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Abstract. We consider on-line density estimation with the multivariate
Gaussian distribution. In each of a sequence of trials, the learner must
posit a mean µ and covariance Σ; the learner then receives an instance x
and incurs loss equal to the negative log-likelihood of x under the Gaus-
sian density parameterized by (µ, Σ). We prove bounds on the regret
for the follow-the-leader strategy, which amounts to choosing the sample
mean and covariance of the previously seen data.

1 Introduction

We consider an on-line learning problem based on Gaussian density estimation
in Rd. The learning task proceeds in a sequence of trials. In trial t, the learner
selects a mean µt and covariance Σt. Then, Nature reveals an instance xt to
the learner, and the learner incurs a loss `t(µt,Σt) equal to the negative log-
likelihood of xt under the Gaussian density parameterized by (µt,Σt).

We will compare the total loss incurred from selecting the (µt,Σt) in T trials
to the total loss incurred using the best fixed strategy for the T trials. A fixed
strategy is one that sets (µt,Σt) to the same (µ,Σ) for each t. The difference
of these total losses is the regret of following a strategy and not instead selecting
this best-in-hindsight (µ,Σ) in every trial; it is the cost of not seeing all of the
data ahead of time. In this paper, we will analyze the regret of the follow-the-
leader strategy: the strategy which chooses (µt,Σt) to be the sample mean and
covariance of {x1,x2, . . . ,xt−1}.

First, we find that a näıve formulation of the learning problem suffers from
degenerate cases that lead to unbounded regret. We propose a straightforward
alternative that avoids these problems by incorporating an additional, halluci-
nated, trial at time zero. In this setting, a trivial upper bound on the regret of
follow-the-leader (FTL) is O(T 2) after T trials. We obtain the following bounds.

– For any p > 1, there are sequences (xt) for which FTL has regret Ω(T 1−1/p)
after T trials. A similar result holds for any sublinear function of T .

– There is a linear bound on the regret of FTL that holds for all sequences.
– For any sequence, the average regret of FTL is ≤ 0 in the limit; formally,

For any sequence (xt), lim sup
T≥1

{
Regret after T trials

T

}
≤ 0.



On-line density estimation has been previously considered by Freund (1996),
Azoury and Warmuth (2001), and Takimoto and Warmuth (2000a, 2000b).
Collectively, they have considered the Bernoulli, Gamma, and fixed-covariance
Gaussian distributions, as well as a general class of one-dimensional exponential
families. However, on-line Gaussian density estimation with arbitrary covari-
ance (that is, when the covariance is to be estimated) is all but unmentioned
in the literature, even in the one-dimensional case. Indeed, these earlier bounds
are logarithmic whereas most of ours are linear, a clear sign of a very different
regime.

Learning a covariance matrix on-line is the main challenge not present in
earlier analyses. Even in the univariate case, the total loss of the best fixed
strategy in hindsight after T trials can lie anywhere in the range [T −T log T, T ]
(constants suppressed), while a learner that predicts a fixed variance σ2

t ≡ c in
every trial t will incur a total loss of at least T ln c. This leaves the regret on
the order of T log T in the worst case. Thus, even a linear regret bound is out of
reach unless one makes an effort to estimate the variance.

Letting σ2(t) denote the sample variance of the first t observations, it turns
out that our regret lower bounds are determined by sequences for which σ2(t) →
0 as t goes to infinity. On the other hand, if lim inf σ2(t) > 0 – that is, if σ2(t)
stays above a fixed constant for all t > T0 – then it is easy to see from Lemmas 1
and 2 that the regret after T trials (T > T0) is O(T0 + log(T/T0)). Thus, our
results show that the performance of FTL depends on which of these two regimes
the data falls under.

1.1 Related work

On-line density estimation is a special case of sequential prediction with expert
advice, a rich and widely applicable framework with roots in information theory,
learning theory, and game theory (Cesa-Bianchi and Lugosi, 2006). In on-line
density estimation, the set of experts is often an uncountably-infinite set, and
the experts’ predictions in a trial t only depend on the outcome xt determined
by Nature. Similar in spirit to density estimation is on-line subspace tracking
(Crammer, 2006; Warmuth and Kuzmin, 2006). In the setup of Warmuth and
Kuzmin, experts are low-dimensional linear subspaces, and the loss is the squared
distance of xt to the subspace (as in PCA).

We already mentioned work by Freund (1996), Azoury and Warmuth (2001),
and Takimoto and Warmuth (2000a, 2000b). In each of the cases they consid-
ered, the regret bound is at most logarithmic in the number of trials. For the
Bernoulli distribution, Freund showed that the Bayes algorithm with Jeffrey’s
prior asymptotically achieves the minimax regret. For the fixed-covariance Gaus-
sian, Takimoto and Warmuth gave a recursively-defined strategy that achieves
the minimax regret of (r2/2)(lnT − ln lnT + O(ln lnT/ lnT )), where ‖xt‖ ≤ r
for all 1 ≤ t ≤ T .

Recent algorithms and frameworks for general on-line convex optimization
(Zinkevich, 2003; Hazan et al, 2006; Shalev-Shwartz and Singer, 2006) are appli-
cable to, among several other machine learning problems, many on-line density



estimation tasks. However, they crucially rely on features of the loss function not
enjoyed by the negative logarithm of the Gaussian density (e.g. finite minima,
bounded derivatives). The follow-the-leader strategy and its variants are also
applicable to many problems (Hannan, 1957; Kalai and Vempala, 2005; Zinke-
vich, 2003; Hazan et al, 2006). While FTL does not guarantee sublinear regret
in many settings, several of the on-line density estimation algorithms derived by
Azoury and Warmuth (2001) are special cases of FTL and do have logarithmic
regret bounds.

2 On-line univariate Gaussian density estimation

To build intuition, we first demonstrate our results in the one-dimensional case
before showing them in the general multivariate setting.

The learning protocol is as follows.

For trial t = 1, 2, . . .

• The learner selects µt ∈ R and σ2
t ∈ R>0

4= {x ∈ R : x > 0}.
• Nature selects xt ∈ R and reveals it to the learner.
• The learner incurs loss `t(µt, σ

2
t ) (`t implicitly depends on xt).

The loss `t(µ, σ2) is the negative log-likelihood of xt under the Gaussian density
with mean µ and variance σ2 (omitting the constant 2π),

`t(µ, σ2) 4= − ln
1√
σ2

exp
{
− (xt − µ)2

2σ2

}
=

(xt − µ)2

2σ2
+

1
2

lnσ2 (1)

Suppose, over the course of the learning task, a strategy S prescribes the sequence
of means and variances ((µt, σ

2
t ) : t = 1, 2, . . .). We denote by LT (S) the total

loss incurred by the learner following strategy S after T trials, and by LT (µ, σ2)
the total loss incurred by the learner following the fixed strategy that selects
(µt, σ

2
t ) = (µ, σ2) for each trial t. So, we have

LT (S) 4=
T∑

t=1

`t(µt, σ
2
t ) and LT (µ, σ2) 4=

T∑
t=1

`t(µ, σ2). (2)

The learner seeks to adopt a strategy so that the regret after T trials

RT (S) 4= LT (S) − inf
µ∈R,σ2∈R>0

LT (µ, σ2) (3)

is as small as possible, even when Nature selects the xt adversarially. Notice that,
because LT (µ, σ2) is the likelihood of {x1, x2, . . . , xT } under a single Gaussian
model, the infimum in (3) is a maximum likelihood problem.



2.1 Degeneracies

Unfortunately, as the setting currently stands, the learner is doomed by two
degeneracies that lead to unbounded regret. First, since we haven’t restricted
the magnitudes of the xt, the regret can be unbounded even after just one
trial. Takimoto and Warmuth (2000b) note that this is an issue even with fixed-
variance Gaussian density estimation. Their remedy is to assume all |xt| ≤ r for
some r ≥ 0, and we will do the same.

The second degeneracy is specific to allowing arbitrary variances and arises
when the xt are very close to each other. In fact, it stems from a standard
difficulty with maximum likelihood estimation of Gaussians. To see the problem,
suppose that the first few observations x1, x2, . . . , xT are all the same. Then,
while any reasonable learner must have set some nonzero variances σ2

t for t =
1, 2, . . . , T (for fear of facing an infinite penalty), the infimum of LT (µ, σ2) is
−∞ because the true variance of the data is 0. In fact, even if the xt are not
all the same, they can still be arbitrarily close together, leaving the infimum
unbounded from below.

Our remedy is to hallucinate a zeroth trial that precludes the above degen-
eracy; it provides some small amount of variance, even if all the subsequent
observations xt are closely bunched together. Specifically, let σ̃2 > 0 be some
fixed constant. In the zeroth trial, we cause the learner to incur a loss of

`0(µ, σ2) 4=
1
2

∑
x∈{±σ̃}

(
(x− µ)2

2σ2
+

1
2

lnσ2

)
=

µ2 + σ̃2

2σ2
+

1
2

lnσ2.

Essentially, we hallucinate two instances, σ̃ and −σ̃, and incur half of the usual
loss on each point.1 This can be interpreted as assuming that there is some
non-negligible variation in the sequence of instances, and for convenience, that
it appears up front. We need to include the zeroth trial loss in the total loss after
T trials. Thus, (2) should now read

LT (S) 4=
T∑

t=0

`t(µt, σ
2
t ) and LT (µ, σ2) 4=

T∑
t=0

`t(µ, σ2).

It can be shown that the infimum in (3) is always finite with the redefined
LT (µ, σ2). With the extra zeroth trial, the infimum is no longer the Gaussian
maximum likelihood problem; nevertheless, the form of the new optimization
problem is similar. We have

inf
µ∈R,σ2∈R>0

LT (µ, σ2) = LT (µT , σ2
T ) =

T + 1
2

+
T + 1

2
lnσ2

T > −∞ (4)

for any T ≥ 0, where

µT =
1

T + 1

T∑
t=1

xt and σ2
T =

1
T + 1

(
σ̃2 +

T∑
t=1

x2
t

)
− µ2 ≥ σ̃2

T + 1

1 Or, we take the expected loss of a zero-mean random variable with variance σ̃2.



(the last inequality follows from Cauchy-Schwarz).
Before continuing, we pause to recap our notation and setting.

• (µt, σ
2
t ) ∈ R× R>0: parameters selected by the learner in trial t ≥ 0.

• xt ∈ [−r, r]: instances revealed to the learner in trial t ≥ 1.
• `t(µ, σ2): loss incurred for selecting (µ, σ2) in trial t ≥ 0.
• LT (S): total loss of strategy S after T trials (t = 1, 2, . . . , T ), plus the loss

incurred in the hallucinated zeroth trial (t = 0).
• RT (S) = LT (S)− inf(µ,σ2) LT (µ, σ2): regret after T trials of strategy S.

2.2 Follow-the-leader

Motivated by the simplicity and success of the follow-the-leader based strategies
for on-line density estimation with other distributions (Azoury and Warmuth,
2001), we instantiate such a strategy for on-line Gaussian density estimation. The
name suggests using, in trial t, the setting of (µ, σ2) that minimizes Lt−1(µ, σ2).
We will denote this setting as (µt, σ

2
t ). It is precisely the values (µt−1, σ

2
t−1)

given above; without the benefit of foresight, FTL is always one step behind the
optimal strategy.

As noted in (Azoury and Warmuth, 2001), using FTL for on-line density
estimation with exponential families leads to an intuitive recursive update. For
the Gaussian distribution, it is

µt+1 = µt +
1

t + 1
(xt − µt) and σ2

t+1 =
t

t + 1
σ2

t +
t

(t + 1)2
(xt − µt)2 (5)

for t ≥ 1. The loss function in the zeroth trial is fully known; so in the base
cases, we have (µ0, σ

2
0) = (0, σ̃2) to optimize `0(µ, σ2), and (µ1, σ

2
1) = (µ0, σ

2
0)

as per FTL.
It will prove useful to derive an alternative expression for σ2

t by expanding
the recursion in (5). We have (t+1)σ2

t+1− tσ2
t = (t/(t+1)) · (xt−µt)2 for t ≥ 1;

by telescoping,

σ2
t =

1
t

(
σ̃2 +

t−1∑
i=1

∆i

)
where ∆t

4=
t

t + 1
(xt − µt)2. (6)

2.3 Regret of following the leader

We obtain an expression for the regret RT
4= RT (FTL) after T trials by analyz-

ing the telescoping sum of Rt −Rt−1 from t = 1 to T . The difference Rt −Rt−1

is the penalty incurred by FTL for the additional trial t. The output our analysis
will allow us to extract the core contribution of additional trials to the regret.
Looking ahead, we’ll show lower and upper bounds on the regret by focusing on
this part of Rt −Rt−1.



Lemma 1. The regret of FTL after T trials satisfies the bounds

RT ≤
T∑

t=1

1
4(t + 1)

[
(xt − µt)2

σ2
t

]2
+

1
4

ln(T + 1) +
1
12

and

RT ≥
T∑

t=1

(
1

4(t + 1)

[
(xt − µt)2

σ2
t

]2
− 1

6(t + 1)2

[
(xt − µt)2

σ2
t

]3)
+

1
4

ln(T + 1).

Proof. First, we make substitutions in Rt−Rt−1 using the FTL update rule (5)
and the minimizer of LT (µ, σ2) (from (4)):

Rt −Rt−1 = (Lt(FTL)− Lt(µt+1, σ
2
t+1))− (Lt−1(FTL)− Lt−1(µt, σ

2
t ))

= (Lt(FTL)− Lt−1(FTL)) + (Lt−1(µt, σ
2
t )− Lt(µt+1, σ

2
t+1))

=
(

(xt − µt)2

2σ2
t

+
1
2

lnσ2
t

)
+
(

t

2
+

t

2
lnσ2

t −
t + 1

2
− t + 1

2
lnσ2

t+1

)
=

(xt − µt)2

2σ2
t

− t + 1
2

ln
σ2

t+1

σ2
t

− 1
2

=
(xt − µt)2

2σ2
t

− t + 1
2

ln
(

t

t + 1
+

t

(t + 1)2
· (xt − µt)2

σ2
t

)
− 1

2

=
(xt − µt)2

2σ2
t

− t + 1
2

ln
(

1 +
(xt − µt)2

(t + 1)σ2
t

)
+

t + 1
2

ln
t + 1

t
− 1

2
.

To deal with the first two summands, we employ Taylor expansions z − z2/2 +
z3/3 ≥ ln(1+z) ≥ z−z2/2 for z ≥ 0. To deal with the last two, we use Stirling’s
formula via Lemma 6 in the appendix (for a quick estimate, apply the same
Taylor expansions). Finally, since the sum is telescoping and R0 = 0, summing
Rt −Rt−1 from t = 1 to T gives the bounds. ut

We let UBt be the term inside the summation in the upper bound in Lemma 1,
and LBt be the corresponding term in the lower bound. Using the alternative
expression for the variance (6), we get the following:

T∑
t=1

LBt ≤ RT −
1
4

ln(T + 1) ≤
T∑

t=1

UBt +
1
12

where

UBt
4=

t + 1
4

[
∆t

σ̃2 +
∑t−1

i=1 ∆i

]2

and LBt
4= UBt −

t + 1
6

[
∆t

σ̃2 +
∑t−1

i=1 ∆i

]3

.

2.4 Lower bounds

We exhibit a sequence (xt) that forces the regret RT incurred by FTL after T
trials to be linear in T . The idea behind the sequence is to trick the learner into



being “overly confident” about its choice of the mean µt and to then suddenly
penalize it with an observation that is far from this mean. The initial ego-building
sequence causes FTL to prescribe a σ2

t so small that when the penalty (xt−µt)2 6=
0 finally hits, the increase in regret Rt − Rt−1 is very large. In fact, this large
increase in regret happens just once, in trial T .

To make this more precise, the form of LBt suggests “choosing” ∆t = 0 for
1 ≤ t ≤ T − 1 and hitting the learner with ∆T > 0. Then, while LB1 = LB2 =
· · · = LBT−1 = 0, the final contribution to the regret LBT is linear in T . The
necessary ∆t are achieved with the sequence that has x1 = x2 = . . . = xT−1 = 0
and xT = r, so we get the following lower bound.

Theorem 1. Suppose r ≤ σ̃. For any T ≥ 1, there exists a sequence (xt) such
that the regret of FTL after T trials is

RT ≥
1
12
·
( r

σ̃

)4

· T 2

T + 1
+

1
4

ln(T + 1).

Proof. Using the sequence described above, we have ∆T = T/(T + 1) and all
other ∆t = 0. By Lemma 1, substituting these values in LBt gives the bound. ut

While Theorem 1 says nothing about the regret after T ′ > T trials, we
can iterate the argument to give a sequence that forces FTL to incur nearly
linear regret for infinitely many T . To motivate our argument, we first show one
approach that doesn’t work: namely, to keep penalizing the learner in successive
trials after the one in trial T . That is, we set ∆t = 0 for t < T and then ∆T > 0,
∆T+1 > 0, ∆T+2 > 0, and so on. The reason this is not too bad for the learner is
that the denominator of LBt increases significantly during t = T + 1, T + 2, . . .;
specifically, the denominator of LBt increases quadratically, while the leading t
only increases linearly. Eventually, the LBt become more like 1/t instead of t.

Instead, we space out the non-zero penalties so that they strike only when
FTL sets very small variances. Let f : N → N be an increasing function and f−1

be its inverse map. We will inflict the nth non-zero penalty in trial f(n), so f
can be thought of as the schedule of penalties. When f doles out the penalties
sparingly enough, the regret after f(n) trials is very close to being linear in f(n).

Theorem 2. Suppose r ≤ σ̃. Let f : N → N be any increasing function and f−1

its inverse map. Then there exists a sequence (xt) such that, for any T in the
range of f , the regret of FTL after T trials is

RT ≥
1
6
·
( r

σ̃

)4

· T + 1
(f−1(T ) + 1)2

+
1
4

ln(T + 1).

Proof. Following the discussion above, the sequence (xt) is defined so that ∆f(n) =
r2/2 for all n ≥ 1 and ∆t = 0 for all other t. Let xt = µt−sign(µt)r

√
(t + 1)/(2t)

for t in the range of f , and xt = µt elsewhere. In both cases, |xt| ≤ r. Then, in



trial f(n), we have

LBf(n) =
f(n) + 1

4

[
r2/2

σ̃2 + (n− 1)(r2/2)

]2
− f(n) + 1

6

[
r2/2

σ̃2 + (n− 1)(r2/2)

]3
≥ f(n) + 1

6

[
r2/2

σ̃2 + (n− 1)(r2/2)

]2

=
f(n) + 1

6

(
r2/2
σ̃2/2

)2
 1

2 + (n− 1) r2/2
σ̃2/2

2

≥ f(n) + 1
6

( r

σ̃

)4 1
(n + 1)2

.

Then, Lemma 1 conservatively gives Rf(n) ≥ LBf(n) + (1/4) ln(f(n) + 1). ut

If f is a polynomial of degree p ≥ 1, we can actually sum (integrate) the LBt

from t = 1 to T (as opposed to just taking the final term LBT ) and yield a
tighter bound RT ≥ c · (T + 1)1−1/p + (1/4) ln(T + 1) for some positive constant
c. Notice that when f(n) = Θ(n) (the schedule used in our first attempt to give
the bound), the bound has only the log term. Of course, there exists penalty
schedules f for which T/(f−1(T ))2 = ω(T 1−1/p) for any p ≥ 1. For example, if
the penalty schedule is f(n) = Θ(exp(n2)), then T/(f−1(T ))2 is Ω(T/ log T ).

2.5 Upper bounds

We show two types of upper bounds on the regret of FTL. The first shows that
the regret after T trials is at most linear in T . This bound is not immediately
apparent from the Taylor approximation in Lemma 1: the σ2

t can be as small as
σ̃2/(t + 1), so each UBt can be linear in t, which näıvely would give a quadratic
upper bound on RT . But this cannot be the case for all t: after all, σ2

t can only
be very small in trial t if earlier trials have been relatively penalty-free. The key
to the analysis is the potential function argument of Lemma 2, which shows that
UBt is at most a constant on average, and allows us to conclude the following.

Theorem 3. For any T ≥ 1 and any sequence (xt), the regret of FTL after T
trials is

RT ≤
1
4
·

((
2r

σ̃

)4

+
(

2r

σ̃

)2
)
· (T + 1) +

1
4

ln(T + 1) +
1
12

.

Proof. We have |µt| ≤ r since it is a convex combination of real numbers in
[−r, r]. So |xt − µt| ≤ 2r by the triangle inequality; the theorem follows from
combining Lemma 1 and Lemma 2 (below) with c = (2r)2/σ̃2, a1 = 0, and
at = ∆t−1/σ̃2 for 2 ≤ t ≤ T + 1. ut

Lemma 2. For any a1, a2, . . . , aT ∈ [0, c],

T∑
t=1

t

[
at

1 +
∑t−1

i=1 ai

]2

≤ (c2 + c) · T ·

(
1− 1

1 +
∑T

t=1 at

)
.



The bound in the lemma captures the fact that when
∑t−1

i=1 ai is small, a large
penalty may be imminent, but when

∑t−1
i=1 ai is large, the tth penalty cannot be

too large. The final parenthesized term 1− 1/(1 +
∑T

i=1 ai) is treated as 1 when
we apply this lemma, but the more elaborate form is essential for the proof.

Proof. Trivial if c = 0. Otherwise, we proceed by induction on T . In the base case,
we need to show a2

1 ≤ (c2 + c)(1− 1/(1 + a1)); this follows because a1(1 + a1) ≤
c2 + c. For the inductive step, we assume the bound holds for T − 1 and show
that it holds for T . Let ST = 1 + a1 + . . . aT−1. We need

(c2 + c)(T − 1)
(

1− 1
ST

)
+ T

[
aT

ST

]2
≤ (c2 + c)T

(
1− 1

ST + aT

)
.

After rearranging, this reads

1 + T

(
1

ST
− 1

ST + aT

)
≥ 1

ST
+

T

c2 + c

[
aT

ST

]2
.

Since ST ≥ 1 and aT ≤ c, we have 1 ≥ 1/ST and 1/ST − 1/(ST + aT ) ≥
(aT /ST )2/(c2 + c), which suffices to give the required bound. ut

The second upper bound we show concerns the average (per-trial) regret,
RT /T . This quantity reflects the improvement of a strategy over time; if RT /T
tends to a positive constant or worse, the strategy can be said to either stagnate
or diminish over time.

Although Theorems 1 and 3 show that the worst-case regret of FTL after T
trials is proportional to T , they don’t imply that the average regret tends to a
positive constant. Theorem 2 exhibits a sequence (xt) for which the regret after
T trials is nearly linear in T for infinitely many T , but the average regret still
tends to 0. The following theorem complements this sublinear lower bound by
showing that, indeed, the average regret of FTL is at most zero in the limit.

Theorem 4. For any sequence (xt), the average regret of FTL after T trials
RT /T satisfies

lim sup
T≥1

RT

T
≤ 0.

Proof. We’ll show, for any ε > 0 sufficiently small, that lim supT≥1 RT /T ≤ ε.
The idea is to partition the trials into two sets: those in which ∆t ≤ bε, for
some constant bε (independent of T ), and those in which ∆t > bε. The former
trials produce small penalties: the constant bε is chosen so that the average of
these penalties is at most ε. The latter set of trials have larger deviations-from-
the-mean, but therefore cause the variance to rise substantially, which means
they cannot contribute too heavily to regret. To analyze the trials in this second
set, we consider the penalty schedule f : N → N such that the nth trial in this
second set is f(n). Because each ∆f(n) is (relatively) large, we can show that,
no matter the schedule f , the cumulative penalty from these trials is o(T ). This



then implies that the average penalty is o(1). The remaining terms in the regret
are at most logarithmic in T , so they contribute o(1) on average, as well.

We just need to detail our handling the penalties from the two sets of trials.
Let A

4= {t ∈ N : ∆t ≤ bε} and B
4= {t ∈ N : ∆t > bε}, where bε

4= σ̃2(
√

1 + 4ε−
1)/2. Notice that σ̃2/bε ≥ 1 whenever ε ≤ 3/4. Furthermore, let At 4= A ∩
{1, 2, . . . , t} and Bt 4= B ∩ {1, 2, . . . , t}. By Lemma 2 and the choice of bε,

1
T

∑
t∈AT

UBt ≤
1
4

(
b2
ε

σ̃4
+

bε

σ̃2

)
+ o(1) < ε + o(1).

If B is finite, then we’re done. So assume B is infinite and index it with N
by assigning the nth smallest element of B to f(n). Define f−1(T ) = max{n :
f(n) ≤ T}, so we have f(f−1(T )) ≤ T with equality when T is in the image of
f . Then, using the fact bε < ∆t ≤ (2r)2,

1
T

∑
t∈BT

UBt =
1
T

∑
t∈BT

t + 1
4

[
∆t

σ̃2 +
∑t−1

i=1 ∆i

]2

≤ 4r4

T

∑
t∈BT

t + 1
(σ̃2 +

∑
i∈Bt−1 ∆i)2

≤ 4r4

T

f−1(T )∑
n=1

f(n) + 1
(σ̃2 + (n− 1)bε)2

≤ 4r4

Tb2
ε

f−1(T )∑
n=1

f(n) + 1
n2

≤ 4r4

Tb2
ε

(
o(f(f−1(T ))) +

π2

6

)
= o(1),

where the second-to-last step follows from Lemma 3. ut

The following is a consequence of the fact that
∑

n≥1 1/n2 is finite.

Lemma 3. If f : N → N is strictly increasing, then
∑n

k=1 f(k)/k2 = o(f(n)).

Proof. Fix any ε > 0, n0 ∈ N such that
∑∞

k=n0+1 1/k2 ≤ ε/2, and n1 ∈ N such
that f(n0)/f(n1) ≤ 3ε/π2. Then for any n ≥ n1,

1
f(n)

n∑
k=1

f(k)
k2

=
1

f(n)

n0∑
k=1

f(k)
k2

+
1

f(n)

n∑
k=n0+1

f(k)
k2

≤ f(n0)
f(n)

n0∑
k=1

1
k2

+
n∑

k=n0+1

1
k2

which, by the choices of n0 and n1, is at most ε. ut

3 On-line multivariate Gaussian density estimation

In the d-dimensional setting, the learning protocol is generalized to the following.

For trial t = 1, 2, . . .

• The learner selects µt ∈ Rd and Σt ∈ Sd
�0

4= {X ∈ Rd×d : X =
X>,X � 0} (the cone of symmetric positive-definite d× d matrices).



• Nature selects xt ∈ Rd and reveals it to the learner.
• The learner incurs loss `t(µt,Σt).

The loss `t(µ,Σ) is the negative log-likelihood of xt under the multivariate
Gaussian density with mean µ and covariance matrix Σ (omitting the (2π)d),

`t(µ,Σ) 4=
1
2
(xt − µ)>Σ−1(xt − µ) +

1
2

ln |Σ|

where |X| denotes the determinant of a matrix X.

3.1 Multivariate degeneracies

Even in the case d = 1, we had to amend the setting to avoid trivial conclusions.
Recall, the one-dimensional degeneracies occur when (1) the |xt| are unbounded,
or (2) the xt are all (nearly) the same. For arbitrary d, the first issue becomes
unbounded ‖xt‖; the remedy is to assume a bound ‖xt‖ ≤ r for all t. The
second issue is similar to the one-dimensional case, except now the issue can
occur along any dimension, such as when the xt lie in (or are arbitrarily close
to) a k < d dimensional subspace. As before, we’ll hallucinate a zeroth trial to
preclude singularity in the data. For a known constant σ̃2 > 0, the loss in this
trial is

`0(µ,Σ) 4= Ev

(
1
2
(v − µ)>Σ−1(v − µ) +

1
2

ln |Σ|
)

where v is any zero-mean random vector with Evv> = σ̃2I (for example, take v
to be uniform over the the 2d points {±σ̃

√
dei : i = 1, 2, . . . , d}, where ei is the

ith elementary unit vector). The zeroth trial can be seen as assuming a minimal
amount of full-dimensional variation in the data. Again, including the zeroth
trial loss in the total loss is enough to ensure a non-trivial infimum of LT (µ,Σ)
over µ ∈ Rd and Σ ∈ Sd

�0. We have

inf
µ∈Rd,Σ∈Sd

�0

LT (µ,Σ) = LT (µ,Σ) =
d(T + 1)

2
+

T + 1
2

ln |Σ| > −∞ (7)

for any T ≥ 0, where

µ =
1

T + 1

T∑
t=1

xt and Σ =
1

T + 1

(
σ̃2I +

T∑
t=1

xtx
>
t

)
− µ µ> � σ̃2

T + 1
I � 0.

3.2 Multivariate follow-the-leader and regret bounds

Follow-the-leader for multivariate Gaussian density estimation admits the fol-
lowing recursion for its setting of (µt,Σt): for t ≥ 1

µt+1 = µt +
1

t + 1
(xt − µt) and (t + 1)Σt+1 = tΣt + ∆t (8)



where ∆t = (xt − µt)(xt − µt)>t/(t + 1); the base cases are (µ0,Σ0) =
(µ1,Σ1) = (0, σ̃2I).

Our bounds for FTL in the univariate case generalize to the following for the
multivariate setting.

Theorem 5. Suppose r ≤ σ̃. For any T ≥ d, there exists a sequence (xt) such
that the regret of FTL after T trials is

RT ≥ d

12
·
( r

σ̃

)4

·
(

T − d

2
+

1
2

)(
T − d + 1
T − d + 2

)(
1− d− 1

(T − d + 1)(T − d + 2)

)2

+
d

4
ln(T + 1).

Theorem 6. Suppose r ≤ σ̃. For any strictly increasing f : N → N with f(n) ≥
dn, there exists a sequence (xt) such that, for any T in the range of f , the regret
of FTL after T trials is

RT ≥
d

6
·
( r

σ̃

)4

· T − (d/2) + (3/2)
(f−1(T ) + 1)2

+
d

4
ln(T + 1).

Theorem 7. For any sequence (xt) and any T ≥ 1, the regret of FTL after T
trials is

RT ≤
d

4
·

((
2r

σ̃

)4

+
(

2r

σ̃

)2
)
· (T + 1) +

d

4
ln(T + 1) +

d

12
.

Theorem 8. For any sequence (xt), the average regret of FTL after T trials
RT /T satisfies lim supT≥1 RT /T ≤ 0.

We achieve the extra factor d in the lower bounds by using the sequences
from the one-dimensional bound but repeating each non-zero penalty d times
– one for each orthogonal direction. Some care must be taken to ensure that
‖xt‖ ≤ r; also, the non-zero penalties are not all of the same value because
they occur in different trials. For the upper bounds, the potential function has
to account for variation in all directions; thus it is now based on Tr(Σ−1

T+1) as
opposed to the variance in any single direction.

3.3 Proof sketches

We first need to characterize the penalty of FTL for each trial.

Lemma 4. The regret of FTL after T trials satisfies the bounds

RT ≤
T∑

t=1

((xt − µt)>Σ−1
t (xt − µt))2

4(t + 1)
+

d

4
ln(T + 1) +

d

12
and

RT ≥
T∑

t=1

(
((xt − µt)>Σ−1

t (xt − µt))2

4(t + 1)

− ((xt − µt)>Σ−1
t (xt − µt))3

6(t + 1)2

)
+

d

4
ln(T + 1).



Proof. We proceed as in Lemma 1, using (8) and (7) to get

Rt −Rt−1 =
1
2
(xt − µt)>Σ−1

t (xt − µt)−
d

2
+

d(t + 1)
2

ln
t + 1

t

− t + 1
2

ln
∣∣∣∣I +

1
t + 1

(xt − µt)(xt − µt)>Σ−1
t

∣∣∣∣ .
The matrix inside the log-determinant has d− 1 eigenvalues equal to 1 and one
eigenvalue equal to 1+(xt−µt)>Σ−1

t (xt−µt)/(t+1). Since the determinant of
a matrix is the product of its eigenvalues, we can apply Taylor approximations
z− z2/2+ z3/3 ≥ ln(1+ z) ≥ z− z2/2 to the log-determinant, and Lemma 6 (in
the appendix) to the other logarithm. ut

Once again, we’ll focus on the terms inside the summation. Let UBt be the term
under the summation in the upper bound, and LBt be the that in the lower
bound. Expanding the recursion for Σt in (8), we can express UBt and LBt as

UBt
4= (t + 1)Tr(∆t(σ̃2I +

∑t−1
i=1 ∆i)−1)2/4 and

LBt
4= UBt − (t + 1)Tr(∆t(σ̃2I +

∑t−1
i=1 ∆i)−1)3/6

Lower bounds. For Theorem 5, we want to cause non-zero penalties in or-
thogonal directions once the variance in these directions are small. The sequence
begins with xt = 0 for t ≤ T − d, and for i = 1, 2, . . . , d, has

xT−d+i = µT−d+i + r

√
1− ‖µT−d+i‖2

r2
ei.

For Theorem 6, we combine the techniques from Theorem 5 and Theorem 2.
Non-zero penalties occur in trials f(n)−d+1, f(n)−d+2, . . . , f(n) with ‖δt‖2 =
r2/2 in these trials and ‖δt‖2 = 0 in other trials.

Upper bounds. The following generalization of Lemma 2 is the key argument
for our upper bounds.

Lemma 5. For any a1,a2, . . . ,aT ∈ Rd with ‖at‖2 ≤ c,

T∑
t=1

tTr

At

(
I +

t−1∑
i=1

Ai

)−1
2

≤ (c2 + c) · T ·

d− Tr

(I +
T∑

i=1

Ai

)−1


where Ai = aia
>
i for all i.

Proof. Trivial if c = 0. Otherwise we proceed by induction on T . In the base case,
we need d(c2 + c) − (c2 + c)Tr((I + A1)−1) − ‖a1‖4 ≥ 0. Using the Sherman-
Morrison formula (for a matrix M and vector v, (M + vv>)−1 = M−1 −
(M−1vv>M−1)/(1 + v>M−1v)), we have

(c2+c)Tr
(
(I + A1)

−1
)

= (c2+c)Tr
(

I − A1

1 + ‖a1‖2

)
= d(c2+c)− (c2 + c)‖a1‖2

1 + ‖a1‖2



and also
(c2 + c)‖a1‖2

1 + ‖a1‖2
− ‖a1‖4 ≥ c‖a1‖2 − ‖a1‖4 ≥ 0.

Thus the base case follows. For the inductive step, we assume the bound holds
for T − 1 and show that it holds for T . Let S = I + A1 + . . . + AT−1 and
A = aa> = AT . We need

(c2+c)(T−1)
(
d− Tr

(
S−1

))
+TTr

(
AS−1

)2 ≤ (c2+c)T
(
d− Tr

(
(S + A)−1

))
,

which, after rearranging, reads

d + T
(
Tr
(
S−1

)
− Tr

(
(S + A)−1

))
≥ Tr

(
S−1

)
+

TTr
(
AS−1

)2
c2 + c

.

Since S � I, we have Tr
(
S−1

)
≤ d, which takes care of the first terms on each

side. For the remaining terms, first note that Tr(AS−1) ≤ ‖a‖2 ≤ c. Then, using
Sherman-Morrison again gives

Tr
(
S−1

)
− Tr

(
(S + A)−1

)
= Tr

(
S−1AS−1

1 + Tr (AS−1)

)
=

‖a‖2a>S−2a

‖a‖2 (1 + Tr (AS−1))
.

The denominator is at most c(1 + c), so it remains to show ‖a‖2Tr(a>S−2a) ≥
(a>S−1a)2. Without loss of generality, ‖a‖ = 1 and S is diagonal with eigen-
values λ1, . . . , λd > 0. Then a2

1/λ2
1 + . . .+a2

d/λ2
d ≥ (a2

1/λ1 + . . .+a2
d/λd)2 follows

from Jensen’s inequality. ut

For Theorem 8, we proceed as in Theorem 4, but to handle the trials in B,
we have to deal with each direction separately, so further partitions are needed.

4 Conclusion and open questions

On-line density estimation with a Gaussian distribution presents difficulties
markedly different from those usually encountered in on-line learning. They ap-
pear even in the one-dimensional setting and scale up to the multivariate case
as familiar issues in data analysis (e.g. unknown data scale, hidden low dimen-
sional structure). Although the natural estimation strategy remains vulnerable
to hazards after the problem is rid of degeneracies, our results suggest that it is
still sensible even under adversarial conditions.

We still do not know the minimax strategy for on-line Gaussian density
estimation with arbitrary covariances – a question first posed by Warmuth and
Takimoto (2000b) – although our work sheds some light on the problem. While
using arbitrary-covariance multivariate Gaussians is a step forward from simpler
distributions like the fixed-covariance Gaussian and Bernoulli, it would also be
interesting to consider on-line estimation with other statistical models, such as
low-dimensional Gaussians or a mixture of Gaussians. Extending the work on
on-line PCA (Warmuth and Kuzmin, 2006) may be one approach for the first.
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Appendix

Lemma 6. For any n ∈ N,

(n + 1) ln
n + 1

n
= 1 +

1
2

ln
n + 1

n
+ s(n)− s(n + 1)

where s(n) = 1/(12n)− 1/(360n3) + . . . is (the tail of) Stirling’s series.

Proof. Apply Stirling’s formula: lnn! = n lnn− n + (1/2) ln(2πn) + s(n). ut


