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Abstract

We study the problem of decision-theoretic online learning(DTOL). Motivated
by practical applications, we focus on DTOL when the number of actions is very
large. Previous algorithms for learning in this framework have a tunable learning
rate parameter, and a barrier to using online-learning in practical applications is
that it is not understood how to set this parameter optimally, particularly when the
number of actions is large.
In this paper, we offer a clean solution by proposing a novel and completely
parameter-free algorithm for DTOL. We introduce a new notion of regret, which
is more natural for applications with a large number of actions. We show that our
algorithm achieves good performance with respect to this new notion of regret; in
addition, it also achieves performance close to that of the best bounds achieved
by previous algorithms with optimally-tuned parameters, according to previous
notions of regret.

1 Introduction

In this paper, we consider the problem of decision-theoretic online learning (DTOL), proposed by
Freund and Schapire [1]. DTOL is a variant of the problem of prediction with expert advice [2, 3].
In this problem, a learner must assign probabilities to a fixed set of actions in a sequence of rounds.
After each assignment, each action incurs a loss (a value in[0, 1]); the learner incurs a loss equal
to the expected loss of actions for that round, where the expectation is computed according to the
learner’s current probability assignment. Theregret (of the learner) to an action is the difference
between the learner’s cumulative loss and the cumulative loss of that action. The goal of the learner
is to achieve, on any sequence of losses, low regret to the action with the lowest cumulative loss (the
best action).

DTOL is a general framework that captures many learning problems of interest. For example, con-
sider tracking the hidden state of an object in a continuous state space from noisy observations [4].
To look at tracking in a DTOL framework, we set each action to be a path (sequence of states) over
the state space. The loss of an action at timet is the distance between the observation at timet and
the state of the action at timet, and the goal of the learner is to predict a path which has lossclose
to that of the action with the lowest cumulative loss.

The most popular solution to the DTOL problem is the Hedge algorithm [1, 5]. In Hedge, each action
is assigned a probability, which depends on the cumulative loss of this action and a parameterη, also
called thelearning rate. By appropriately setting the learning rate as a function ofthe iteration [6, 7]
and the number of actions, Hedge can achieve a regret upper-bounded byO(

√
T lnN), for each

iterationT , whereN is the number of actions. This bound on the regret is optimal as there is a
Ω(

√
T lnN) lower-bound [5].

In this paper, motivated by practical applications such as tracking, we consider DTOL in the regime
where the number of actionsN is very large. A major barrier to using online-learning for practical
problems is that whenN is large, it is not understood how to set the learning rateη. [7, 6] suggest
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Figure 1: A new notion of regret. Suppose each action is a point on a line, and the total losses are
as given in the plot. The regret to the topǫ-quantile is the difference between the learner’s total loss
and the total loss of the worst action in the indicated interval of measureǫ.

settingη as a fixed function of the number of actionsN . However, this can lead to poor performance,
as we illustrate by an example in Section 3, and the degradation in performance is particularly
exacerbated asN grows larger. One way to address this is by simultaneously running multiple
copies of Hedge with multiple values of the learning rate, and choosing the output of the copy
that performs the best in an online way. However, this solution is impractical for real applications,
particularly asN is already very large. (For more details about these solutions, please see Section 4.)

In this paper, we take a step towards making online learning more practical by proposing a novel,
completely adaptive algorithm for DTOL. Our algorithm is called NormalHedge. NormalHedge
is very simple and easy to implement, and in each round, it simply involves a single line search,
followed by an updating of weights for all actions.

A second issue with using online-learning in problems such as tracking, whereN is very large, is
that the regret to thebest actionis not an effective measure of performance. For problems such as
tracking, one expects to have a lot of actions that are close to the action with the lowest loss. As
these actions also have low loss, measuring performance with respect to a small group of actions
that perform well is extremely reasonable – see, for example, Figure 1.

In this paper, we address this issue by introducing a new notion of regret, which is more natural
for practical applications. We order the cumulative lossesof all actions from lowest to highest and
define theregret of the learner to the topǫ-quantileto be the difference between the cumulative loss
of the learner and the⌊ǫN⌋-th element in the sorted list.

We prove that for NormalHedge, the regret to the topǫ-quantile of actions is at most

O

(

√

T ln
1

ǫ
+ ln2N

)

,

which holdssimultaneously for allT and ǫ. If we setǫ = 1/N , we get that the regret to the best

action is upper-bounded byO
(√

T lnN + ln2N
)

, which is only slightly worse than the bound

achieved by Hedge with optimally-tuned parameters. Noticethat in our regret bound, the term
involving T has no dependence onN . In contrast, Hedge cannot achieve a regret-bound of this
nature uniformly for allǫ. (For details on how Hedge can be modified to perform with our new
notion of regret, see Section 4).

NormalHedge works by assigning each actioni a potential; actions which have lower cumulative
loss than the algorithm are assigned a potentialexp(R2

i,t/2ct), whereRi,t is the regret of action
i andct is an adaptive scale parameter, which is adjusted from one round to the next, depending
on the loss-sequences. Actions which have higher cumulative loss than the algorithm are assigned
potential1. The weight assigned to an action in each round is then proportional to the derivative of its
potential. One can also interpret Hedge as a potential-based algorithm, and under this interpretation,
the potential assigned by Hedge to actioni is proportional toexp(ηRi,t). This potential used by
Hedge differs significantly from the one we use. Although other potential-based methods have been
considered in the context of online learning [8], our potential function is very novel, and to the best
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Initially: SetRi,0 = 0, pi,1 = 1/N for eachi.
For t = 1, 2, . . .

1. Each actioni incurs lossℓi,t.

2. Learner incurs lossℓA,t =
∑N

i=1 pi,tℓi,t.
3. Update cumulative regrets:Ri,t = Ri,t−1 + (ℓA,t − ℓi,t) for eachi.

4. Findct > 0 satisfying 1
N

∑N
i=1 exp

(

([Ri,t]+)2

2ct

)

= e.

5. Update distribution for roundt+ 1: pi,t+1 ∝ [Ri,t]+
ct

exp
(

([Ri,t]+)2

2ct

)

for eachi.

Figure 2: The Normal-Hedge algorithm.

of our knowledge, has not been studied in prior work. Our proof techniques are also different from
previous potential-based methods.

Another useful property of NormalHedge, which Hedge does not possess, is that it assigns zero
weight to any action whose cumulative loss is larger than thecumulative loss of the algorithm it-
self. In other words, non-zero weights are assigned only to actions which perform better than the
algorithm. In most applications, we expect a small set of theactions to perform significantly better
than most of the actions. The regret of the algorithm is guaranteed to be small, which means that the
algorithm will perform better than most of the actions and thus assign them zero probability.

[9, 10] have proposed more recent solutions to DTOL in which the regret of Hedge to the best action
is upper bounded by a function ofL, the loss of the best action, or by a function of the variations in
the losses. These bounds can be sharper than the bounds with respect toT . Our analysis (and in fact,
to our knowledge, any analysis based on potential functionsin the style of [11, 8]) do not directly
yield these kinds of bounds. We therefore leave open the question of finding an adaptive algorithm
for DTOL which has regret upper-bounded by a function that depends on the loss of the best action.

The rest of the paper is organized as follows. In Section 2, weprovide NormalHedge. In Section
3, we provide an example that illustrates the suboptimalityof standard online learning algorithms,
when the parameter is not set properly. In Section 4, we discuss Related Work. In Section 5, we
present some outlines of the proof. The proof details are in the Supplementary Materials.

2 Algorithm

2.1 Setting

We consider the decision-theoretic framework for online learning. In this setting, the learner is given
access to a set ofN actions, whereN ≥ 2. In roundt, the learner chooses a weight distribution
pt = (p1,t, . . . , pN,t) over the actions1, 2, . . . , N . Each actioni incurs a lossℓi,t, and the learner
incurs the expected loss under this distribution:

ℓA,t =

N
∑

i=1

pi,tℓi,t.

The learner’s instantaneous regret to an actioni in roundt is ri,t = ℓA,t − ℓi,t, and its (cumulative)
regret to an actioni in the firstt rounds is

Ri,t =
t
∑

τ=1

ri,τ .

We assume that the lossesℓi,t lie in an interval of length1 (e.g.[0, 1] or [−1/2, 1/2]; the sign of the
loss does not matter). The goal of the learner is to minimize this cumulative regretRi,t to any action
i (in particular, the best action), for any value oft.
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2.2 Normal-Hedge

Our algorithm, Normal-Hedge, is based on a potential function reminiscent of the half-normal dis-
tribution, specifically

φ(x, c) = exp

(

([x]+)2

2c

)

for x ∈ R, c > 0 (1)

where[x]+ denotesmax{0, x}. It is easy to check that this function is separately convex in x andc,
differentiable, and twice-differentiable except atx = 0.

In addition to tracking the cumulative regretsRi,t to each actioni after each roundt, the algorithm
also maintains a scale parameterct. This is chosen so that the average of the potential, over all
actionsi, evaluated atRi,t andct, remains constant ate:

1

N

N
∑

i=1

exp

(

([Ri,t]+)2

2ct

)

= e. (2)

We observe that sinceφ(x, c) is convex inc > 0, we can determinect with a line search.

The weight assigned toi in roundt is set proportional to the first-derivative of the potential, evaluated
atRi,t−1 andct−1:

pi,t ∝ ∂

∂x
φ(x, c)

∣

∣

∣

∣

x=Ri,t−1,c=ct−1

=
[Ri,t−1]+
ct−1

exp

(

([Ri,t−1]+)2

2ct−1

)

.

Notice that the actions for whichRi,t−1 ≤ 0 receive zero weight in roundt.

We summarize the learning algorithm in Figure 2.

3 An Illustrative Example

In this section, we present an example to illustrate that setting the parameters of DTOL algorithms
as a function ofN , the total number of actions, is suboptimal. To do this, we compare the perfor-
mance of NormalHedge with two representative algorithms: aversion of Hedge due to [7], and the
Polynomial Weights algorithm, due to [12, 11]. Our experiments with this example indicate that the
performance of both these algorithms suffer because of the suboptimal setting of the parameters; on
the other hand, NormalHedge automatically adapts to the loss-sequences of the actions.

The main feature of our example is that the effective number of actionsn (i.e. the number of distinct
actions) is smaller than the total number of actionsN . Notice that without prior knowledge of the
actions and their loss-sequences, one cannot determine theeffective number actions in advance; as a
result, there is no direct method by which Hedge and Polynomial Weights could set their parameters
as a function ofn.

Our example attempts to model a practical scenario where oneoften finds multiple actions with
loss-sequences which are almost identical. For example, inthe tracking problem, groups of paths
which are very close together in the state space, will have very close loss-sequences. Our example
indicates that in this case, the performance of Hedge and thePolynomial Weights will depend on
the discretization of the state space, however, NormalHedge will comparatively unaffected by such
discretization.

Our example has four parameters:N , the total number of actions;n, the effective number of actions
(the number of distinct actions);k, the (effective) number of good actions; andǫ, which indicates
how much better the good actions are compared to the rest. Finally, T is the number of rounds.

The instantaneous losses of theN actions are represented by aN × T matrix Bε,k
N ; the loss of

actioni in roundt is the(i, t)-th entry in the matrix. The construction of the matrix is as follows.
First, we construct a (preliminary)n× T matrixAn based on the2d × 2d Hadamard matrix, where
n = 2d+1 − 2. This matrixAn is obtained from the2d × 2d Hadamard matrix by (1) deleting
the constant row, (2) stacking the remaining rows on top of their negations, (3) repeating each row
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horizontallyT/2d times, and finally, (4) halving the first column. We showA6 for concreteness:

A6 =















−1/2 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 . . .
−1/2 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 . . .
−1/2 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 . . .
+1/2 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 . . .
+1/2 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 . . .
+1/2 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 . . .















If the rows ofAn give the losses forn actions over time, then it is clear that on average, no action
is better than any other. Therefore for large enoughT , for these losses, a typical algorithm will
eventually assign all actions the same weight. Now, letAε,k

n be the same asAn except thatε is
subtracted from each entry of the firstk rows,e.g.

Aε,2
6 =















−1/2 − ε +1 − ε −1 − ε +1 − ε −1 − ε +1 − ε −1 − ε +1 − ε . . .
−1/2 − ε −1 − ε +1 − ε +1 − ε −1 − ε −1 − ε +1 − ε +1 − ε . . .

−1/2 +1 +1 −1 −1 +1 +1 −1 . . .
+1/2 −1 +1 −1 +1 −1 +1 −1 . . .
+1/2 +1 −1 −1 +1 +1 −1 −1 . . .
+1/2 −1 −1 +1 +1 −1 −1 +1 . . .















.

Now, when losses are given byAε,k
n , the firstk actions (the good actions) perform better than the

remainingn − k; so, for large enoughT , a typical algorithm will eventually recognize this and
assign the firstk actions equal weights (giving little or no weight to the remaining n − k). Finally,
we artificially replicate each action (each row)N/n times to yield the final loss matrixBε,k

N for N
actions:

Bε,k
N =











Aε,k
n

Aε,k
n
...

Aε,k
n





























N/n replicates ofAε,k
n .

The replication of actions significantly affects the behavior of algorithms that set parameters with
respect to the number of actionsN , which is inflated compared to the effective number of actionsn.
NormalHedge, having no such parameters, is completely unaffected by the replication of actions.

We compare the performance of NormalHedge to two other representative algorithms, which we
call “Exp” and “Poly”. Exp is a time/variation-adaptive version of Hedge (exponential weights)
due to [7] (roughly,ηt = O(

√

(logN)/Vart), whereVart is the cumulative loss variance). Poly
is polynomial weights [12, 11], which has a parameterp that is typically set as a function of the
number of actions; we setp = 2 lnN as is recommended to guarantee a regret bound comparable to
that of Hedge.

Figure 3 shows the regrets to the best action versus the replication factorN/n, where the effective
number of actionsn is held fixed. Recall that Exp and Poly have parameters set with respect to the
number of actionsN .

We see from the figures that NormalHedge is completely unaffected by the replication of actions;
no matter how many times the actions may be replicated, the performance of NormalHedge stays
exactly the same. In contrast, increasing the replication factor affects the performance of Exp and
Poly: Exp and Poly become more sensitive to the changes in thetotal losses of the actions (e.g.the
base of the exponent in the weights assigned by Exp increaseswith N ); so when there are multiple
good actions (i.e.k > 1), Exp and Poly are slower to stabilize their weights over these good actions.
Whenk = 1, Exp and Poly actually perform better using the inflated valueN (as opposed ton), as
this causes the slight advantage of the single best action tobe magnified. However, this particular
case is an anomaly; this does not happen even fork = 2. We note that if the parameters of Exp
and Poly were set to be a function ofn, instead ofN , then, then their performance would also
not depend on the replication factor (the peformance would be the same as theN/n = 1 case).
Therefore, the degradation in performance of Exp and Poly issolely due to the suboptimality in
setting their parameters.
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Figure 3: Regrets to the best action afterT = 32768 rounds, versus replication factorN/n. Recall,
k is the (effective) number of good actions. Here, we fixn = 126 andǫ = 0.025.

4 Related work

There has been a large amount of literature on various aspects of DTOL. The Hedge algorithm of
[1] belongs to a more general family of algorithms, called the exponential weights algorithms; these
are originally based on Littlestone and Warmuth’s WeightedMajority algorithm [2], and they have
been well-studied.

The standard measure of regret in most of these works is the regret to the best action. The original
Hedge algorithm has a regret bound ofO(

√
T logN). Hedge uses a fixed learning rateη for all

iterations, and requires one to setη as a function of the total number of iterationsT . As a result,
its regret bound also holds only for a fixedT . The algorithm of [13] guarantees a regret bound
of O(

√
T logN) to the best action uniformly for allT by using a doubling trick. Time-varying

learning rates for exponential weights algorithms were considered in [6]; there, they show that if
ηt =

√

8 ln(N)/t, then using exponential weights withη = ηt in roundt guarantees regret bounds
of

√
2T lnN + O(lnN) for anyT . This bound provides a better regret to the best action than we

do. However, this method is still susceptible to poor performance, as illustrated in the example in
Section 3. Moreover, they do not consider our notion of regret.

Though not explicitly considered in previous works, the exponential weights algorithms can be
partly analyzed with respect to the regret to the topǫ-quantile. For anyfixed ǫ, Hedge can be
modified by settingη as a function of thisǫ such that the regret to the topǫ-quantile is at most
O(
√

T log(1/ǫ)). The problem with this solution is that it requires thatthe learning rate to be
set as a function of that particularǫ (roughly η =

√

(log 1/ǫ)/T ). Therefore, unlike our bound,
this bound does not hold uniformly for allǫ. One way to ensure a bound for allǫ uniformly is to
run logN copies of Hedge, each with a learning rate set as a function ofa different value ofǫ. A
final master copy of the Hedge algorithm then looks at the probabilities given by these subordinate
copiesto give the final probabilities. However, this procedure adds an additiveO(

√
T log logN)

factor to the regret to theǫ quantile of actions, forany ǫ. More importantly, this procedure is also
impractical for real applications, where one might be already working with a large set of actions.
In contrast, our solution NormalHedge is clean and simple, and we guarantee a regret bound for all
values ofǫ uniformly, without any extra overhead.
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More recent work in [14, 7, 10] provide algorithms with significantly improved bounds when the
total loss of the best action is small, or when the total variation in the losses is small. These bounds
do not explicitly depend onT , and thus can often be sharper than ones that do (including ours). We
stress, however, that these methods use a different notion of regret, and their learning rates depend
explicitly onN .

Besides exponential weights, another important class of online learning algorithms are the poly-
nomial weights algorithms studied in [12, 11, 8]. These algorithms too require a parameter; this
parameter does not depend on the number of roundsT , but depends crucially on the number of ac-
tionsN . The weight assigned to actioni in roundt is proportional to([Ri,t−1]+)p−1 for somep > 1;
settingp = 2 lnN yields regret bounds of the form

√

2eT (lnN − 0.5) for anyT . Our algorithm
and polynomial weights share the feature that zero weight isgiven to actions that are performing
worse than the algorithm, although the degree of this weightsparsity is tied to the performance of
the algorithm. Finally, [15] derive a time-adaptive variation of the follow-the-(perturbed) leader
algorithm [16, 17] by scaling the perturbations by a parameter that depends on botht andN .

5 Analysis

5.1 Main results

Our main result is the following theorem.

Theorem 1. If Normal-Hedge has access toN actions, then for all loss sequences, for allt, for all
0 < ǫ ≤ 1 and for all0 < δ ≤ 1/2, the regret of the algorithm to the topǫ-quantile of the actions is
at most

√

(1 + ln(1/ǫ))

(

3(1 + 50δ)t+
16 ln2N

δ
(
10.2

δ2
+ lnN)

)

.

In particular, withǫ = 1/N , the regret to the best action is at most
√

(1 + lnN)

(

3(1 + 50δ)t+
16 ln2N

δ
(
10.2

δ2
+ lnN)

)

.

The valueδ in Theorem 1 appears to be an artifact of our analysis; we divide the sequence of rounds
into two phases – the length of the first is controlled by the value of δ – and bound the behavior of
the algorithm in each phase separately. The following corollary illustrates the performance of our
algorithm for large values oft, in which case the effect of this first phase (and theδ in the bound)
essentially goes away.

Corollary 2. If Normal-Hedge has access toN actions, then, ast → ∞, the regret of Normal-
Hedge to the topǫ-quantile of actions approaches an upper bound of

√

3t(1 + ln(1/ǫ)) + o(t) .

In particular, the regret of Normal-Hedge to the best actionapproaches an upper bound of
√

3t(1 + lnN) + o(t) .

The proof of Theorem 1 follows from a combination of Lemmas 3,4, and 5, and is presented in
detail at the end of the current section.

5.2 Regret bounds from the potential equation

The following lemma relates the performance of the algorithm at timet to the scalect.

Lemma 3. At any timet, the regret to the best action can be bounded as:

max
i
Ri,t ≤

√

2ct(lnN + 1)

Moreover, for any0 ≤ ǫ ≤ 1 and anyt, the regret to the topǫ-quantile of actions is at most
√

2ct(ln(1/ǫ) + 1).
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Proof. We useEt to denote the actions that have non-zero weight on iterationt. The first part of the
lemma follows from the fact that, for any actioni ∈ Et,

exp

(

(Ri,t)
2

2ct

)

= exp

(

([Ri,t]+)2

2ct

)

≤
N
∑

i′=1

exp

(

([Ri′,t]+)2

2ct

)

≤ Ne

which impliesRi,t ≤
√

2ct(lnN + 1).

For the second part of the lemma, letRi,t denote the regret of our algorithm to the action with the
ǫN -th highest regret. Then, the total potential of the actionswith regrets greater than or equal to
Ri,t is at least:

ǫN exp

(

([Ri,t]+)2

2ct

)

≤ Ne

from which the second part of the lemma follows.

5.3 Bounds on the scale ct and proof of Theorem 1

In Lemmas 4 and 5, we bound the growth of the scalect as a function of the timet.

The main outline of the proof of Theorem 1 is as follows. Asct increases monotonically witht, we
can divide the roundst into two phases,t < t0 andt ≥ t0, wheret0 is the first time such that

ct0 ≥ 4 ln2N

δ
+

16 lnN

δ3
,

for some fixedδ ∈ (0, 1/2). We then show bounds on the growth ofct for each phase separately.
Lemma 4 shows thatct is not too large at the end of the first phase, while Lemma 5 bounds the
per-round growth ofct in the second phase.

Lemma 4. For any timet,
ct+1 ≤ 2ct(1 + lnN) + 3 .

Lemma 5. Suppose that at some timet0, ct0 ≥ 4 ln2 N
δ + 16 ln N

δ3 , where0 ≤ δ ≤ 1
2 is a constant.

Then, for any timet ≥ t0,

ct+1 − ct ≤
3

2
(1 + 49.19δ) .

We now combine Lemmas 4 and 5 together with Lemma 3 to prove themain theorem.

Proof of Theorem 1.Let t0 be the first time at whichct0 ≥ 4 ln2 N
δ + 16 ln N

δ3 . Then, from Lemma 4,

ct0 ≤ 2ct0−1(1 + lnN) + 3,

which is at most:

8 ln3N

δ
+

34 ln2N

δ3
+

32 lnN

δ3
+ 3 ≤ 8 ln3N

δ
+

81 ln2N

δ3
.

The last inequality follows becauseN ≥ 2 andδ ≤ 1/2. By Lemma 5, we have that for anyt ≥ t0,

ct ≤
3

2
(1 + 49.19δ)(t− t0) + ct0 .

Combining these last two inequalities yields

ct ≤
3

2
(1 + 49.19δ)t+

8 ln3N

δ
+

81 ln2N

δ3
.

Now the theorem follows by applying Lemma 3.
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6 Remaining proofs

6.1 Proof of Lemma 4

Proof of Lemma 4.To show Lemma 4, we first show that, for anyt,

1

N

∑

i

φ(Ri,t+1, 2ct(1 + lnN) + 3) ≤ e. (3)

For anyi,Ri,t+1 ≤ Ri,t + 1, so the left hand side of the above inequality is at most

1

N

∑

i

exp

(

(Ri,t + 1)2

4ct(1 + lnN) + 6

)

.

This, in turn, can be upper bounded by

1

N

∑

i

exp

(

R2
i,t

4ct(1 + lnN) + 6

)

· exp

(

2Ri,t

4ct(1 + lnN) + 6

)

· exp

(

1

4ct(1 + lnN) + 6

)

.

We now bound each term in this summation. First, we note that using Lemma 3, the first term can
be bounded as

exp

(

R2
i,t

4ct(1 + lnN) + 6

)

≤ exp

(

2ct(1 + lnN)

4ct(1 + lnN)

)

≤ e1/2.

The second term can be bounded as

exp

(

Ri,t

4ct(1 + lnN) + 6

)

≤ exp

(

√

2ct(1 + lnN)

4ct(1 + lnN) + 6

)

≤ e
1

4
√

3 .

The last inequality follows by noticing that2a + 6/a ≥ 4
√

3 for anya ≥ 0, and in particular for
a =

√

2ct(1 + lnN). Finally, the third term is trivially bounded bye1/6. Combining the bounds
for the three terms in (4) gives

1

N

∑

i

φ(Ri,t+1, 2ct(1 + lnN) + 3) ≤ e.

Since the quantity
∑

i φ(Ri,t+1, c) is always increasing withc, Equation (3) implies thatct+1 ≤
2ct(1 + lnN) + 3. The lemma follows.

6.2 A bootstrap for Lemma 5

Before we can prove Lemma 5, we first show a somewhat weaker bound on the growth ofct with t
(Lemma 6); this bound is used in the proof of Lemma 5 which concludes with the tighter bound on
ct+1 − ct.

Lemma 6. Suppose that at some timet0, ct0 ≥ 16 ln N
δ2 , where0 ≤ δ ≤ 1/2 is a constant. Then, for

any timet ≥ t0,

ct+1 − ct ≤
eδ
(

3
2 + δ + lnN

)

1 − δ2eδ
.

The main idea behind the proof of Lemma 6 is as follows. First,we use Lemma 7 to show that
ct is monotonic int, and to get an expression forct+1 − ct as a ratio of some derivatives and
double derivatives of the potential functionφ. Next, we use Lemma 8 and Corollary 10 to bound the
numerator and denominator of this ratio. Combining these bounds gives us a proof of Lemma 6.

We denote byEt,t+1
.
= Et ∪Et+1 the actions relevant to the change of potential between iterations

t andt+ 1 (recall,Et are the actions with non-zero weight on iterationt).

9



Lemma 7. At any timet,
ct+1 − ct ≥ 0.

Moreover,ct+1 − ct is at most:

∑

i∈Et,t+1

(ri,t+1)
2

2

(

1
ct

+
ρ2

i,t

c2
t

)

exp
(

ρ2
i,t

2ct

)

∑

i∈Et+1

(Ri,t+1)2

ε2
t+1

exp
(

(Ri,t+1)2

2εt+1

)

whereεt+1 lies in betweenct andct+1 and for eachi, ρi,t lies betweenRi,t andRi,t+1.

Proof. We consider the change in average potential due to the regrets changing fromRi,t toRi,t+1

(with the scale fixed atct), and then the change due to the scale changing fromct to ct+1:

0 =

N
∑

i=1

φ(Ri,t+1, ct+1) −
N
∑

i=1

φ(Ri,t, ct)

=
N
∑

i=1

φ(Ri,t+1, ct) − φ(Ri,t, ct) (4)

+

N
∑

i=1

φ(Ri,t+1, ct+1) − φ(Ri,t+1, ct). (5)

It is clear that the sum in (4) can be restricted toi ∈ Et,t+1, and that the sum in (5) can be restricted
to i ∈ Et+1. We now will express (5) in terms ofct+1 − ct and employ upper and lower bounds on
(4).

First, we derive bounds on (4). Letψ(x) = exp(x2/(2ct)). Thenf(x) = φ(x, ct) can be written as

f(x) =

{

ψ(x) if x ≥ 0
ψ(0) if x < 0.

The functionf satisfies the preconditions of Lemma 11 (deferred to the end of the section), so we
have

f(Ri,t+1) − f(Ri,t) ≥ f ′(Ri,t)ri,t+1 (6)

and

f(Ri,t+1) − f(Ri,t) ≤ f ′(Ri,t)ri,t+1 +
ψ′′(ρi,t)

2
r2i,t+1 (7)

wheremin{Ri,t, Ri,t+1} ≤ ρi,t ≤ max{Ri,t, Ri,t+1} andri,t+1 = Ri,t+1 − Ri,t. Now we sum
both the lower and upper bounds (Eqs. (6) and (7)) overi ∈ Et,t+1 and apply the fact

∑

i∈Et,t+1

f ′(Ri,t)ri,t+1 =

N
∑

i=1

f ′(Ri,t)ri,t+1 = 0

which follows easily from the fact that the weight assigned to an actioni in trial t+1 is proportional
to f ′(Ri,t). Thus,

0 ≤
∑

i∈Et,t+1

φ(Ri,t+1, ct) − φ(Ri,t, ct) (8)

≤
∑

i∈Et,t+1

(

1

ct
+
ρ2

i,t

c2t

)

exp

(

ρ2
i,t

2ct

)

· (ri,t+1)
2. (9)

To deal with (5), we view it as a function ofct+1 and then equated via Taylor’s theorem to a first-
order expansion aroundct

−(ct+1 − ct) ·
∑

i∈Et+1

(Ri,t+1)
2

2ε2t+1

exp

(

(Ri,t+1)
2

2εt+1

)

10



for someεt+1 betweenct andct+1. Substituting this back into (5), we have

∑

i∈Et,t+1

φ(Ri,t+1, ct) − φ(Ri,t, ct) = (ct+1 − ct) ·
∑

i∈Et+1

(Ri,t+1)
2

2ε2t+1

exp

(

(Ri,t+1)
2

2εt+1

)

. (10)

The summation on the right-hand side is non-negative, as is the summation on the left-hand side
(recall the lower bound (8)), soct+1 − ct is non-negative as well. This shows the first part of the
lemma. The second part follows from re-arranging Eq. (10) and applying the upper bound (9).

Lemma 8. Let, for somet = t0, ct0 ≥ 16 ln N
δ2 + 1

δ , for some0 ≤ δ ≤ 1. Then, for anyt ≥ t0,

∑

i∈Et,t+1

exp

(

ρ2
i,t

2ct

)

≤ eδNe

and also
∑

i∈Et,t+1

ρ2
i,t

2ct
exp

(

ρ2
i,t

2ct

)

≤ eδ(δ + 1 + lnN)Ne

where theρi,t are the values introduced in Lemma 7.

Proof. Pick any i ∈ Et,t+1. If Ri,t ≥ 0, then |ρi,t| ≤ Ri,t + 1 = [Ri,t]+ + 1. Otherwise
Ri,t+1 ≥ 0 > Ri,t. But since|ri,t+1| = |Ri,t+1−Ri,t| ≤ 1, it must be that|ρi,t| ≤ 1 = [Ri,t]++1.
Therefore

ρ2
i,t ≤ ([Ri,t]+ + 1)2,

which in turn implies

exp

(

ρ2
i,t

2ct

)

≤ exp

(

([Ri,t]+ + 1)2

2ct

)

= exp

(

([Ri,t]+)2

2ct

)

· exp

(

2[Ri,t]+
2ct

)

· exp

(

1

2ct

)

.

To prove the first claim, it suffices to show that each of the twoexponentials in the final product
is bounded byeδ/2. Sincect ≥ ct0 = (16 lnN)/δ2 + 1/δ, we haveexp(1/(2ct)) ≤ eδ/2. Also,
Lemma 3 imply

exp

(

[Ri,t]+
ct

)

≤ exp

(

√

2(1 + lnN)√
ct

)

≤ exp

(

2δ
√

lnN

4
√

lnN

)

≤ eδ/2,

so the first claim follows.

To prove the second claim, we use the first claim to derive the fact

max
i′∈Et,t+1

ρ2
i′,t

2ct
≤ ln

∑

i′∈Et,t+1

exp

(

ρ2
i′,t

2ct

)

≤ δ + 1 + lnN

which in turn is combined again with the first claim to arrive at

∑

i∈Et,t+1

ρ2
i,t

2ct
exp

(

ρ2
i,t

2ct

)

≤
(

max
i′∈Et,t+1

ρ2
i′,t

2ct

)

∑

i∈Et,t+1

exp

(

ρ2
i,t

2ct

)

≤ (δ + 1 + lnN)eδNe,

completing the proof.

Lemma 9. LetB ≥ 1. If
∑N

i=1 e
xi ≥ BN for somex ≥ 0, then

∑N
i=1 xie

xi ≥ BN lnB.

Proof. We consider minimizingf(x) =
∑N

i=1 xie
xi under the constraint

∑N
i=1 e

xi ≥ BN . Define
the Lagrangian functionL(x, λ) =

∑N
i=1 xie

xi + λ(BN −
∑N

i=1 e
xi). Then(∂/∂xi)L(x, λ) =

(xi + 1 − λ)exi , which is0 whenxi = λ − 1. Let g(λ) = L(x∗, λ) be the dual function, where
x∗i = λ − 1. Theng is maximized whenλ = 1 + lnB. By weak duality,supλ g(λ) ≤ infx f(x)
(with the constraints onx), sof(x) ≥ g(1 + lnB) = BN lnB.

The lemma above leads to the following corollary.
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Corollary 10. For anyt,

∑

i∈Et+1

(Ri,t+1)
2

2ct+1
exp

(

(Ri,t+1)
2

2ct+1

)

≥ Ne.

Proof. Let xi = ([Ri,t+1]+)2/(2ct+1), so we have
∑N

i=1 exp(xi) = Ne by Equation (2). Now
Lemma 9 implies

∑N
i=1 xi exp(xi) ≥ Ne. The corollary follows since[Ri,t+1]+ = 0 whenever

i 6∈ Et+1.

Now we prove Lemma 6.

Proof of Lemma 6.By Lemma 7 and the fact|ri,t+1| ≤ 1, we have

0 ≤ ct+1 − ct ≤
∑

i∈Et,t+1
( 1
2ct

+
ρ2

i,t

2c2
t

) exp
(

ρ2
i,t

2ct

)

∑

i∈Et+1

(Ri,t+1)2

2c2
t+1

exp
(

(Ri,t+1)2

2ct+1

) .

Combining this with Lemma 8, Corollary 10, we have

ct+1 − ct ≤ ct+1

ct
· e

δ
(

1
2 + δ + 1 + lnN

)

Ne

Ne
=

(

1 +
ct+1 − ct

ct

)

· eδ

(

1 +
1

2
+ δ + lnN

)

.

Re-arranging, and using the fact thatct ≥ ct0 ≥ (16 lnN)/δ2, we get that,

ct+1 − ct ≤ eδ
(

1 + 1
2 + δ + lnN

)

1 − eδ(1+ 1
2
+δ+ln N)
ct0

≤ eδ( 3
2 + δ + lnN)

1 − δ2eδ( 1
16 ln N +

1
2
+δ

16 ln N + 1
16 )

.

The rest of the lemma follows by plugging in the fact thatN ≥ 2, andδ ≤ 1/2.

6.3 Proof of Lemma 5

Finally, we are ready to prove Lemma 5. As in the proof of Lemma6, here too, we start with an
upper bound onct+1 − ct, obtained from Lemma 7. We then use this upper bound, and the bound
in Lemma 6 to get a finer bound on the quantityct+1 − ct.

Proof of Lemma 5.We divide the actions into two sets:

S1 = {i ∈ Et,t+1 : [Ri,t+1]+ + 1 ≤
√

2ctδ}
S2 = {i ∈ Et,t+1 : [Ri,t+1]+ + 1 >

√

2ctδ}.
Using the fact that|ri,t+1| ≤ 1, the bound from Lemma 7 can be written as

ct+1 − ct ≤
1

2ct

∑

i∈Et,t+1
exp

(

ρ2
i,t

2ct

)

∑

i∈Et+1

(Ri,t+1)2

2c2
t+1

exp
(

(Ri,t+1)2

2ct+1

)

+

∑

i∈S1

ρ2
i,t

2c2
t

exp
(

ρ2
i,t

2c2
t

)

∑

i∈Et+1

R2
i,t+1

2c2
t+1

exp
(

([Ri,t+1]+)2

2c2
t+1

)

+

∑

i∈S2

ρ2
i,t

2c2
t

exp
(

ρ2
i,t

2ct

)

∑

i∈Et+1

(Ri,t+1)2

2c2
t+1

exp
(

(Ri,t+1)2

2ct+1

) .

We will upper-bound each of these three terms separately.

The first term is bounded by(ct+1/ct)e
δ/2 using Lemma 8 and Corollary 10.
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To bound the second term, the definition ofS1 implies

∑

i∈S1

([Ri,t+1]+ + 1)2

2ct
exp

(

([Ri,t+1]+ + 1)2

2ct

)

≤ N
2ctδ

2ct
exp

(

2ctδ

2ct

)

≤ δeδN.

Now Corollary 10 implies a bound of(ct+1/ct)(δe
δ/e).

Now we bound the third term. Note that since
√

2ctδ ≥
√

2ct0δ > 1, we have that eachi ∈ S2 is
also inEt+1. So the third term is bounded above by the largest ratio

ρ2
i,t

2c2
t

exp
(

ρ2
i,t

2ct

)

(Ri,t+1)2

2c2
t+1

exp
(

(Ri,t+1)2

2ct+1

)

over alli ∈ Et+1. Since|ρi,t| ≤ Ri,t+1 + 1, each such ratio is at most

c2t+1

c2t
·
(

Ri,t+1 + 1

Ri,t+1

)2

· exp

(

1

2ct
+
Ri,t+1

ct

)

· exp

(

(Ri,t+1)
2(ct+1 − ct)

2ctct+1

)

.

We bound each factor in this product (deferringc2t+1/c
2
t until later).

• AsRi,t+1 + 1 ≥
√

2ctδ andct ≥ ct0 ≥ 10/δ3, we have
√

2ctδ ≥ 1/δ and
(

Ri,t+1 + 1

Ri,t+1

)2

≤ 1

(1 − δ)2
.

• By Lemma 3, we have

Ri,t+1 ≤ Ri,t + 1 ≤
√

2ct(1 + lnN) + 1,

so

exp

(

1

2ct
+
Ri,t+1

ct

)

≤ exp

(

3

2ct
+
Ri,t

ct

)

≤ exp





3

2ct
+

√

2(1 + lnN)

ct



 ≤ e3δ2/20+3δ/5

sincect ≥ ct0 ≥ (16 lnN)/δ2 ≥ 10/δ2.

• We use Lemma 6 withct0 ≥ (16 lnN)/δ2, andδ ≤ 1/2 to obtain the crude bound

ct+1 − ct ≤ eδ(4 + 2 lnN). (11)

Now using this bound along with Lemma 3 andδ ≤ 1/2 gives

(Ri,t+1)
2(ct+1 − ct)

2ctct+1
≤ eδ(4 + 2 lnN)(1 + lnN)

ct
≤ 6.2 + 4.7 lnN + 3.1 ln2N

ct0

which is at mostδ sincect0 ≥ (16 lnN)/δ2 + (4 ln2N)/δ.

Therefore, the third term is bounded by

c2t+1

c2t
· exp(1.6δ + 0.15δ2)

(1 − δ)2
≤ c2t+1

c2t
· e2δ

(1 − δ)2
.

Collecting the three terms in the bound forct+1 − ct,

ct+1 − ct ≤
ct+1

ct
· e

δ

2
+
ct+1

ct
· δe

δ

e
+
c2t+1

c2t
· e2δ

(1 − δ)2
.
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We bound the ratioct+1/ct as

ct+1

ct
≤ 1 +

ct+1 − ct
ct

≤ 1 +
eδ(4 + 2 lnN)

ct
≤ 1 +

4δ2

10
+
δ2

8
= 1 +

21δeδ

40
≤ 1 + δ

where we have used the bound in (11),ct0 ≥ (16 lnN)/δ2, andδ ≤ 1/2. Therefore, we have

ct+1 − ct ≤
1

2
· eδ(1 + δ) + 1 · e

2δ(1 + δ)2

(1 − δ)2
+
δeδ(1 + δ)

e

To finish the proof, we use the fact thatδ ≤ 1
2 . Using this condition, and a Taylor series expansion,

when0 ≤ δ ≤ 1
2 , eδ ≤ 1 +

√
eδ ≤ 1 + 1.65δ. Using this fact,

1

2
eδ(1 + δ) +

δ

e
eδ(1 + δ)

is at most
1

2
+ 3.02δ + 2.63δ2 + 0.61δ3

which in turn is at most0.5 + 3.49δ. Moreover,

e2δ(1 + δ)2

(1 − δ)2
≤ e2δ(1 + 4δ)2

which again is at most
(1 + 3.3δ)(1 + 4δ)2

Using the fact thatδ ≤ 1
2 , this is at most1 + 45.7δ. The lemma follows by combining this with the

bound in the previous paragraph.

Lemma 11. Letψ : R → R be any continuous, twice-differentiable, convex functionsuch that for
somea ∈ R, ψ is non-decreasing on[a,∞) andψ′(a) = 0. Definef : R → R by

f(x) =

{

ψ(x) if x ≥ a
ψ(a) if x < a,

Then for anyx0, x ∈ R,

f ′(x0)(x− x0) ≤ f(x) − f(x0) ≤ f ′(x0)(x− x0) +
ψ′′(ξ)

2
(x− x0)

2

for somemin{x0, x} ≤ ξ ≤ max{x0, x}.

Proof. The lower bound follows from the convexity off , which is inherited from the convexity of
ψ. For the upper bound, we first consider the casex0 < a andx ≥ a. Then, for someξ ∈ [a, x],

f(x) − f(x0) = ψ(x) − ψ(a)

= ψ′(a)(x− a) +
ψ′′(ξ)

2
(x− a)2 (12)

≤ ψ′(a)(x− x0) +
ψ′′(ξ)

2
(x− x0)

2 (13)

= f ′(x0)(x− x0) +
ψ′′(ξ)

2
(x− x0)

2

where (12) follows by Taylor’s theorem and (13) follows since x0 ≤ a < x, ψ′(a) ≥ 0, and
ψ′′(ξ) ≥ 0. The casex0 ≥ a andx < a is analogous, and the remaining cases are immediate using
Taylor’s theorem.
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φ(x, c) = exp

(

([x]+)2

2c

)

∂

∂x
φ(x, c) =

[x]+
c

exp

(

([x]+)2

2c

)

∂2

∂x2
φ(x, c) =

{ (

1
c + x2

c2

)

exp
(

x2

2c

)

if x > 0

0 if x < 0

∂

∂c
φ(x, c) = − ([x]+)2

2c2
exp

(

([x]+)2

2c

)

Figure 4: The potential functionφ(x, c) and its derivatives.
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