Efficient algorithms for estimating multi-view mixture models

Daniel Hsu

Microsoft Research, New England

Outline

Multi-view mixture models

Multi-view method-of-moments

Some applications and open questions

Concluding remarks

Part 1. Multi-view mixture models

Multi-view mixture models

Unsupervised learning and mixture models Multi-view mixture models Complexity barriers

Multi-view method-of-moments

Some applications and open questions

Concluding remarks

Unsupervised learning

Many modern applications of machine learning:

- high-dimensional data from many diverse sources,
- but mostly unlabeled.

Unsupervised learning

Many modern applications of machine learning:

- high-dimensional data from many diverse sources,
- but mostly unlabeled.

• Unsupervised learning: extract useful info from this data.

- Disentangle sub-populations in data source.
- Discover useful representations for downstream stages of learning pipeline (*e.g.*, supervised learning).

Mixture models

Simple latent variable model: mixture model

so \vec{x} has a mixture distribution

$$\mathbb{P}(\vec{x}) = \mathbf{w}_1 \mathbb{P}_1(\vec{x}) + \mathbf{w}_2 \mathbb{P}_2(\vec{x}) + \cdots + \mathbf{w}_k \mathbb{P}_k(\vec{x}).$$

Mixture models

Simple latent variable model: mixture model

so \vec{x} has a mixture distribution

$$\mathbb{P}(\vec{x}) = \mathbf{w}_1 \mathbb{P}_1(\vec{x}) + \mathbf{w}_2 \mathbb{P}_2(\vec{x}) + \cdots + \mathbf{w}_k \mathbb{P}_k(\vec{x}).$$

Typical use: learn about constituent sub-populations (*e.g.*, clusters) in data source.

Can we take advantage of diverse sources of information?

Can we take advantage of diverse sources of information?

$$\begin{array}{c} h \\ \hline x_1 \\ \hline x_2 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} h \\ \hline x_\ell \\ \hline \end{array} \\ \begin{array}{c} h \\ \hline x_1 \in \mathbb{R}^{d_1}, \\ \hline x_2 \in \mathbb{R}^{d_2}, \\ \hline x_\ell \in \mathbb{R}^{d_\ell}. \end{array}$$

k =# components, $\ell =$ # views (*e.g.*, audio, video, text).

Can we take advantage of diverse sources of information?

$$\begin{array}{c} h \\ \hline \vec{x_1} \quad \vec{x_2} \quad \cdots \quad \vec{x_\ell} \end{array} \qquad \qquad h \in [k], \\ \vec{x_1} \in \mathbb{R}^{d_1}, \vec{x_2} \in \mathbb{R}^{d_2}, \ldots, \vec{x_\ell} \in \mathbb{R}^{d_\ell}. \end{array}$$

k =# components, $\ell =$ # views (*e.g.*, audio, video, text).

Multi-view assumption:

Views are conditionally independent given the component.

Larger *k* (# components): more sub-populations to disentangle. Larger ℓ (# views): more non-redundant sources of information.

Semi-parametric estimation task

"Parameters" of component distributions:

Mixing weights $w_j := \Pr[h = j], \quad j \in [k];$ Conditional means $\vec{\mu}_{v,j} := \mathbb{E}[\vec{x}_v | h = j] \in \mathbb{R}^{d_v}, \quad j \in [k], v \in [\ell].$

Goal: Estimate mixing weights and conditional means from independent copies of $(\vec{x}_1, \vec{x}_2, ..., \vec{x}_\ell)$.

Semi-parametric estimation task

"Parameters" of component distributions:

Mixing weights $w_j := \Pr[h = j], \quad j \in [k];$ Conditional means $\vec{\mu}_{v,j} := \mathbb{E}[\vec{x}_v | h = j] \in \mathbb{R}^{d_v}, \quad j \in [k], v \in [\ell].$

Goal: Estimate mixing weights and conditional means from independent copies of $(\vec{x}_1, \vec{x}_2, ..., \vec{x}_\ell)$.

Questions:

- 1. How do we estimate $\{w_i\}$ and $\{\vec{\mu}_{v,i}\}$ without observing *h*?
- How many views ℓ are sufficient to learn with poly(k) computational / sample complexity?

Challenge: many difficult parametric estimation tasks reduce to this estimation problem.

Challenge: many difficult parametric estimation tasks reduce to this estimation problem.

Cryptographic barrier: discrete HMM parameter estimation as hard as learning parity functions with noise (Mossel-Roch, '06).

Challenge: many difficult parametric estimation tasks reduce to this estimation problem.

Cryptographic barrier: discrete HMM parameter estimation as hard as learning parity functions with noise (Mossel-Roch, '06).

Statistical barrier: Gaussian mixtures in \mathbb{R}^1 can require $\exp(\Omega(k))$ samples to estimate parameters, even if components are well-separated (Moitra-Valiant, '10).

Challenge: many difficult parametric estimation tasks reduce to this estimation problem.

Cryptographic barrier: discrete HMM parameter estimation as hard as learning parity functions with noise (Mossel-Roch, '06).

Statistical barrier: Gaussian mixtures in \mathbb{R}^1 can require $\exp(\Omega(k))$ samples to estimate parameters, even if components are well-separated (Moitra-Valiant, '10).

In practice: resort to local search (*e.g.*, EM), often subject to slow convergence and inaccurate local optima.

Making progress: Gaussian mixture model

Gaussian mixture model: problem becomes easier if assume some large minimum separation between component means (Dasgupta, '99):

$$\mathsf{sep} := \min_{i
eq j} rac{\|ec{\mu}_i - ec{\mu}_j\|}{\max\{\sigma_i, \sigma_j\}}$$

Making progress: Gaussian mixture model

Gaussian mixture model: problem becomes easier if assume some large minimum separation between component means (Dasgupta, '99):

$$\mathsf{sep} := \min_{i \neq j} \frac{\|\vec{\mu}_i - \vec{\mu}_j\|}{\max\{\sigma_i, \sigma_j\}}.$$

- sep = Ω(d^c): interpoint distance-based methods / EM (Dasgupta, '99; Dasgupta-Schulman, '00; Arora-Kannan, '00)
 - sep = Ω(k^c): first use PCA to k dimensions (Vempala-Wang, '02; Kannan-Salmasian-Vempala, '05; Achlioptas-McSherry, '05)
 - Also works for mixtures of log-concave distributions.

Making progress: Gaussian mixture model

Gaussian mixture model: problem becomes easier if assume some large minimum separation between component means (Dasgupta, '99):

$$\mathsf{sep} := \min_{i \neq j} \frac{\|\vec{\mu}_i - \vec{\mu}_j\|}{\max\{\sigma_i, \sigma_j\}}.$$

- sep = Ω(d^c): interpoint distance-based methods / EM (Dasgupta, '99; Dasgupta-Schulman, '00; Arora-Kannan, '00)
 - sep = Ω(k^c): first use PCA to k dimensions (Vempala-Wang, '02; Kannan-Salmasian-Vempala, '05; Achlioptas-McSherry, '05)
 - Also works for mixtures of log-concave distributions.
- No minimum separation requirement: method-of-moments but exp(Ω(k)) running time / sample size (Kalai-Moitra-Valiant, '10; Belkin-Sinha, '10; Moitra-Valiant, '10)

Making progress: discrete hidden Markov models

Hardness reductions create HMMs with degenerate output and next-state distributions.

Making progress: discrete hidden Markov models

Hardness reductions create HMMs with degenerate output and next-state distributions.

These instances are avoided by assuming parameter matrices are full-rank (Mossel-Roch, '06; Hsu-Kakade-Zhang, '09)

This work: given \geq 3 views, mild non-degeneracy conditions imply efficient algorithms for estimation.

This work: given \geq 3 views, mild non-degeneracy conditions imply efficient algorithms for estimation.

▶ **Non-degeneracy condition** for multi-view mixture model: Conditional means $\{\vec{\mu}_{\nu,1}, \vec{\mu}_{\nu,2}, \dots, \vec{\mu}_{\nu,k}\}$ are linearly independent for each view $\nu \in [\ell]$, and $\vec{w} > \vec{0}$.

Requires high-dimensional observations $(d_v \ge k)!$

This work: given \geq 3 views, mild non-degeneracy conditions imply efficient algorithms for estimation.

▶ **Non-degeneracy condition** for multi-view mixture model: Conditional means $\{\vec{\mu}_{\nu,1}, \vec{\mu}_{\nu,2}, \dots, \vec{\mu}_{\nu,k}\}$ are linearly independent for each view $\nu \in [\ell]$, and $\vec{w} > \vec{0}$.

Requires high-dimensional observations $(d_v \ge k)!$

New efficient learning guarantees for parametric models (*e.g.*, mixtures of Gaussians, general HMMs)

This work: given \geq 3 views, mild non-degeneracy conditions imply efficient algorithms for estimation.

▶ **Non-degeneracy condition** for multi-view mixture model: Conditional means $\{\vec{\mu}_{\nu,1}, \vec{\mu}_{\nu,2}, \dots, \vec{\mu}_{\nu,k}\}$ are linearly independent for each view $\nu \in [\ell]$, and $\vec{w} > \vec{0}$.

Requires high-dimensional observations $(d_v \ge k)!$

- New efficient learning guarantees for parametric models (*e.g.*, mixtures of Gaussians, general HMMs)
- General tensor decomposition framework applicable to a wide variety of estimation problems.

Part 2. Multi-view method-of-moments

Multi-view mixture models

Multi-view method-of-moments

Overview Structure of moments Uniqueness of decomposition Computing the decomposition Asymmetric views

Some applications and open questions

Concluding remarks

The plan

First, assume views are (conditionally) exchangeable, and derive basic algorithm.

The plan

First, assume views are (conditionally) exchangeable, and derive basic algorithm.

 Then, provide reduction from general multi-view setting to exchangeable case.

Simpler case: exchangeable views

(Conditionally) exchangeable views: assume the views have the same conditional means, *i.e.*,

$$\mathbb{E}[\vec{x}_{\boldsymbol{v}}|\boldsymbol{h}=\boldsymbol{j}]\equiv\vec{\mu}_{\boldsymbol{j}},\quad \boldsymbol{j}\in[\boldsymbol{k}], \boldsymbol{v}\in[\boldsymbol{\ell}].$$

Simpler case: exchangeable views

(Conditionally) exchangeable views: assume the views have the same conditional means, *i.e.*,

 $\mathbb{E}[\vec{x}_{v}|h=j] \equiv \vec{\mu}_{j}, \quad j \in [k], v \in [\ell].$

Motivating setting: bag-of-words model,

 $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_\ell \equiv \ell$ exchangeable words in a document.

One-hot encoding:

 $\vec{x}_v = \vec{e}_i \quad \Leftrightarrow \quad v$ -th word in document is *i*-th word in vocab (where $\vec{e}_i \in \{0, 1\}^d$ has 1 in *i*-th position, 0 elsewhere).

$$(\vec{\mu}_j)_i = \mathbb{E}[(\vec{x}_v)_i | h = j] = \Pr[\vec{x}_v = \vec{e}_i | h = j], \quad i \in [d], j \in [k].$$

Key ideas

- 1. **Method-of-moments**: conditional means are revealed by appropriate low-rank decompositions of moment matrices and tensors.
- 2. Third-order tensor decomposition is uniquely determined by directions of (locally) maximum *skew*.
- 3. The required **local optimization** can be efficiently performed in poly time.

Algebraic structure in moments

Recall: $\mathbb{E}[\vec{x}_{v}|h=j] = \vec{\mu}_{j}$.

Algebraic structure in moments

Recall: $\mathbb{E}[\vec{x}_{v}|h=j] = \vec{\mu}_{j}$.

By conditional independence and exchangeability of $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_\ell$ given *h*,

Pairs := $\mathbb{E}[\vec{x}_1 \otimes \vec{x}_2]$ = $\mathbb{E}[\mathbb{E}[\vec{x}_1|h] \otimes \mathbb{E}[\vec{x}_2|h]] = \mathbb{E}[\vec{\mu}_h \otimes \vec{\mu}_h]$ = $\sum_{i=1}^k w_i \ \vec{\mu}_i \otimes \vec{\mu}_i \in \mathbb{R}^{d \times d}$.

Algebraic structure in moments

Recall: $\mathbb{E}[\vec{x}_v | h = j] = \vec{\mu}_j$.

By conditional independence and exchangeability of $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_\ell$ given *h*,

$$\begin{aligned} \text{Pairs} &:= \mathbb{E}[\vec{x}_1 \otimes \vec{x}_2] \\ &= \mathbb{E}\big[\mathbb{E}[\vec{x}_1 | h] \otimes \mathbb{E}[\vec{x}_2 | h]\big] = \mathbb{E}[\vec{\mu}_h \otimes \vec{\mu}_h] \\ &= \sum_{i=1}^k w_i \ \vec{\mu}_i \otimes \vec{\mu}_i \ \in \mathbb{R}^{d \times d}. \end{aligned}$$
$$\begin{aligned} \text{Triples} &:= \mathbb{E}[\vec{x}_1 \otimes \vec{x}_2 \otimes \vec{x}_3] \\ &= \sum_{i=1}^k w_i \ \vec{\mu}_i \otimes \vec{\mu}_i \otimes \vec{\mu}_i \ \in \mathbb{R}^{d \times d \times d}, \quad etc. \end{aligned}$$

(If only we could extract these "low-rank" decompositions ...)

2nd moment: subspace spanned by conditional means
Non-degeneracy assumption ($\{\vec{\mu}_i\}$ linearly independent)

Non-degeneracy assumption ($\{\vec{\mu}_i\}$ linearly independent) \implies Pairs = $\sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i$ symmetric psd and rank *k*

Non-degeneracy assumption $(\{\vec{\mu}_i\} \text{ linearly independent})$ $\implies \text{Pairs} = \sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i \text{ symmetric psd and rank } k$ $\implies \text{Pairs equips } k \text{-dim subspace span}\{\vec{\mu}_1, \vec{\mu}_2, \dots, \vec{\mu}_k\} \text{ with inner product}$

 $\operatorname{Pairs}(\vec{x}, \vec{y}) := \vec{x}^{\top} \operatorname{Pairs} \vec{y}.$

Non-degeneracy assumption ($\{\vec{\mu}_i\}$ linearly independent) \implies Pairs = $\sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i$ symmetric psd and rank k \implies Pairs equips k-dim subspace span{ $\vec{\mu}_1, \vec{\mu}_2, \dots, \vec{\mu}_k$ } with inner product

 $\operatorname{Pairs}(\vec{x}, \vec{y}) := \vec{x}^{\top} \operatorname{Pairs} \vec{y}.$

However, $\{\vec{\mu}_i\}$ not generally determined by just Pairs (*e.g.*, $\{\vec{\mu}_i\}$ are not necessarily orthogonal).

Non-degeneracy assumption ($\{\vec{\mu}_i\}$ linearly independent) \implies Pairs = $\sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i$ symmetric psd and rank k \implies Pairs equips k-dim subspace span{ $\vec{\mu}_1, \vec{\mu}_2, \dots, \vec{\mu}_k$ } with inner product

 $\operatorname{Pairs}(\vec{x}, \vec{y}) := \vec{x}^{T} \operatorname{Pairs} \vec{y}.$

However, $\{\vec{\mu}_i\}$ not generally determined by just Pairs (*e.g.*, $\{\vec{\mu}_i\}$ are not necessarily orthogonal). **Must look at higher-order moments?**

3rd moment: (cross) skew maximizers

Claim: Up to third-moment (*i.e.*, 3 views) suffices. View Triples: $\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ as trilinear form.

3rd moment: (cross) skew maximizers

Claim: Up to third-moment (*i.e.*, 3 views) suffices. View Triples: $\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ as trilinear form.

```
Theorem<br/>Each isolated local maximizer \vec{\eta}^* of<br/>\underset{\vec{\eta} \in \mathbb{R}^d}{\max \operatorname{Triples}(\vec{\eta}, \vec{\eta}, \vec{\eta})} s.t. Pairs(\vec{\eta}, \vec{\eta}) \leq 1satisfies, for some i \in [k],<br/>Pairs \vec{\eta}^* = \sqrt{w_i} \ \vec{\mu}_i,Triples(\vec{\eta}^*, \vec{\eta}^*, \vec{\eta}^*) = \frac{1}{\sqrt{w_i}}.
```

3rd moment: (cross) skew maximizers

Claim: Up to third-moment (*i.e.*, 3 views) suffices. View Triples: $\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ as trilinear form.

```
Theorem
Each isolated local maximizer \vec{\eta}^* of
                    max Triples(\vec{\eta}, \vec{\eta}, \vec{\eta}) s.t. Pairs(\vec{\eta}, \vec{\eta}) \leq 1
                    \vec{n} \in \mathbb{R}^d
satisfies, for some i \in [k],
      Pairs \vec{\eta}^* = \sqrt{w_i} \vec{\mu}_i, Triples(\vec{\eta}^*, \vec{\eta}^*, \vec{\eta}^*) = \frac{1}{\sqrt{w_i}}.
```

Also: these maximizers can be found efficiently and robustly.

$\max_{\vec{\eta} \in \mathbb{R}^d} \text{Triples}(\vec{\eta},\vec{\eta},\vec{\eta}) \text{ s.t. } \text{Pairs}(\vec{\eta},\vec{\eta}) \leq 1$

$$\max_{\vec{\eta} \in \mathbb{R}^d} \text{Triples}(\vec{\eta}, \vec{\eta}, \vec{\eta}) \text{ s.t. } \text{Pairs}(\vec{\eta}, \vec{\eta}) \leq 1$$

(Substitute Pairs = $\sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i$ and Triples = $\sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i \otimes \vec{\mu}_i$.)

$$\max_{\vec{\eta} \in \mathbb{R}^d} \sum_{i=1}^k \frac{\mathsf{w}_i}{(\vec{\eta}^\top \vec{\mu}_i)^3} \text{ s.t. } \sum_{i=1}^k \frac{\mathsf{w}_i}{(\vec{\eta}^\top \vec{\mu}_i)^2} \leq 1$$

(Substitute Pairs = $\sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i$ and Triples = $\sum_{i=1}^{k} w_i \vec{\mu}_i \otimes \vec{\mu}_i \otimes \vec{\mu}_i$.)

$$\max_{\vec{\eta} \in \mathbb{R}^d} \sum_{i=1}^k w_i \ (\vec{\eta}^\top \vec{\mu}_i)^3 \text{ s.t. } \sum_{i=1}^k w_i \ (\vec{\eta}^\top \vec{\mu}_i)^2 \le 1$$

(Let $\theta_i := \sqrt{W_i} (\vec{\eta} \mid \vec{\mu}_i)$ for $i \in [k]$.)

$$\max_{\vec{\eta}\in\mathbb{R}^d}\sum_{i=1}^k \frac{1}{\sqrt{w_i}} \left(\sqrt{w_i}\vec{\eta}^\top\vec{\mu}_i\right)^3 \text{ s.t. } \sum_{i=1}^k (\sqrt{w_i}\vec{\eta}^\top\vec{\mu}_i)^2 \le 1$$

(Let $\theta_i := \sqrt{w_i} (\vec{\eta} \mid \vec{\mu}_i)$ for $i \in [\kappa]$.)

$$\max_{\vec{\theta} \in \mathbb{R}^k} \sum_{i=1}^k \frac{1}{\sqrt{w_i}} \ \theta_i^3 \ \text{ s.t. } \sum_{i=1}^k \theta_i^2 \le 1$$

(Let $\theta_i := \sqrt{\mathbf{w}_i} \ (\vec{\eta}^{\top} \vec{\mu}_i)$ for $i \in [k]$.)

$$\max_{\vec{\theta} \in \mathbb{R}^k} \sum_{i=1}^k \frac{1}{\sqrt{w_i}} \; \theta_i^3 \; \text{ s.t. } \; \sum_{i=1}^k \theta_i^2 \leq 1$$

(Let $\theta_i := \sqrt{w_i} \ (\vec{\eta}^{\top} \vec{\mu}_i)$ for $i \in [k]$.)

Isolated local maximizers $\vec{\theta}^*$ (found via gradient ascent) are

$$ec{e}_1 = (1,0,0,\dots), \quad ec{e}_2 = (0,1,0,\dots), \quad \textit{etc.}$$

which means that each $\bar{\eta}^*$ satisfies, for some $i \in [k]$,

$$\sqrt{\mathbf{w}_j} \left(\vec{\eta}^{*\top} \vec{\mu}_j \right) = \begin{cases} 1 & j = i \\ 0 & j \neq i. \end{cases}$$

$$\max_{\vec{\theta} \in \mathbb{R}^k} \sum_{i=1}^k \frac{1}{\sqrt{w_i}} \ \theta_i^3 \ \text{ s.t. } \sum_{i=1}^k \theta_i^2 \le 1$$

(Let $\theta_i := \sqrt{w_i} \ (\vec{\eta}^{\top} \vec{\mu}_i)$ for $i \in [k]$.)

Isolated local maximizers $\vec{\theta}^*$ (found via gradient ascent) are

$$ec{e}_1 = (1,0,0,\dots), \quad ec{e}_2 = (0,1,0,\dots), \quad \textit{etc.}$$

which means that each $\bar{\eta}^*$ satisfies, for some $i \in [k]$,

$$\sqrt{\mathbf{W}_j} \left(\vec{\eta}^{*\top} \vec{\mu}_j \right) = \begin{cases} 1 & j = i \\ 0 & j \neq i. \end{cases}$$

Therefore

Pairs
$$\vec{\eta}^* = \sum_{j=1}^k w_j \vec{\mu}_j (\vec{\eta}^{*\top} \vec{\mu}_j) = \sqrt{w_i} \vec{\mu}_i$$

1. Start with T := Triples.

- 1. Start with T := Triples.
- 2. Find isolated local maximizer of

 $T(\vec{\eta},\vec{\eta},\vec{\eta})$ s.t. $Pairs(\vec{\eta},\vec{\eta}) \leq 1$

via gradient ascent from random $\vec{\eta} \in$ range(Pairs). Say maximum is λ^* and maximizer is $\vec{\eta}^*$.

- 1. Start with T := Triples.
- 2. Find isolated local maximizer of

```
T(\vec{\eta},\vec{\eta},\vec{\eta}) s.t. Pairs(\vec{\eta},\vec{\eta}) \leq 1
```

via gradient ascent from random $\vec{\eta} \in$ range(Pairs). Say maximum is λ^* and maximizer is $\vec{\eta}^*$.

3. Deflation: replace T with $T - \lambda^* \vec{\eta}^* \otimes \vec{\eta}^* \otimes \vec{\eta}^*$. Goto step 2.

- 1. Start with T := Triples.
- 2. Find isolated local maximizer of

```
T(\vec{\eta},\vec{\eta},\vec{\eta}) s.t. Pairs(\vec{\eta},\vec{\eta}) \leq 1
```

via gradient ascent from random $\vec{\eta} \in$ range(Pairs). Say maximum is λ^* and maximizer is $\vec{\eta}^*$.

3. Deflation: replace T with $T - \lambda^* \vec{\eta}^* \otimes \vec{\eta}^* \otimes \vec{\eta}^*$. Goto step 2.

A variant of this **runs in polynomial time** (w.h.p.), and is **robust to perturbations** to Pairs and Triples.

General case: asymmetric views

Each view *v* has different set of conditional means $\{\vec{\mu}_{v,1}, \vec{\mu}_{v,2}, \dots, \vec{\mu}_{v,k}\} \subset \mathbb{R}^{d_v}$.

General case: asymmetric views

Each view *v* has different set of conditional means $\{\vec{\mu}_{v,1}, \vec{\mu}_{v,2}, \dots, \vec{\mu}_{v,k}\} \subset \mathbb{R}^{d_v}$.

Reduction: transform \vec{x}_1 and \vec{x}_2 to "look like" \vec{x}_3 via linear transformations.

Asymmetric cross moments

Define asymmetric cross moment:

Pairs_{*u*,*v*} := $\mathbb{E}[\vec{x}_u \otimes \vec{x}_v]$.

Asymmetric cross moments

Define asymmetric cross moment:

```
\mathsf{Pairs}_{u,v} := \mathbb{E}[\vec{x}_u \otimes \vec{x}_v].
```

Transforming view v to view 3:

$$C_{
u
ightarrow 3}:=\mathbb{E}[ec{x}_3\otimesec{x}_u]~\mathbb{E}[ec{x}_
u\otimesec{x}_u]^\dagger\in\mathbb{R}^{d_3 imes d_
u}$$

where [†] denotes Moore-Penrose pseudoinverse.

Asymmetric cross moments

Define asymmetric cross moment:

```
\mathsf{Pairs}_{u,v} := \mathbb{E}[\vec{x}_u \otimes \vec{x}_v].
```

Transforming view v to view 3:

$$\mathcal{C}_{\mathbf{v}
ightarrow \mathbf{3}} := \mathbb{E}[ec{x}_3 \otimes ec{x}_u] \ \mathbb{E}[ec{x}_\mathbf{v} \otimes ec{x}_u]^\dagger \in \mathbb{R}^{d_3 imes d_\mathbf{v}}$$

where [†] denotes Moore-Penrose pseudoinverse. Simple exercise to show

$$\mathbb{E}[C_{\nu\to 3}\vec{x}_{\nu}|h=j]=\vec{\mu}_{3,j}$$

so $C_{\nu \to 3} \vec{x}_{\nu}$ behaves like \vec{x}_3 (as far as our algorithm can tell).

Part 3. Some applications and open questions

Multi-view mixture models

Multi-view method-of-moments

Some applications and open questions Mixtures of Gaussians Hidden Markov models and other models Topic models Open questions

Concluding remarks

Mixtures of axis-aligned Gaussians

Mixture of axis-aligned Gaussian in \mathbb{R}^n , with component means $\vec{\mu}_1, \vec{\mu}_2, \ldots, \vec{\mu}_k \in \mathbb{R}^n$; no minimum separation requirement.

Mixtures of axis-aligned Gaussians

Mixture of axis-aligned Gaussian in \mathbb{R}^n , with component means $\vec{\mu}_1, \vec{\mu}_2, \ldots, \vec{\mu}_k \in \mathbb{R}^n$; no minimum separation requirement.

Assumptions:

- ▶ non-degeneracy: component means span *k* dim subspace.
- weak incoherence condition: component means not perfectly aligned with coordinate axes — similar to spreading condition of (Chaudhuri-Rao, '08).

Mixtures of axis-aligned Gaussians

Mixture of axis-aligned Gaussian in \mathbb{R}^n , with component means $\vec{\mu}_1, \vec{\mu}_2, \ldots, \vec{\mu}_k \in \mathbb{R}^n$; no minimum separation requirement.

Assumptions:

- ▶ non-degeneracy: component means span *k* dim subspace.
- weak incoherence condition: component means not perfectly aligned with coordinate axes — similar to spreading condition of (Chaudhuri-Rao, '08).

Then, randomly partitioning coordinates into $\ell \ge 3$ views guarantees (w.h.p.) that non-degeneracy holds in all ℓ views.

Hidden Markov models and others

Hidden Markov models and others

Hidden Markov models and others

Other models:

- 1. Mixtures of Gaussians (Hsu-Kakade, ITCS'13)
- 2. HMMs (Anandkumar-Hsu-Kakade, COLT'12)
- Latent Dirichlet Allocation (Anandkumar-Foster-Hsu-Kakade-Liu, NIPS'12)
- 4. Latent parse trees (Hsu-Kakade-Liang, NIPS'12)
- Independent Component Analysis (Arora-Ge-Moitra-Sachdeva, NIPS'12; Hsu-Kakade, ITCS'13)

 $(\vec{\mu}_j)_i = \Pr[\text{ see word } i \text{ in document } | \text{ document topic is } j].$

- Corpus: New York Times (from UCI), 300000 articles.
- Vocabulary size: d = 102660 words.
- Chose k = 50.
- For each topic j, show top 10 words i.

 $(\vec{\mu}_j)_i = \Pr[\text{ see word } i \text{ in document } | \text{ document topic is } j].$

- Corpus: New York Times (from UCI), 300000 articles.
- Vocabulary size: d = 102660 words.
- Chose k = 50.
- For each topic j, show top 10 words i.

sales	run	school	drug	player
economic	inning	student	patient	tiger_wood
consumer	hit	teacher	million	won
major	game	program	company	shot
home	season	official	doctor	play
indicator	home	public	companies	round
weekly	right	children	percent	win
order	games	high	cost	tournament
claim	dodger	education	program	tour
scheduled	left	district	health	right

palestinian	tax	cup	point	yard
israel	cut	minutes	game	game
israeli	percent	oil	team	play
yasser_arafat	bush	water	shot	season
peace	billion	add	play	team
israeli	plan	tablespoon	laker	touchdown
israelis	bill	food	season	quarterback
leader	taxes	teaspoon	half	coach
official	million	pepper	lead	defense
attack	congress	sugar	games	quarter

percent	al_gore	car	book	taliban
stock	campaign	race	children	attack
market	president	driver	ages	afghanistan
fund	george_bush	team	author	official
investor	bush	won	read	military
companies	clinton	win	newspaper	u_s
analyst	vice	racing	web	united_states
money	presidential	track	writer	terrorist
investment	million	season	written	war
economy	democratic	lap	sales	bin
Bag-of-words clustering model

com	court	show	film	music
WWW	case	network	movie	song
site	law	season	director	group
web	lawyer	nbc	play	part
sites	federal	cb	character	new_york
information	government	program	actor	company
online	decision	television	show	million
mail	trial	series	movies	band
internet	microsoft	night	million	show
telegram	right	new_york	part	album

etc.

What if $\mathbf{k} > \mathbf{d_v}$? (relevant to overcomplete dictionary learning)

What if $\mathbf{k} > \mathbf{d_v}$? (relevant to overcomplete dictionary learning)

• Apply some non-linear transformations $\vec{x}_{v} \mapsto f_{v}(\vec{x}_{v})$?

What if $\mathbf{k} > \mathbf{d_v}$? (relevant to overcomplete dictionary learning)

- Apply some non-linear transformations $\vec{x}_{\nu} \mapsto f_{\nu}(\vec{x}_{\nu})$?
- Combine views, e.g., via tensor product

 $\tilde{x}_{1,2} := \vec{x}_1 \otimes \vec{x}_2, \quad \tilde{x}_{3,4} := \vec{x}_3 \otimes \vec{x}_4, \quad \tilde{x}_{5,6} := \vec{x}_5 \otimes \vec{x}_6, \quad etc. ?$

What if $\mathbf{k} > \mathbf{d_v}$? (relevant to overcomplete dictionary learning)

- Apply some non-linear transformations $\vec{x}_{\nu} \mapsto f_{\nu}(\vec{x}_{\nu})$?
- Combine views, e.g., via tensor product

 $\tilde{x}_{1,2} := \vec{x}_1 \otimes \vec{x}_2, \quad \tilde{x}_{3,4} := \vec{x}_3 \otimes \vec{x}_4, \quad \tilde{x}_{5,6} := \vec{x}_5 \otimes \vec{x}_6, \quad etc. ?$

Can we relax the multi-view assumption?

What if $\mathbf{k} > \mathbf{d_v}$? (relevant to overcomplete dictionary learning)

- Apply some non-linear transformations $\vec{x}_{\nu} \mapsto f_{\nu}(\vec{x}_{\nu})$?
- Combine views, e.g., via tensor product

 $\tilde{x}_{1,2} := \vec{x}_1 \otimes \vec{x}_2, \quad \tilde{x}_{3,4} := \vec{x}_3 \otimes \vec{x}_4, \quad \tilde{x}_{5,6} := \vec{x}_5 \otimes \vec{x}_6, \quad etc. ?$

Can we relax the multi-view assumption?

 Allow for richer hidden state? (e.g., independent component analysis)

What if $\mathbf{k} > \mathbf{d_v}$? (relevant to overcomplete dictionary learning)

- Apply some non-linear transformations $\vec{x}_{v} \mapsto f_{v}(\vec{x}_{v})$?
- Combine views, e.g., via tensor product

 $\tilde{x}_{1,2} := \vec{x}_1 \otimes \vec{x}_2, \quad \tilde{x}_{3,4} := \vec{x}_3 \otimes \vec{x}_4, \quad \tilde{x}_{5,6} := \vec{x}_5 \otimes \vec{x}_6, \quad etc. ?$

Can we relax the multi-view assumption?

- Allow for richer hidden state?
 (e.g., independent component analysis)
- "Gaussianization" via random projection?

Part 4. Concluding remarks

Multi-view mixture models

Multi-view method-of-moments

Some applications and open questions

Concluding remarks

Take-home messages:

Take-home messages:

 Power of multiple views: Can take advantage of diverse / non-redundant sources of information in unsupervised learning.

Take-home messages:

- Power of multiple views: Can take advantage of diverse / non-redundant sources of information in unsupervised learning.
- Overcoming complexity barriers: Some provably hard estimation problems become easy after ruling out "degenerate" cases.

Take-home messages:

- Power of multiple views: Can take advantage of diverse / non-redundant sources of information in unsupervised learning.
- Overcoming complexity barriers: Some provably hard estimation problems become easy after ruling out "degenerate" cases.
- "Blessing of dimensionality" for estimators based on method-of-moments.

Thanks!

(Co-authors: Anima Anandkumar, Dean Foster, Rong Ge, Sham Kakade, Yi-Kai Liu, Matus Telgarsky)

http://arxiv.org/abs/1210.7559