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Unsupervised learning

I Many modern applications of machine learning:
I high-dimensional data from many diverse sources,
I but mostly unlabeled.

I Unsupervised learning: extract useful info from this data.
I Disentangle sub-populations in data source.
I Discover useful representations for downstream stages of

learning pipeline (e.g., supervised learning).
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Mixture models

Simple latent variable model: mixture model

h

~x

h ∈ [k ] := {1,2, . . . , k} (hidden);

~x ∈ Rd (observed);

Pr[ h = j ] = wj ; ~x
∣∣h ∼ Ph;

so ~x has a mixture distribution

P(~x) = w1P1(~x) + w2P2(~x) + · · ·+ wkPk (~x).

Typical use: learn about constituent sub-populations
(e.g., clusters) in data source.
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Multi-view mixture models

Can we take advantage of diverse sources of information?

h

~x1 ~x2 · · · ~x`

h ∈ [k ],

~x1 ∈ Rd1 , ~x2 ∈ Rd2 , . . . , ~x` ∈ Rd` .

k = # components, ` = # views (e.g., audio, video, text).
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Multi-view mixture models

Multi-view assumption:
Views are conditionally independent given the component.

View 1: ~x1 ∈ Rd1 View 2: ~x2 ∈ Rd2 View 3: ~x3 ∈ Rd3

Larger k (# components): more sub-populations to disentangle.
Larger ` (# views): more non-redundant sources of information.



Semi-parametric estimation task

“Parameters” of component distributions:

Mixing weights wj := Pr[h = j], j ∈ [k ];

Conditional means ~µv ,j := E[~xv |h = j] ∈ Rdv , j ∈ [k ], v ∈ [`].

Goal: Estimate mixing weights and conditional means from
independent copies of (~x1, ~x2, . . . , ~x`).

Questions:
1. How do we estimate {wj} and {~µv ,j} without observing h?

2. How many views ` are sufficient to learn with poly(k)
computational / sample complexity?



Semi-parametric estimation task

“Parameters” of component distributions:

Mixing weights wj := Pr[h = j], j ∈ [k ];

Conditional means ~µv ,j := E[~xv |h = j] ∈ Rdv , j ∈ [k ], v ∈ [`].

Goal: Estimate mixing weights and conditional means from
independent copies of (~x1, ~x2, . . . , ~x`).

Questions:
1. How do we estimate {wj} and {~µv ,j} without observing h?

2. How many views ` are sufficient to learn with poly(k)
computational / sample complexity?



Some barriers to efficient estimation

Challenge: many difficult parametric estimation tasks reduce to
this estimation problem.

Cryptographic barrier: discrete HMM pa-
rameter estimation as hard as learning parity
functions with noise (Mossel-Roch, ’06).

Statistical barrier: Gaussian mixtures in R1

can require exp(Ω(k)) samples to estimate
parameters, even if components are well-
separated (Moitra-Valiant, ’10).

In practice: resort to local search (e.g., EM), often subject to
slow convergence and inaccurate local optima.
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Making progress: Gaussian mixture model

Gaussian mixture model: problem becomes easier if assume
some large minimum separation between component means
(Dasgupta, ’99):

sep := min
i 6=j

‖~µi − ~µj‖
max{σi , σj}

.

I sep = Ω(dc): interpoint distance-based methods / EM
(Dasgupta, ’99; Dasgupta-Schulman, ’00; Arora-Kannan, ’00)

I sep = Ω(kc): first use PCA to k dimensions
(Vempala-Wang, ’02; Kannan-Salmasian-Vempala, ’05;
Achlioptas-McSherry, ’05)

I Also works for mixtures of log-concave distributions.

I No minimum separation requirement: method-of-moments
but exp(Ω(k)) running time / sample size
(Kalai-Moitra-Valiant, ’10; Belkin-Sinha, ’10; Moitra-Valiant, ’10)
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Making progress: discrete hidden Markov models

Hardness reductions create HMMs with degenerate output and
next-state distributions.

≈

1 4 5 6 7 82 3

0.6 Pr[~xt = ·|ht = 2] + 0.4 Pr[~xt = ·|ht = 3]

1 4 5 6 7 82 3

1 4 5 6 7 82 3

Pr[~xt = ·|ht = 1]

0.6

+0.4

These instances are avoided by assuming parameter matrices
are full-rank (Mossel-Roch, ’06; Hsu-Kakade-Zhang, ’09)
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What we do

This work: given ≥ 3 views, mild non-degeneracy conditions
imply efficient algorithms for estimation.

I Non-degeneracy condition for multi-view mixture model:
Conditional means {~µv ,1, ~µv ,2, . . . , ~µv ,k} are linearly
independent for each view v ∈ [`], and ~w > ~0.

Requires high-dimensional observations (dv ≥ k )!

I New efficient learning guarantees for parametric models
(e.g., mixtures of Gaussians, general HMMs)

I General tensor decomposition framework applicable to
a wide variety of estimation problems.
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The plan

I First, assume views are (conditionally) exchangeable,
and derive basic algorithm.

I Then, provide reduction from general multi-view setting to
exchangeable case.
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Simpler case: exchangeable views

(Conditionally) exchangeable views: assume the views have
the same conditional means, i.e.,

E[ ~xv |h = j ] ≡ ~µj , j ∈ [k ], v ∈ [`].

Motivating setting: bag-of-words model,
~x1, ~x2, . . . , ~x` ≡ ` exchangeable words in a document.

One-hot encoding:

~xv = ~ei ⇔ v -th word in document is i-th word in vocab

(where ~ei ∈ {0,1}d has 1 in i-th position, 0 elsewhere).

(~µj)i = E[(~xv )i |h = j] = Pr[~xv = ~ei |h = j], i ∈ [d ], j ∈ [k ].
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Key ideas

1. Method-of-moments: conditional means are revealed by
appropriate low-rank decompositions of moment matrices
and tensors.

2. Third-order tensor decomposition is uniquely
determined by directions of (locally) maximum skew.

3. The required local optimization can be efficiently
performed in poly time.



Algebraic structure in moments

Recall: E[ ~xv |h = j ] = ~µj .

By conditional independence and exchangeability of
~x1, ~x2, . . . , ~x` given h,

Pairs := E[~x1 ⊗ ~x2]

= E
[
E[~x1|h]⊗ E[~x2|h]

]
= E[~µh ⊗ ~µh]

=
k∑

i=1

wi ~µi ⊗ ~µi ∈ Rd×d .

Triples := E[~x1 ⊗ ~x2 ⊗ ~x3]

=
k∑

i=1

wi ~µi ⊗ ~µi ⊗ ~µi ∈ Rd×d×d , etc.

(If only we could extract these “low-rank” decompositions . . . )
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2nd moment: subspace spanned by conditional means

Non-degeneracy assumption ({~µi} linearly independent)
=⇒ Pairs =

∑k
i=1 wi ~µi ⊗ ~µi symmetric psd and rank k

=⇒ Pairs equips k -dim subspace span{~µ1, ~µ2, . . . , ~µk} with
inner product

Pairs(~x , ~y) := ~x>Pairs~y .

However, {~µi} not generally determined by just Pairs
(e.g., {~µi} are not necessarily orthogonal).
Must look at higher-order moments?
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3rd moment: (cross) skew maximizers

Claim: Up to third-moment (i.e., 3 views) suffices.
View Triples : Rd × Rd × Rd → R as trilinear form.

Theorem
Each isolated local maximizer ~η∗ of

max
~η∈Rd

Triples(~η, ~η, ~η) s.t. Pairs(~η, ~η) ≤ 1

satisfies, for some i ∈ [k ],

Pairs ~η∗ =
√

wi ~µi , Triples(~η∗, ~η∗, ~η∗) =
1√
wi
.

Also: these maximizers can be found efficiently and robustly.
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Variational analysis

max
~η∈Rd

Triples(~η, ~η, ~η) s.t. Pairs(~η, ~η) ≤ 1

Isolated local maximizers ~θ∗ (found via gradient ascent) are

~e1 = (1,0,0, . . . ), ~e2 = (0,1,0, . . . ), etc.

which means that each ~η∗ satisfies, for some i ∈ [k ],√
wj
(
~η∗>~µj

)
=

{
1 j = i
0 j 6= i .

Therefore

Pairs ~η∗ =
k∑

j=1

wj~µj
(
~η∗>~µj

)
=
√

wi~µi .
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max
~θ∈Rk

k∑
i=1

1√
wi

θ3
i s.t.

k∑
i=1

θ2
i ≤ 1

(Let θi :=
√

wi (~η>~µi ) for i ∈ [k ].)

Isolated local maximizers ~θ∗ (found via gradient ascent) are

~e1 = (1,0,0, . . . ), ~e2 = (0,1,0, . . . ), etc.

which means that each ~η∗ satisfies, for some i ∈ [k ],√
wj
(
~η∗>~µj

)
=

{
1 j = i
0 j 6= i .

Therefore

Pairs ~η∗ =
k∑

j=1

wj~µj
(
~η∗>~µj

)
=
√

wi~µi .



Extracting all isolated local maximizers

1. Start with T := Triples.

2. Find isolated local maximizer of

T (~η, ~η, ~η) s.t. Pairs(~η, ~η) ≤ 1

via gradient ascent from random ~η ∈ range(Pairs).
Say maximum is λ∗ and maximizer is ~η∗.

3. Deflation: replace T with T − λ∗~η∗ ⊗ ~η∗ ⊗ ~η∗.
Goto step 2.

A variant of this runs in polynomial time (w.h.p.), and is
robust to perturbations to Pairs and Triples.
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General case: asymmetric views

Each view v has different set of conditional means
{~µv ,1, ~µv ,2, . . . , ~µv ,k} ⊂ Rdv .

Reduction: transform ~x1 and ~x2 to “look like” ~x3 via linear
transformations.

−→
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Asymmetric cross moments

Define asymmetric cross moment:

Pairsu,v := E[~xu ⊗ ~xv ].

Transforming view v to view 3:

Cv→3 := E[~x3 ⊗ ~xu] E[~xv ⊗ ~xu]† ∈ Rd3×dv

where † denotes Moore-Penrose pseudoinverse.

Simple exercise to show

E[Cv→3~xv |h = j] = ~µ3,j

so Cv→3~xv behaves like ~x3 (as far as our algorithm can tell).
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Mixtures of axis-aligned Gaussians

Mixture of axis-aligned Gaussian in Rn, with component means
~µ1, ~µ2, . . . , ~µk ∈ Rn; no minimum separation requirement.

h

x1 x2 · · · xn

Assumptions:
I non-degeneracy: component means span k dim subspace.
I weak incoherence condition: component means not

perfectly aligned with coordinate axes — similar to
spreading condition of (Chaudhuri-Rao, ’08).

Then, randomly partitioning coordinates into ` ≥ 3 views
guarantees (w.h.p.) that non-degeneracy holds in all ` views.
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Hidden Markov models and others

h1 h2 h3

~x1 ~x2 ~x3

−→
h

~x1 ~x2 ~x3

Other models:
1. Mixtures of Gaussians (Hsu-Kakade, ITCS’13)

2. HMMs (Anandkumar-Hsu-Kakade, COLT’12)

3. Latent Dirichlet Allocation
(Anandkumar-Foster-Hsu-Kakade-Liu, NIPS’12)

4. Latent parse trees (Hsu-Kakade-Liang, NIPS’12)

5. Independent Component Analysis
(Arora-Ge-Moitra-Sachdeva, NIPS’12; Hsu-Kakade, ITCS’13)
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Bag-of-words clustering model
(~µj)i = Pr[ see word i in document | document topic is j ].

I Corpus: New York Times (from UCI), 300000 articles.
I Vocabulary size: d = 102660 words.
I Chose k = 50.
I For each topic j , show top 10 words i .

sales run school drug player
economic inning student patient tiger_wood
consumer hit teacher million won

major game program company shot
home season official doctor play

indicator home public companies round
weekly right children percent win
order games high cost tournament
claim dodger education program tour

scheduled left district health right
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Bag-of-words clustering model

palestinian tax cup point yard
israel cut minutes game game
israeli percent oil team play

yasser_arafat bush water shot season
peace billion add play team
israeli plan tablespoon laker touchdown
israelis bill food season quarterback
leader taxes teaspoon half coach
official million pepper lead defense
attack congress sugar games quarter



Bag-of-words clustering model

percent al_gore car book taliban
stock campaign race children attack

market president driver ages afghanistan
fund george_bush team author official

investor bush won read military
companies clinton win newspaper u_s

analyst vice racing web united_states
money presidential track writer terrorist

investment million season written war
economy democratic lap sales bin



Bag-of-words clustering model

com court show film music
www case network movie song
site law season director group
web lawyer nbc play part
sites federal cb character new_york

information government program actor company
online decision television show million
mail trial series movies band

internet microsoft night million show
telegram right new_york part album

etc.



Some open questions

What if k > dv? (relevant to overcomplete dictionary learning)

I Apply some non-linear transformations ~xv 7→ fv (~xv )?

I Combine views, e.g., via tensor product

x̃1,2 := ~x1 ⊗ ~x2, x̃3,4 := ~x3 ⊗ ~x4, x̃5,6 := ~x5 ⊗ ~x6, etc. ?

Can we relax the multi-view assumption?

I Allow for richer hidden state?
(e.g., independent component analysis)

I “Gaussianization” via random projection?
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Concluding remarks

Take-home messages:

I Power of multiple views: Can take advantage of diverse /
non-redundant sources of information in unsupervised
learning.

I Overcoming complexity barriers: Some provably hard
estimation problems become easy after ruling out
“degenerate” cases.

I “Blessing of dimensionality” for estimators based on
method-of-moments.
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Thanks!

(Co-authors: Anima Anandkumar, Dean Foster, Rong Ge, Sham
Kakade, Yi-Kai Liu, Matus Telgarsky)

http://arxiv.org/abs/1210.7559

http://arxiv.org/abs/1210.7559
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