subset Sum that requires n ≥ d + 1, which is optimal.
- General setting:

Method-of-moments algorithm that requires $n \ge d \cdot \text{poly}(k)$. I.e., based on forming averages over the data, like:

$$\frac{1}{n}\sum_{i=1}^n \left(\sum_{y_j\in\mathcal{Y}_i} y_j^2\right) x_i x_i^{ op}.$$

Questions: SNR limits? Sub-optimality of "method-of-moments"?

Closing remarks and open problems

• **Computational and information-theoretic hardness** show striking contrast to "known correspondence" settings.

- Computational and information-theoretic hardness show striking contrast to "known correspondence" settings.
- New (and unexpected?) algorithmic techniques in worst-case and average-case settings.

- Computational and information-theoretic hardness show striking contrast to "known correspondence" settings.
- New (and unexpected?) algorithmic techniques in worst-case and average-case settings.
- Open problems:

Close gap between SNR lower and upper bounds? Lower bounds for correspondence retrieval? Faster/more robust algorithms? (Smoothed) analysis of alternating minimization?
Collaborators: Alexandr Andoni (Columbia), Kevin Shi (Columbia), Xiaorui Sun (Microsoft Research).

Funding: NSF (DMR-1534910, IIS-1563785), Sloan Research Fellowship, Bloomberg Data Science Research Grant.

Hospitality: Simons Institute for the Theory of Computing (UCB).

Thank you

Beating brute-force search: "realizable" case

"Realizable" case: Suppose there exist $\beta_{\star} \in \mathbb{R}^d$ and $\pi_{\star} \in S_n$ s.t.

$$y_{\pi_{\star}(i)} = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_{\star}, \quad i \in [n].$$

"Realizable" case: Suppose there exist $\beta_{\star} \in \mathbb{R}^d$ and $\pi_{\star} \in S_n$ s.t.

$$y_{\pi_{\star}(i)} = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_{\star}, \quad i \in [n].$$

Solution is determined by action of π_{\star} on d points (assume dim $(\operatorname{span}(\boldsymbol{x}_i)_{i=1}^d) = d$).

"Realizable" case: Suppose there exist $\beta_{\star} \in \mathbb{R}^d$ and $\pi_{\star} \in S_n$ s.t.

$$y_{\pi_{\star}(i)} = \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}_{\star}, \quad i \in [n].$$

Solution is determined by action of π_{\star} on d points (assume dim $(\operatorname{span}(\boldsymbol{x}_i)_{i=1}^d) = d$).

Algorithm:

- Find subset of d linearly independent points $x_{i_1}, x_{i_2}, \ldots, x_{i_d}$.
- "Guess" values of $\pi_{\star}(i_j) \in [d]$, $j \in [d]$.
- Solve linear system $y_{\pi_{\star}(i_j)} = \boldsymbol{x}_{i_j}^{\scriptscriptstyle \top} \boldsymbol{\beta}$, $j \in [d]$, for $\boldsymbol{\beta} \in \mathbb{R}^d$.
- To check correctness of $\hat{\beta}$: compute $\hat{y}_i := x_i^{\top} \hat{\beta}$, $i \in [n]$, and check if $\min_{\pi \in S_n} \sum_{i=1}^n (y_{\pi(i)} \hat{y}_i)^2 = 0$.

"Realizable" case: Suppose there exist $\beta_{\star} \in \mathbb{R}^d$ and $\pi_{\star} \in S_n$ s.t.

$$y_{\pi_{\star}(i)} = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_{\star}, \quad i \in [n].$$

Solution is determined by action of π_{\star} on d points (assume dim $(\operatorname{span}(\boldsymbol{x}_i)_{i=1}^d) = d$).

Algorithm:

- Find subset of d linearly independent points $x_{i_1}, x_{i_2}, \ldots, x_{i_d}$.
- "Guess" values of $\pi_{\star}(i_j) \in [d]$, $j \in [d]$.
- Solve linear system $y_{\pi_{\star}(i_j)} = \boldsymbol{x}_{i_j}^{\scriptscriptstyle \top} \boldsymbol{\beta}$, $j \in [d]$, for $\boldsymbol{\beta} \in \mathbb{R}^d$.
- To check correctness of $\hat{\beta}$: compute $\hat{y}_i := x_i^{\top} \hat{\beta}$, $i \in [n]$, and check if $\min_{\pi \in S_n} \sum_{i=1}^n (y_{\pi(i)} \hat{y}_i)^2 = 0$.

"Guess" means "enumerate over $\binom{n}{d}$ choices"; rest is poly(n, d).

Beating brute-force search: general case

General case: solution may not be determined by only d points.

General case: solution may not be determined by only d points.

But, for any RHS $\boldsymbol{b} \in \mathbb{R}^n$, there exist $\boldsymbol{x}_{i_1}, \boldsymbol{x}_{i_2}, \dots, \boldsymbol{x}_{i_d}$ s.t. every $\hat{\boldsymbol{\beta}} \in \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \sum_{j=1}^d (\boldsymbol{x}_{i_j}^\top \boldsymbol{\beta} - b_{i_j})^2$ satisfies

$$\sum_{i=1}^{n} \left(\boldsymbol{x}_{i}^{\top} \hat{\boldsymbol{\beta}} - b_{i}\right)^{2} \leq \left(d+1\right) \cdot \min_{\boldsymbol{\beta} \in \mathbb{R}^{d}} \sum_{i=1}^{n} \left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta} - b_{i}\right)^{2}.$$

General case: solution may not be determined by only d points.

But, for any RHS $\boldsymbol{b} \in \mathbb{R}^n$, there exist $\boldsymbol{x}_{i_1}, \boldsymbol{x}_{i_2}, \dots, \boldsymbol{x}_{i_d}$ s.t. every $\hat{\boldsymbol{\beta}} \in \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \sum_{j=1}^d (\boldsymbol{x}_{i_j}^{\top} \boldsymbol{\beta} - b_{i_j})^2$ satisfies

$$\sum_{i=1}^{n} \left(\boldsymbol{x}_{i}^{\top} \hat{\boldsymbol{\beta}} - b_{i}\right)^{2} \leq \left(d+1\right) \cdot \min_{\boldsymbol{\beta} \in \mathbb{R}^{d}} \sum_{i=1}^{n} \left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta} - b_{i}\right)^{2} \,.$$

 $\implies n^{O(d)}$ -time algorithm with approximation ratio d + 1, or $n^{\tilde{O}(d/\epsilon)}$ -time algorithm with approximation ratio $1 + \epsilon$. **General case**: solution may not be determined by only d points.

But, for any RHS $\boldsymbol{b} \in \mathbb{R}^n$, there exist $\boldsymbol{x}_{i_1}, \boldsymbol{x}_{i_2}, \dots, \boldsymbol{x}_{i_d}$ s.t. every $\hat{\boldsymbol{\beta}} \in \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \sum_{j=1}^d (\boldsymbol{x}_{i_j}^{\scriptscriptstyle \top} \boldsymbol{\beta} - b_{i_j})^2$ satisfies

$$\sum_{i=1}^{n} \left(\boldsymbol{x}_{i}^{\top} \hat{\boldsymbol{\beta}} - b_{i}\right)^{2} \leq \left(d+1\right) \cdot \min_{\boldsymbol{\beta} \in \mathbb{R}^{d}} \sum_{i=1}^{n} \left(\boldsymbol{x}_{i}^{\top} \boldsymbol{\beta} - b_{i}\right)^{2} \,.$$

 $\implies n^{O(d)}$ -time algorithm with approximation ratio d + 1, or $n^{\tilde{O}(d/\epsilon)}$ -time algorithm with approximation ratio $1 + \epsilon$.

Better way to get $1 + \epsilon$: exploit first-order optimality conditions (i.e., "normal equations") and ϵ -nets.

Overall time: $(n/\epsilon)^{O(k)} + \text{poly}(n,d)$ for $k = \dim(\text{span}(\boldsymbol{x}_i)_{i=1}^n)$.

Lower bound proof sketch

We show that no estimator can confidently distinguish between $\beta^* = e_1$ and $\beta^* = -e_1$, where $e_1 = (1, 0, ..., 0)^{\top}$.

We show that no estimator can confidently distinguish between $\beta^* = e_1$ and $\beta^* = -e_1$, where $e_1 = (1, 0, ..., 0)^{\top}$.

Let P_{β^*} be the data distribution with parameter $\beta^* \in \{e_1, -e_1\}$.

Task: show P_{e_1} and P_{-e_1} are "close", then appeal to Le Cam's standard "two-point argument":

$$\max_{\beta^* \in \{e_1, -e_1\}} \mathbb{E}_{P_{\beta^*}} \| \hat{\beta} - \beta^* \|_2 \geq 1 - \| P_{e_1} - P_{-e_1} \|_{\mathsf{tv}}.$$

We show that no estimator can confidently distinguish between $\beta^* = e_1$ and $\beta^* = -e_1$, where $e_1 = (1, 0, ..., 0)^{\top}$.

Let P_{β^*} be the data distribution with parameter $\beta^* \in \{e_1, -e_1\}$.

Task: show P_{e_1} and P_{-e_1} are "close", then appeal to Le Cam's standard "two-point argument":

$$\max_{\beta^* \in \{e_1, -e_1\}} \mathbb{E}_{P_{\beta^*}} \| \hat{\beta} - \beta^* \|_2 \geq 1 - \| P_{e_1} - P_{-e_1} \|_{\mathsf{tv}}.$$

Key idea: conditional means of $(y_i)_{i=1}^n$ given $(x_i)_{i=1}^n$, under P_{e_1} and P_{-e_1} , are close as unordered multi-sets.

Generative process for P_{β^*} :

Generative process for P_{β^*} :

1. Draw $(\boldsymbol{x}_i)_{i=1}^n \stackrel{\text{iid}}{\sim} \text{Uniform}([-1,1]^d), \ (\varepsilon_i)_{i=1}^n \stackrel{\text{iid}}{\sim} \text{N}(0,\sigma^2).$

Generative process for P_{β^*} :

- 1. Draw $(\boldsymbol{x}_i)_{i=1}^n \stackrel{\text{iid}}{\sim} \text{Uniform}([-1,1]^d), \ (\varepsilon_i)_{i=1}^n \stackrel{\text{iid}}{\sim} \text{N}(0,\sigma^2).$
- 2. Set $u_i := \boldsymbol{x}_i^{\scriptscriptstyle \top} \boldsymbol{\beta}^*$ for $i \in [n]$.

Generative process for P_{β^*} :

- 1. Draw $(\boldsymbol{x}_i)_{i=1}^n \stackrel{\text{iid}}{\sim} \text{Uniform}([-1,1]^d), \ (\varepsilon_i)_{i=1}^n \stackrel{\text{iid}}{\sim} \text{N}(0,\sigma^2).$
- 2. Set $u_i := \boldsymbol{x}_i^{\scriptscriptstyle \top} \boldsymbol{\beta}^*$ for $i \in [n]$.
- 3. Set $y_i := u_{(i)} + \varepsilon_i$ for $i \in [n]$, where $u_{(1)} \le u_{(2)} \le \cdots \le u_{(n)}$.

Generative process for P_{β^*} :

- 1. Draw $(\boldsymbol{x}_i)_{i=1}^n \stackrel{\text{iid}}{\sim} \text{Uniform}([-1,1]^d), \ (\varepsilon_i)_{i=1}^n \stackrel{\text{iid}}{\sim} \text{N}(0,\sigma^2).$
- 2. Set $u_i := \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}^*$ for $i \in [n]$.
- 3. Set $y_i := u_{(i)} + \varepsilon_i$ for $i \in [n]$, where $u_{(1)} \le u_{(2)} \le \cdots \le u_{(n)}$.

Conditional distribution of $\boldsymbol{y} = (y_1, y_2, \dots, y_n)$ given $(\boldsymbol{x}_i)_{i=1}^n$:

$$\begin{array}{ll} \text{Under } P_{\boldsymbol{e}_1} \colon \ \boldsymbol{y} \mid (\boldsymbol{x}_i)_{i=1}^n \ \sim \ \mathrm{N}(\boldsymbol{u}^{\uparrow}, \sigma^2 \boldsymbol{I}_n) \\ \\ \text{Under } P_{-\boldsymbol{e}_1} \colon \ \boldsymbol{y} \mid (\boldsymbol{x}_i)_{i=1}^n \ \sim \ \mathrm{N}(-\boldsymbol{u}^{\downarrow}, \sigma^2 \boldsymbol{I}_n) \\ \\ \text{where } \boldsymbol{u}^{\uparrow} = (u_{(1)}, u_{(2)}, \dots, u_{(n)}) \text{ and } \boldsymbol{u}^{\downarrow} = (u_{(n)}, u_{(n-1)}, \dots, u_{(1)}). \end{array}$$

W

Generative process for P_{β^*} :

- 1. Draw $(\boldsymbol{x}_i)_{i=1}^n \stackrel{\text{iid}}{\sim} \text{Uniform}([-1,1]^d), \ (\varepsilon_i)_{i=1}^n \stackrel{\text{iid}}{\sim} \text{N}(0,\sigma^2).$
- 2. Set $u_i := \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}^*$ for $i \in [n]$.
- 3. Set $y_i := u_{(i)} + \varepsilon_i$ for $i \in [n]$, where $u_{(1)} \le u_{(2)} \le \cdots \le u_{(n)}$.

Conditional distribution of $\boldsymbol{y} = (y_1, y_2, \dots, y_n)$ given $(\boldsymbol{x}_i)_{i=1}^n$:

Under
$$P_{e_1}$$
: $\boldsymbol{y} \mid (\boldsymbol{x}_i)_{i=1}^n \sim \mathrm{N}(\boldsymbol{u}^{\mathsf{T}}, \sigma^2 \boldsymbol{I}_n)$
Under P_{-e_1} : $\boldsymbol{y} \mid (\boldsymbol{x}_i)_{i=1}^n \sim \mathrm{N}(-\boldsymbol{u}^{\downarrow}, \sigma^2 \boldsymbol{I}_n)$
where $\boldsymbol{u}^{\uparrow} = (u_{(1)}, u_{(2)}, \dots, u_{(n)})$ and $\boldsymbol{u}^{\downarrow} = (u_{(n)}, u_{(n-1)}, \dots, u_{(1)})$.

Data processing: Lose information by going from y to $(y_i)_{i=1}^n$.

By data processing inequality,

$$\begin{split} & \operatorname{KL}\left(P_{\boldsymbol{e}_{1}}(\cdot \mid (\boldsymbol{x}_{i})_{i=1}^{n}), P_{-\boldsymbol{e}_{1}}(\cdot \mid (\boldsymbol{x}_{i})_{i=1}^{n})\right) \\ & \leq \operatorname{KL}\left(\operatorname{N}(\boldsymbol{u}^{\uparrow}, \sigma^{2}\boldsymbol{I}_{n}), \operatorname{N}(-\boldsymbol{u}^{\downarrow}, \sigma^{2}\boldsymbol{I}_{n})\right) \end{split}$$

By data processing inequality,

$$\begin{split} & \operatorname{KL} \left(P_{\boldsymbol{e}_{1}}(\cdot \mid (\boldsymbol{x}_{i})_{i=1}^{n}), P_{-\boldsymbol{e}_{1}}(\cdot \mid (\boldsymbol{x}_{i})_{i=1}^{n}) \right) \\ & \leq \operatorname{KL} \left(\operatorname{N}(\boldsymbol{u}^{\uparrow}, \sigma^{2}\boldsymbol{I}_{n}), \operatorname{N}(-\boldsymbol{u}^{\downarrow}, \sigma^{2}\boldsymbol{I}_{n}) \right) \\ & = \frac{\|\boldsymbol{u}^{\uparrow} - (-\boldsymbol{u}^{\downarrow})\|_{2}^{2}}{2\sigma^{2}} \end{split}$$

By data processing inequality,

$$\begin{aligned} &\operatorname{KL}\left(P_{\boldsymbol{e}_{1}}(\cdot\mid(\boldsymbol{x}_{i})_{i=1}^{n}),P_{-\boldsymbol{e}_{1}}(\cdot\mid(\boldsymbol{x}_{i})_{i=1}^{n})\right) \\ &\leq \operatorname{KL}\left(\operatorname{N}(\boldsymbol{u}^{\uparrow},\sigma^{2}\boldsymbol{I}_{n}),\operatorname{N}(-\boldsymbol{u}^{\downarrow},\sigma^{2}\boldsymbol{I}_{n})\right) \\ &= \frac{\|\boldsymbol{u}^{\uparrow}-(-\boldsymbol{u}^{\downarrow})\|_{2}^{2}}{2\sigma^{2}} = \frac{\operatorname{SNR}}{2}\cdot\|\boldsymbol{u}^{\uparrow}+\boldsymbol{u}^{\downarrow}\|_{2}^{2}.\end{aligned}$$

By data processing inequality,

$$\begin{split} & \operatorname{KL} \left(P_{\boldsymbol{e}_{1}}(\cdot \mid (\boldsymbol{x}_{i})_{i=1}^{n}), P_{-\boldsymbol{e}_{1}}(\cdot \mid (\boldsymbol{x}_{i})_{i=1}^{n}) \right) \\ & \leq \operatorname{KL} \left(\operatorname{N}(\boldsymbol{u}^{\uparrow}, \sigma^{2}\boldsymbol{I}_{n}), \operatorname{N}(-\boldsymbol{u}^{\downarrow}, \sigma^{2}\boldsymbol{I}_{n}) \right) \\ & = \frac{\|\boldsymbol{u}^{\uparrow} - (-\boldsymbol{u}^{\downarrow})\|_{2}^{2}}{2\sigma^{2}} = \frac{\operatorname{SNR}}{2} \cdot \|\boldsymbol{u}^{\uparrow} + \boldsymbol{u}^{\downarrow}\|_{2}^{2} . \end{split}$$

Some computations show that

$$\operatorname{med} \|\boldsymbol{u}^{\uparrow} + \boldsymbol{u}^{\downarrow}\|_{2}^{2} \leq 4.$$

By data processing inequality,

$$\begin{split} & \operatorname{KL} \left(P_{\boldsymbol{e}_{1}}(\cdot \mid (\boldsymbol{x}_{i})_{i=1}^{n}), P_{-\boldsymbol{e}_{1}}(\cdot \mid (\boldsymbol{x}_{i})_{i=1}^{n}) \right) \\ & \leq \operatorname{KL} \left(\operatorname{N}(\boldsymbol{u}^{\uparrow}, \sigma^{2}\boldsymbol{I}_{n}), \operatorname{N}(-\boldsymbol{u}^{\downarrow}, \sigma^{2}\boldsymbol{I}_{n}) \right) \\ & = \frac{\|\boldsymbol{u}^{\uparrow} - (-\boldsymbol{u}^{\downarrow})\|_{2}^{2}}{2\sigma^{2}} = \frac{\operatorname{SNR}}{2} \cdot \|\boldsymbol{u}^{\uparrow} + \boldsymbol{u}^{\downarrow}\|_{2}^{2}. \end{split}$$

Some computations show that

$$\operatorname{med} \|\boldsymbol{u}^{\uparrow} + \boldsymbol{u}^{\downarrow}\|_{2}^{2} \leq 4.$$

By conditioning + Pinsker's inequality,

$$||P_{e_1} - P_{-e_1}||_{\mathsf{tv}} \le \frac{1}{2} + \frac{1}{2} \operatorname{med} \sqrt{\frac{\mathsf{SNR}}{4} \cdot ||u^{\uparrow} + u^{\downarrow}||_2^2} \le \frac{1}{2} + \frac{1}{2} \sqrt{\mathsf{SNR}}.$$

Theorem (<u>H.</u>, Shi, & Sun, 2017)

Fix any $\beta^* \in \mathbb{R}^d$ and $\pi^* \in S_n$, and assume $n \ge d$. Suppose $(\boldsymbol{x}_i)_{i=0}^n$ are drawn iid from $N(0, \boldsymbol{I}_d)$, and $(y_i)_{i=0}^n$ satisfy

$$y_0 = x_0^{\top} \beta^*; \qquad y_i = x_{\pi^*(i)}^{\top} \beta^*, \quad i = 1, \dots, n.$$

There is a poly(n, d)-time[‡] algorithm that, given inputs $(x_i)_{i=0}^n$ and $(y_i)_{i=0}^n$, returns π^* and β^* with high probability.

[‡]Assuming problem is appropriately discretized.

Lagarias & Odlyzko (1983): random instances of Subset Sum *efficiently solvable* when N source numbers chosen independently and u.a.r. from sufficiently wide interval of \mathbb{Z} .

Lagarias & Odlyzko (1983): random instances of Subset Sum *efficiently solvable* when N source numbers chosen independently and u.a.r. from sufficiently wide interval of \mathbb{Z} .

Main idea: (w.h.p.) every incorrect subset will "miss" the target sum T by noticeable amount.

Lagarias & Odlyzko (1983): random instances of Subset Sum *efficiently solvable* when N source numbers chosen independently and u.a.r. from sufficiently wide interval of \mathbb{Z} .

Main idea: (w.h.p.) every incorrect subset will "miss" the target sum T by noticeable amount.

Reduction: construct lattice basis in \mathbb{R}^{N+1} such that

- correct subset of basis vectors gives short lattice vector v_{\star} ;
- any other lattice vector $\not\propto v_{\star}$ is more than $2^{N/2}$ -times longer.

$$\begin{bmatrix} \boldsymbol{b}_0 \mid \boldsymbol{b}_1 \mid \cdots \mid \boldsymbol{b}_N \end{bmatrix} \coloneqq \begin{bmatrix} 0 \mid \boldsymbol{I}_N \\ MT \mid -Mc_1 \mid \cdots \mid -Mc_N \end{bmatrix}$$

for sufficiently large M > 0.

• Instead, have some joint density derived from N(0, 1).

- Instead, have some joint density derived from N(0, 1).
- To show that Lagarias & Odlyzko reduction still works, need Gaussian anti-concentration for quadratic and quartic forms.

- Instead, have some joint density derived from N(0, 1).
- To show that Lagarias & Odlyzko reduction still works, need Gaussian anti-concentration for quadratic and quartic forms.

Key lemma: (w.h.p.) for every $Z \in \mathbb{Z}^{d \times d}$ that is not an integer multiple of permutation matrix corresponding to π^* ,

$$\left| y_0 - \sum_{i,j} Z_{i,j} \cdot c_{i,j}
ight| \geq rac{1}{2^{ ext{poly}(d)}} \cdot \| oldsymbol{eta}^* \|_2$$