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Abstract
This article studies the correspondence retrieval problem: a set of k distinct but unknown points
x1,x2, . . . ,xk ∈ Rd are to be recovered from the unordered collection of projection values
〈wi,x1〉, 〈wi,x2〉, . . . , 〈wi,xk〉 onto n known measurement vectors w1,w2, . . . ,wn. Impor-
tantly, the correspondence of the k projections {〈wi,xj〉}kj=1 across different measurements is
unknown. A special case of this problem is the well-studied problem of (real-valued) phase re-
trieval. In the case of independent standard Gaussian measurement vectors, the main algorithm
proposed in this work requires n = d + 1 measurements to correctly return the k unknown points
with high probability. This number of measurements is optimal, and it is smaller than the number
of measurements required for a stronger “for all” guarantee even in the phase retrieval setting. The
algorithm is based on reductions to the Shortest Vector Problem on certain random lattices, and
employs the Lenstra, Lenstra, & Lovász (1982) basis reduction algorithm in a manner similar to
the Lagarias & Odlyzko (1985) algorithm for solving random instances of Subset Sum. Another
algorithm, essentially due to Yi, Caramanis, & Sanghavi (2016), based on higher-order moments
and tensor decompositions is shown to work in a setting where the projection values are corrupted
by additive Gaussian noise, but it requires a significantly larger number of measurements.

1. Introduction

In (the real-variant of) the phase retrieval problem, an unknown vector x ∈ Rd is to be recov-
ered, up to sign, from magnitudes of projections

∣∣〈wi,x〉
∣∣ onto n known measurement vectors

w1,w2, . . . ,wn ∈ Rd. The phase retrieval problem has a rich history in several engineering and
scientific domains, especially when the wi are Fourier basis vectors (see, e.g., Shechtman et al.,
2015; Jaganathan et al., 2015, for an overview). The setting where the wi are independent draws
from certain probability distributions has been intensely studied in the past several years. Many
algorithms based on numerical optimization (e.g., semidefinite programming, local optimization of
convex and non-convex objectives) have been proven to solve the problem with high probability
when provided enough measurements (Netrapalli et al., 2013; Candes et al., 2013; Candès and Li,
2014; Alexeev et al., 2014; Eldar and Mendelson, 2014; Candes et al., 2015a,b,c; Waldspurger et al.,
2015; Chen and Candes, 2015; Sanghavi et al., 2016; Zhang and Liang, 2016; Wang et al., 2016;
Kolte and Özgür, 2016; Gao and Xu, 2016; Sun et al., 2016).

In this paper, we consider a generalization of phase retrieval, which we call correspondence
retrieval: a set of k distinct but unknown points x1,x2, . . . ,xk ∈ Rd are to be recovered from the
unordered collection of projection values 〈wi,x1〉, 〈wi,x2〉, . . . , 〈wi,xk〉 onto n known measure-
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ment vectorsw1,w2, . . . ,wn. Importantly, the correspondence of the k projections {〈wi,xj〉}kj=1

across different measurements is unknown. Phase retrieval, as described above, is the special case
where k = 2 and x1 = −x2; the two real numbers corresponding to each measurement are additive
inverses (〈wi,x1〉 and 〈wi,x2〉 = −〈wi,x1〉).

We propose an algorithm for the case of independent standard Gaussian measurement vectors.
For general k, the algorithm correctly recovers the unknown points with high probability from
n = d+ 1 measurements, assuming that the points are linearly independent. For the phase retrieval
setting, a variant of the algorithm has the same guarantee without the linear independence assump-
tion. Our algorithms are based on reductions to the Shortest Vector Problem (Ajtai, 1996) on certain
random lattices; we prove that vectors provided by the Lenstra-Lenstra-Lovász basis reduction al-
gorithm (henceforth LLL; Lenstra et al., 1982) yield to the correct solution for the correspondence
retrieval problem. Our reduction generalizes an algorithm of Lagarias and Odlyzko (1985) for solv-
ing random instances of the Subset Sum Problem (Gary and Johnson, 1979, pg. 223). We note
that Yi et al. (2014) establish the hardness of the phase retrieval via reduction from the Subset Sum
Problem. Our algorithmic result can be viewed as a reduction in the other direction.

In the phase retrieval setting, our results show a gap between the number of measurement vec-
tors required for all vectors x ∈ Rd to be recoverable, and the number of random measurements
sufficient for any particular vector to be recoverable. This is the same distinction between the “for
all” and “for each” guarantees studied in the context of compressive sensing (Gilbert et al., 2007).
Balan et al. (2006) prove that n = 2d − 1 measurement vectors are necessary for the “for all”
guarantee, and also that the same number of typical measurement vectors are sufficient. Previous
algorithmic results for phase retrieval require n ≥ Cd for some sufficiently large constant C ≥ 2
or even n ≥ dpoly log(d). Our algorithmic result has the “for each” guarantee: the n = d + 1
measurements suffice with high probability for the particular unknown vector of interest. Note that
in the general correspondence retrieval problem, each measurement is comprised of k unordered
real numbers, so the sufficiency of d+ 1 measurements even when k > 2 is sensible.

We also describe an algorithm that works even when the measurements are corrupted by addi-
tive mean-zero Gaussian noise.1 The algorithm is essentially the same as one proposed by Yi et al.
(2016) for the related parameter estimation problem in the mixtures of linear regressions model; the
main technique used is the method-of-moments and orthogonal tensor decomposition (Anandkumar
et al., 2014). We observe that the moments used in the algorithm are invariant to the noise variance,
and hence the algorithm is noise-robust in this sense. However, the number of measurements re-
quired by this algorithm, even when the noise is absent, is larger than that of the lattice-based algo-
rithm. The moment-based algorithm appears to ignore consistency constraints across measurements
that the lattice-based algorithm is able to exploit.

2. Setting and notations

This section describes the correspondence retrieval problem, notations and results concerning lat-
tices and tensors, and the non-degeneracy condition required by the proposed algorithms.

1. In phase retrieval, noise is typically added to the square (magnitude)
∣∣〈wi,x〉

∣∣2 of the projections (Candes et al.,
2015a, 2013). In our setting, independent noise is added to the k projections {〈wi,xj〉}kj=1 themselves.
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2.1. Correspondence retrieval problem

In an instance of the correspondence retrieval problem, k distinct but unknown points in Rd, denoted
by x1,x2, . . . ,xk ∈ Rd, are revealed through collections of noisy linear measurements.

The n measurement vectors, denoted by w1,w2, . . . ,wn, are i.i.d. random vectors in Rd with
the standard multivariate Gaussian distribution N(0, Id×d). For each i ∈ {1, 2, . . . , n}, the i-th
measurement is the unordered (multi-)set of k (Euclidean) inner products between wi and the k
points, corrupted by additive zero-mean Gaussian noise with variance σ2:

Mσ
i := {〈wi,x1〉+ σεi,1, 〈wi,x2〉+ σεi,2, . . . , 〈wi,xk〉+ σεi,k} ,

where the {εi,j}1≤i≤n,1≤j≤k are i.i.d. N(0, 1) random variables. The noiseless version of the prob-
lem has σ2 = 0, and the measurements are denoted byMi :=M0

i for i ∈ {1, 2, . . . , n}.
The goal is to (approximately) reconstruct the set of k unknown points {x1,x2, . . . ,xk} (i.e.,

reconstruct up to reordering), from the data (w1,Mσ
1 ), (w2,Mσ

2 ), . . . , (wn,Mσ
n).

2.2. Notations

The first m positive integers are denoted by [m] := {1, 2, . . . ,m}. The Euclidean inner product
between vectors u and v is denoted by 〈u,v〉, and the Euclidean norm is‖v‖2 :=

√
〈v,v〉. The

i-th largest singular value of a matrix M is denoted by σi(M); the spectral norm (i.e., largest
singular value) is also denoted by‖M‖2.

2.3. Lattices

An ordered basis B = [b1|b2| · · · |bn] ∈ Rm×n, arranged as columns in a rank n matrix, generates
a lattice

Λ(B) :=


n∑
i=1

zibi : z1, z2, . . . , zr ∈ Z

 ⊂ Rm ,

where Z denotes the set of integers. The Shortest Vector Problem is to find the shortest non-zero
vector in the lattice:

arg min
v∈Λ(B)\{0}

‖v‖2 .

The length of the shortest vector is denoted by λ(B).
Current techniques for this problem involve “reducing” the input basis B so that it is at least

somewhat well-conditioned in a certain sense. Lenstra et al. (1982) show that the first vector b1

in a suitably reduced basis B has length at most 2(n−1)/2 · λ(B). They also give an algorithm
(LLL) that, given a basis B ∈ Zm×n with integer coefficients, computes a reduced basis B′ with
Λ(B′) = Λ(B) in time polynomial in m, n, and log(‖B‖∞), where‖B‖∞ denotes the magnitude
of the largest entry in B. In this sense, LLL is a 2(n−1)/2-approximation algorithm for the Shortest
Vector Problem.

An important concern with the use of LLL on bases with real-valued coefficients is numerical
precision. There are two cases where precision needs to be considered: precision in the mea-
surements, and precision in the internal arithmetic operations in LLL. We discuss these issues in
Appendix B. To simplify the foregoing discussion, we assume that LLL may be run on input bases
with real-valued coefficients.
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2.4. Tensors

For a positive integer p, a real order-p tensor T ∈
⊗p

i=1 Rn is a p-linear function T : Rn × Rn ×
· · · × Rn → R. We only require tensors of order two (i.e., matrices) and order three. The rank-one
tensor v1 ⊗ v2 ⊗ · · · ⊗ vp, for vectors v1,v2, . . . ,vp ∈ Rn, is the p-linear function satisfying

(v1 ⊗ v2 ⊗ · · · ⊗ vp)(u1,u2, . . . ,up) = 〈v1,u1〉〈v2,u2〉 · · · 〈vp,up〉 , u1,u2, . . . ,up ∈ Rn .

We use the shorthand notation v⊗p for v ∈ Rn to denote the (symmetric) rank-one tensor v ⊗ v ⊗
· · · ⊗ v ∈

⊗p
j=1 Rn. For p = 2, this is the symmetric outer product of a vector: v⊗2 = vv>.

We may also identify a tensor T ∈
⊗p

i=1 Rn with a multi-index array of np real numbers; the
(i1, i2, . . . , ip)-th entry is T (ei1 , ei2 , . . . , eip), where e1, e2, . . . , en are the standard coordinate
basis vectors for Rn.

2.5. Non-degeneracy conditions

Arrange the k unknown points in the matrix X := [x1|x2| · · · |xk] ∈ Rd×k. Our main algorithms
requireX to have rank(X) = k—i.e., the points must be linearly independent.

We measure how ill-conditioned X is in two ways. The first is based on the singular values
σ1(X) ≥ σ2(X) ≥ · · · ≥ σk(X) ofX , primarily through the ratio κ(X) := σ1(X)/σk(X). The
second is λ(X), the length of the shortest non-zero vector in the lattice Λ(X). The quantities κ(X)
and λ(X) are related in the following proposition, which is proved in Appendix D.1.

Proposition 1 λ(X) ≥ mini∈[k]‖xi‖2 · 2κ(X)/(κ(X)2 + 1).

For k = 2 (the phase retrieval setting), a variant of our lattice-based algorithm requires x1 6= x2,
but permits the points to be linearly dependent.

3. Noiseless correspondence retrieval

This section describes lattice-based algorithms for the noiseless correspondence retrieval problem.

3.1. Algorithm description

Our main algorithm, specified in Algorithm 1, is based on reductions to the Shortest Vector Prob-
lem in lattices. Using information from d + 1 measurements and the input parameter β > 0, the
algorithm constructs k lattice bases with the following properties. First, for each t ∈ [k], the only
short vectors in the t-th lattice reveal which elements in the first d measurements correspond to
the unknown vector xt. Second, when β is sufficiently large, all other vectors in the lattices are
longer by exponentially-large factors. This lattice construction is based on the algorithm of La-
garias and Odlyzko (1985) for solving random instances of the Subset Sum Problem via reduction
to the Shortest Vector Problem. Our algorithm similarly approximately solves these Shortest Vector
Problem instances using LLL to obtain the correspondence information, and then recovers all of the
k unknown points by solving systems of linear equations from the first d measurements.

3.2. Main result and analysis

The main performance guarantee for Algorithm 1 is given in Theorem 2 below.
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Algorithm 1 Lattice-based algorithm for noiseless correspondence retrieval
input Data (wi,Mi) for i ∈ [d+ 1], parameter β > 0.
output Set of points {x̂1, x̂2, . . . , x̂k}, or “failure”.

1: ifW := [w1|w2| · · · |wd]
> is singular then

2: return “failure”.
3: end if
4: Let yi,1, yi,2, . . . , yi,k be an arbitrary ordering the elements ofMi, for each i ∈ [d+ 1].
5: Define a = (ai,j : i ∈ [d], j ∈ [k]) ∈ Rdk by

ai,j := 〈wd+1, w̃i〉yi,j ,

where w̃i is the i-th column ofW−1.
6: for t = 1, 2, . . . , k do
7: Construct basis

B(t) =
[
b

(t)
0 b

(t)
1,1 · · · b

(t)
d,k

]
:=

[
Idk+1

βyd+1,t −βa>

]
∈ R(dk+2)×(dk+1) .

8: Let L(t)(ẑ0, ẑ) := ẑ0b
(t)
0 +

∑
i,j ẑi,jb

(t)
i,j ∈ Λ(B(t)) for (ẑ0, ẑ) ∈ Z × Zdk be the vector

returned by LLL as an approximate solution to Shortest Vector Problem for Λ(B(t)).
9: if the (dk + 2)-th coordinate of L(t)(ẑ0, ẑ) is non-zero then

10: return “failure”.
11: end if
12: Let x̂t be a solution to the system of linear equations (in x ∈ Rd)

〈wi,x〉 = yi,j , (i, j) ∈ [d]× [k] � ẑi,j 6= 0 ,

or 0 if no solution exists.
13: end for
14: return x̂1, x̂2, . . . , x̂k.

Theorem 2 AssumeX = [x1|x2| · · · |xk] ∈ Rd×k has rank(X) = k. For any δ ∈ (0, 1), if

β ≥
16 ·

(
2 · 2dk/2 ·

√
d+ 1 + 1

)dk+1
· 2dk/2 · d ·

√
d+ 1 ·

(
2
√
d+

√
2 ln(8/δ)

)
· k2

π · δ2 · λ(X)
,

then with probability at least 1− δ, Algorithm 1 returns {x1,x2, . . . ,xk}.

Numerical issues and running time are discussed in Appendix B. The rest of this subsection is
devoted to the proof of Theorem 2.

Let R := 2dk/2 ·
√
d+ 1, and let ZR := {(z0, z) ∈ Z × Zdk : 0 < z2

0 +‖z‖22 ≤ R2}. For
δ ∈ (0, 1), define

rδ :=

√√√√√π

2
·
(

δ

k|ZR|

)2

·
λ(X)2 · π2 ·

(
δ

2dk|ZR|

)2

(
2
√
d+

√
2 ln(4/δ)

)2 .
5
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The coefficient vectors in ZR include all those that could potentially determine lattice vectors in
Λ(B(t)) for t ∈ [k] with length at most R. Below, we prove that these lattice vectors either provide
the correspondence information needed to recover the unknown points (and have length� R), or
they have length more than βrδ with high probability. A crude bound on the cardinality of ZR is

|ZR| ≤
∣∣{−bRc,−bRc+ 1, . . . , bRc − 1, bRc}

∣∣dk+1 ≤
(

2 · 2(dk+1)/2 ·
√
d+ 1 + 1

)dk+1
.

For each i ∈ [d], let πi : [k]→ [k] denote the (unknown) permutation on [k] that determines the
arbitrary ordering ofMi from Algorithm 1:

yi,j = 〈wi,xπi(j)〉 , i ∈ [d], j ∈ [k] .

Also, for δ ∈ (0, 1), let Eδ be the event that

1. the smallest singular value ofW is bounded from below: σd(W ) ≥ δ/(4
√
d);

2. the spectral norm ofW is bounded from above:‖W ‖2 ≤ 2
√
d+

√
2 ln(4/δ);

3. for each i ∈ [d], j ∈ [k], and (z0, z) ∈ ZR such that |zi,j − z0|+
∑

j′ 6=j |zi,j′ | > 0,〈
wi, (zi,j − z0)xπi(j) +

∑
j′ 6=j

zi,j′xπi(j′)

〉2

≥ λ(X)2 · π
2
·
(

δ

2dk|ZR|

)2

. (1)

This event characterizes the properties needed from the first d measurements; Lemma 3 shows that
it has large probability mass. The proof, given in Appendix D.2, is based on known properties of
Gaussian random matrices.

Lemma 3 For any δ ∈ (0, 1), Pr (Eδ) ≥ 1− δ.

We now show in Lemma 4 that, for each t ∈ [k], there is a relatively short vector in Λ(B(t))
that provides the correspondence information needed to recover xt. We also show in Lemma 5 that
when β is sufficiently large, other vectors in Λ(B(t)) are considerably longer, and hence cannot be
returned by LLL.

To simplify notation, assume that πd+1(j) = j for each j ∈ [k], so we have yd+1,t = 〈wd+1,xt〉
for each t ∈ [k]. Using this notation, define z(t) = (z

(t)
i,j : i ∈ [d], j ∈ [k]) ∈ Zdk for each t ∈ [k] by

z
(t)
i,j :=

{
1 if πi(j) = t ,

0 otherwise .

Recall that for each t ∈ [k], the lattice vector in Λ(B(t)) determined by coefficient vector (z0, z) ∈
Z× Zdk is denoted by

L(t)(z0, z) = z0b
(t)
0 +

∑
i,j

zi,jb
(t)
i,j .

Observe that the coefficient vector (z0, z) is revealed in the first dk + 1 coordinates of the lattice
vector L(t)(z0, z); the final coordinate of the lattice vector is used to make some vectors very long.
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Lemma 4 On the event Eδ, for each t ∈ [k], yd+1,t = 〈wd+1,xt〉 =
∑

i,j ai,jz
(t)
i,j . Also on this

event, for each t ∈ [k],

L(t)(1, z(t)) =

 1

z(t)

−βyd+1,t + β
∑

i,j ai,jz
(t)
i,j

 =

 1

z(t)

0

 ,
∥∥L(t)(1, z(t))

∥∥
2

=
√
d+ 1 .

Proof Assume Eδ holds, which guarantees the existence of W−1 and thus permits the w̃i to be
well-defined. In this event,

∑d
i=1 w̃iw

>
i = W−1W = Id. Therefore,∑

i,j

ai,jz
(t)
i,j =

d∑
i=1

k∑
j=1

〈wd+1, w̃i〉〈wi,xπi(j)〉z
(t)
i,j

=

d∑
i=1

〈wd+1, w̃i〉〈wi,xt〉

= w>d+1

 d∑
i=1

w̃iw
>
i

xt = 〈wd+1,xt〉 .

The claim now follows by direct computation, using the above identity and the definition of z(t).

Lemma 5 For any δ ∈ (0, 1), conditional on the event Eδ, with probability at least 1− δ (over the
choice of wd+1), for each t ∈ [k], every coefficient vector (z0, z) ∈ Z × Zdk that is not an integer
multiple of (1, z(t)) satisfies∥∥L(t)(z0, z)

∥∥
2
> min

{
R,

√
z2

0 +‖z‖22 + β2r2
δ

}
.

Proof Assume Eδ holds. This implies, in particular, that W−1 and the w̃i are well-defined. Fix
t ∈ [k], and let Z(1, z(t)) denote the set of integer multiples of (1, z(t)). For any coefficient vector
(z0, z) ∈ Z× Zdk,

‖L(t)(z0, z)‖22 =

∥∥∥∥∥∥z0b
(t)
0 +

∑
i,j

zi,jb
(t)
i,j

∥∥∥∥∥∥
2

2

= z2
0 +‖z‖22 + β2

∑
i,j

ai,jzi,j − yd+1,tz0

2

. (2)

Observe that ‖L(t)(z0, z)‖2 > R for all (z0, z) ∈ (Z × Zdk) \ ZR. Below, we prove that with
probability at least 1− δ/k, ‖L(t)(z0, z)‖22 > z2

0 +‖z‖22 +β2r2
δ for every (z0, z) ∈ ZR \Z(1, z(t)).

Combining this with a union bound over all choices of t ∈ [k] proves the lemma.
Fix any such (z0, z) ∈ ZR, and consider the parenthesized term in Eq. (2) (without the squar-

ing). By Lemma 4, the term expands to∑
i,j

ai,jzi,j − yd+1,tz0 =
∑
i,j

ai,j

(
zi,j − z(t)

i,j z0

)
=
∑
i,j

〈wd+1, w̃i〉〈wi,xπi(j)〉
(
zi,j − z(t)

i,j z0

)
= 〈wd+1,v〉 ,

7
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where

v :=
∑
i,j

〈wi,xπi(j)〉
(
zi,j − z(t)

i,j z0

)
w̃i .

Because wd+1 ∼ N(0, Id), the final expression is a N(0,‖v‖22) random variable, and hence by
Proposition 10 (given in Appendix A),

Pr

(
〈wd+1,v〉2 ≤

π

2
·
(

δ

k|ZR|

)2

·‖v‖22

)
≤ δ

k|ZR|
. (3)

We show below that, on the event Eδ,

‖v‖22 ≥
λ(X)2 · π2 ·

(
δ

2dk|ZR|

)2

(
2
√
d+

√
2 ln(2/δ)

)2 . (4)

Using this bound with Eq. (3) and a union bound, it follows that with probability at least 1 − δ/k,
we have ‖L(t)(z0, z)‖22 > z2

0 +‖z‖22 + β2r2
δ for all (z0, z) ∈ ZR \ Z(1, z(t)).

We now prove the bound in Eq. (4) on the event Eδ. Because the w̃i are the columns of W−1,
we may write v = W−1c for c = (c1, c2, . . . , cd), where

ci :=

k∑
j=1

〈wi,xπi(j)〉
(
zi,j − z(t)

i,j z0

)
=

〈
wi,

(
zi,π−1

i (t) − z0

)
xt +

∑
j∈[k]:πi(j)6=t

zi,jxπi(j)

〉

for each i ∈ [d]. Therefore,‖v‖22 may be bounded below as

‖v‖22 ≥ σd(W
−1)2 ·

d∑
i=1

c2
i =

1

‖W ‖22
·

d∑
i=1

c2
i .

Since (z0, z) /∈ Z(1, z(t)), at least one of the following is true:

1. there exists i ∈ [d] such that zi,π−1
i (t) 6= z0;

2. there exists i ∈ [d] and j ∈ [k] \ {π−1
i (t)} such that zi,πi(j) 6= 0.

In either case, there exists i ∈ [d] such that |zi,π−1
i (t) − z0| +

∑
j∈[k]:πi(j)6=t |zi,πi(j)| > 0, so using

the third condition in the event Eδ,

d∑
i=1

c2
i ≥ λ(X)2 · π

2
·
(

δ

2dk|ZR|

)2

.

Combining this with the upper-bound‖W ‖2 ≤ 2
√
d +

√
2 ln(2/δ) from the second condition in

the event Eδ proves the required lower-bound on‖v‖22 from Eq. (4).

We now prove Theorem 2. With probability at least 1−δ/2 (over the choice ofw1,w2, . . . ,wd),

8
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1. Event Eδ/2 holds (Lemma 3).

Moreover, conditional on Eδ/2,

2. ‖L(t)(1, z(t))‖2 =
√
d+ 1 for each t ∈ [k] (Lemma 4);

and, with probability at least 1− δ/2 (over the choice of wd+1),

3. for each t ∈ [k], every non-zero vector in L(t)(z0, z) ∈ Λ(B(t)) for (z0, z) ∈ Z × Zdk
with length at most R = 2(dk+1)/2

√
d+ 1 is either an integer multiple of L(t)(1, z(t)), or has

length ‖L(t)(z0, z)‖2 >
√
z2

0 +‖z‖22 + β2r2
δ/2; the length in this latter case is more than R

when β ≥ R/rδ/2 (Lemma 5).

Statements 1–3 above hold together with probability at least 1 − δ, so we assume that they hold.
In particular, Algorithm 1 does not return “failure” upon checking if W singular. As long as β ≥
R/rδ/2, for each t ∈ [k], the approximate solution returned by LLL for Λ(B(t)) is L(t)(ẑ0, ẑ) =

L(t)(c, cz(t)) for some c 6= 0. The (dk + 2)-th coordinate of this vector is zero—so Algorithm 1
does not return “failure” on account of this check—and x̂t is obtained as a solution to the system of
linear equations

〈wi,x〉 = yi,j , (i, j) ∈ [d]× [k] � cz(t)
i,j 6= 0 .

By the definition of z(t) and non-singularity ofW , we have x̂t = xt for all t ∈ [k]. This completes
the proof of Theorem 2.

3.3. Phase retrieval

The special case of correspondence retrieval where k = 2 and x1 = −x2 6= 0 is known as the
(real-valued) phase retrieval problem, as described in the introduction. Indeed, it is easy to see that
the general k = 2 correspondence retrieval problem may be reduced to this case by “centering”
the measurements. However, the unknown points x1 and x2 are no longer linearly independent, so
Algorithm 1 is not directly applicable.

A simple fix is to pick a random vector z ∼ N(0, Id), and replace each unordered measurement
Mi = {〈wi,x1〉, 〈wi,x2〉} withM′i := {〈wi, z〉 + 〈wi,x1〉, 〈wi, z〉 + 〈wi,x2〉}. The points to
recover become z + x and z − x, where x := x1 = −x2. Let X̃ := [z + x|z − x] ∈ Rd×2. The
following proposition gives a bound on κ(X̃) = σ1(X̃)/σ2(X̃); its proof is given in Appendix D.3.

Proposition 6 For any vectors a, b ∈ Rd, the matrixM := [a+ b|a− b] ∈ Rd×2 satisfies

σ1(M)

σ2(M)
≤ r + 1/r∣∣sin(θ)

∣∣ ,
where r :=‖a‖2 /‖b‖2, and θ is the angle between a and b.

It is easy to see that

κ(X̃) ≤ r + 1/r∣∣sin(θ)
∣∣ ≤ O

(
‖x‖2√
d

+

√
d

‖x‖2

)

9
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with high probability, and hence Algorithm 1 may be applied.
We can also give a direct algorithm for solving the phase retrieval problem via LLL, with quali-

tatively the same guarantees as Algorithm 1, where‖x‖2 replaces the role of λ(X). The details are
given in Appendix C.

Number of measurements. Our algorithms require n = d+ 1 measurements for exact recovery,
which is the best possible (in dimension d ≥ 2), even in this phase retrieval setting. With only
d linearly independent measurement vectors, no algorithm can distinguish among 2d−1 distinct
solutions (of the form {W−1 diag(s)Wx,−W−1 diag(s)Wx} for s ∈ {±1}d) that give rise to
the same d measurements.

As discussed in the introduction, Balan et al. (2006) prove that n = 2d−1 measurement vectors
(whether random or deterministic) are necessary to ensure that every non-zero x ∈ Rd can be
recovered, up to sign, from measurements with these measurement vectors. Because our algorithms
only use d+ 1 (Gaussian) measurement vectors, they must be insufficient for recovering some x up
to sign (in dimension d ≥ 3), even though for any fixed x, they suffice with high probability.

4. Noisy correspondence retrieval

This section sketches a moment-based algorithm for the noisy correspondence retrieval problem.

4.1. Main idea

The algorithm is based on decomposing the following moments involving the k unknown points:

M :=

k∑
j=1

x⊗2
j ∈ Rd×d and T :=

k∑
j=1

x⊗3
j ∈ Rd×d×d .

Under the condition rank(X) = k, there is an efficient algorithm based on tensor decompositions
that, if given M and T up to some sufficiently small error as inputs, returns accurate estimates of
the points x1,x2, . . . ,xk up to reordering (see, e.g., Anandkumar et al., 2014).

The crucial idea is that the moment matrix M and tensor T can be estimated from the data
(w1,Mσ

1 ), (w2,Mσ
2 ), . . . , (wn,Mσ

n), even though the measurements are unordered. This was
observed by Yi et al. (2016) in the case of a related (and indeed, more difficult) model of mixtures
of linear regressions. In their model, there is no noise (i.e., σ = 0), but instead of observing
all of Mi, only a random element of Mi is observed (and this random choice is independent of
the random measurement vectors, and identically distributed across all n measurements). Yi et al.
give an algorithm for learning the k unknown points when n is sufficiently large (nearly linear in
d, polynomial in k and κ(X)).2 Therefore, it is clear that the noiseless correspondence retrieval
problem may be reduced to their noiseless mixtures of linear regressions problem.

Our main observation is that the same estimators designed for the noiseless setting may also be
applied in the noisy setting.

2. Yi et al. (2016) also give a hybrid algorithm that combines alternating minimization with the moment-based algo-
rithm. This hybrid algorithm can exactly recover the k unknown points in the noiseless setting.

10
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4.2. Moment estimators

To estimateM and T , we use

M̂ :=
1

n

n∑
i=1

1

2

k∑
j=1

(
〈wi,xj〉+ σεi,j

)2 (
w⊗2
i − Id

)
and T̂ :=

1

n

n∑
i=1

1

6

k∑
j=1

(
〈wi,xj〉+ σεi,j

)3 (
w⊗3
i − T (wi)

) ,

respectively. Here, for any vector v ∈ Rd, the third-order tensor T (v) is defined by T (v) :=∑d
j=1 (v ⊗ ej ⊗ ej + ej ⊗ v ⊗ ej + ej ⊗ ej ⊗ v), where e1, e2, . . . , ed is any fixed orthonormal

basis for Rd. The i-th term in each of M̂ and T̂ is symmetric with respect to the k values inMσ
i ,

and hence can be formed using just the unordered measurements.
The unbiasedness of M̂ and T̂ in the noiseless case (σ = 0) follows immediately from the

following proposition. We give a simple proof in Appendix D.4 for completeness.

Proposition 7 (Yi et al., 2016) Let w ∼ N(0, Id). For any vector u ∈ Rd,

E
[

1

2
〈w,u〉2

(
w⊗2 − Id

)]
= u⊗2 , E

[
1

6
〈w,u〉3

(
w⊗3 − T (w)

)]
= u⊗3 .

In the noisy case, we have the following analogous proposition, which implies the unbiasedness
of M̂ and T̂ for any noise level σ ≥ 0.

Proposition 8 Let w ∼ N(0, Id) and ε ∼ N(0, 1) be independent. For any vector u ∈ Rd and
any σ ≥ 0,

E
[

1

2

(
〈w,u〉+ σε

)2 (
w⊗2 − Id

)]
= u⊗2 , E

[
1

6

(
〈w,u〉+ σε

)3 (
w⊗3 − T (w)

)]
= u⊗3 .

Proof This follows from Proposition 7 by replacing w and u, respectively, with w̃ := (w, ε) ∼
N(0, Id+1) and ũ := (u, σ) ∈ Rd+1; and considering the appropriate sub-matrix and sub-tensor.

Proposition 8 justifies the use of essentially the same moment-based algorithm of Yi et al. for
the noisy correspondence retrieval problem:

1. Compute the estimates M̂ and T̂ from (w1,Mσ
1 ), (w2,Mσ

2 ), . . . , (wn,Mσ
n).

2. Apply the tensor decomposition algorithm of Anandkumar et al. (2014), and return the vectors
from the approximate decomposition x̂1, x̂2, . . . , x̂k.

The analysis of Yi et al. can be used to give a bound on the number of measurements needed to
accurately estimate the k unknown points: assuming maxj∈k] ‖xj‖2 = 1, for any ε, δ ∈ (0, 1), if
the number of measurements n satisfies

n ≥ Õ

(
d · poly

(
k

σk(Xσ)

)
· log(1/δ)

ε2
+
k2

δ

)
,

11
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then the algorithm returns x̂1, x̂2, . . . , x̂k ∈ Rd satisfying

min
π

max
j∈[k]
‖x̂π(j) − xj‖2 ≤ ε ,

with probability at least 1 − δ, where the min is over permutations π : [k] → [k]. Here, the Õ(·)
hides factors that are poly-logarithmic in those that appear, and Xσ is the (d + 1)×k matrix that
appends a row toX with all entries equal to σ. We omit a detailed bound and analysis because they
are based entirely on the results of Yi et al., and the result is not comparable to the results we obtain
in the noiseless setting with the lattice-based algorithms.

5. Discussion

The moment-based algorithm for the correspondence retrieval problem does not appear to efficiently
use the information contained in individual measurements. By averaging over the measurements in
the computation of M̂ and T̂ , critical constraint information is lost. In contrast, the lattice-based
algorithm does not average over the projection values nor the measurements themselves. It would
be interesting to understand if there is indeed a gap between these distinct types of algorithms.

It would also be interesting to consider other classes of measurement vectors. Assuming a Gaus-
sian distribution is convenient for analysis of our lattice-based algorithm, although it is plausible that
other distributions satisfying some kind of anti-concentration condition at every point would also
suffice. Handling certain discrete distributions would also simplify the numerical precision issues.
The moment-based algorithm, however, critically relies on higher-order moment calculations spe-
cific to the Gaussian distribution. It is not clear to what extent that algorithm would work with other
classes of measurement vectors. A plausible alternative is to use semidefinite programming to re-
coverM and T (or other related moment tensors). Indeed, the results of Kueng et al. (2017) imply
that M can be recovered from O(dk) measurements, where the distribution of the measurement
vectors may be Gaussian or from a certain class of finitely-supported distributions.

Our lattice-based algorithm cannot handle measurement noise, with the cryptographic hardness
of the Shortest Vector Problem being the main barrier. There is also cryptographic evidence that
even deterministic measurement errors make related problems computationally intractable (Alwen
et al., 2013). In practice, LLL has been observed to find the shortest vector in lattices in low
dimensions, and in high dimensions, its empirical performance is somewhat better than the worst-
case approximation factor (Stehlé, 2010). Nevertheless, it is desirable to find different algorithms
for phase retrieval and correspondence retrieval that do not use LLL but still work with the same
optimal number of measurements.
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Appendix A. Gaussian inequalities

Theorem 9 (Edelman, 1988; Davidson and Szarek, 2001) Let Z be an n × n matrix whose en-
tries are i.i.d. N(0, 1) random variables. For any η ∈ (0, 1),

Pr

(
σn(Z) ≤ η√

n

)
≤ η ,

and

Pr
(
σ1(Z) ≥ 2

√
d+

√
2 ln(1/η)

)
≤ η .

The following proposition is based on elementary properties of the Gaussian distribution.

Proposition 10 Let Z ∼ N(0, 1). For any η ∈ (0, 1), Pr(Z2 ≤ πη2/2) ≤ η, and Pr(|Z| >√
2 ln(2/η)) ≤ η.

Proof The first bound is a standard Gaussian anti-concentration bound:

Pr

(
|Z| ≤

√
π

2
η

)
=

∫ √π
2
η

−
√

π
2
η

1√
2π
e−z

2/2 dz ≤
∫ √π

2
η

−
√

π
2
η

1√
2π

dz = η .

The second bound is a standard upper-bound on the Gaussian tail.

Appendix B. Numerical issues

In this section, we discuss the numerical issues with Algorithm 1. We assume that the coeffi-
cients of the measurement vectors w1,w2, . . . ,wd and the k unknown points x1,x2, . . . ,xk are
represented with sufficiently fine precision—say, with B bits of precision—and that the projection
values 〈wi,xj〉 in the measurements are exact. Here,B should be large enough so that the Gaussian
anti-concentration properties in the proof of Theorem 2 still hold (say, within a constant multiplica-
tive factor). The anti-concentration property from Proposition 10 is used with η no smaller than
λ(X) · 2− poly(d,k,log(1/δ)), so the number of bits needed is poly(d, k, log(1/δ)) plus the number of
bits needed to represent λ(X), the length of the shortest vector in Λ(X). Recall that λ(X) is no
larger than minj∈[k] ‖xj‖2 and, by Proposition 1, no smaller than minj∈[k] ‖xj‖2 /κ(X).

The numerical work performed by Algorithm 1 is dominated by the calls to LLL and the solving
of linear systems. Lemma 11 bounds how much smaller or larger the coefficients of the lattice basis
(used in the calls to LLL) are relative to the projection values. Lemma 11 also bounds the condition
number of the matrix involved in the linear system that is used to solve for the unknown points.
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Lemma 11 With probability at least 1− δ,

σ1(W ) ≤ 2
√
d+

√
2 ln(4/δ) ,

σd(W ) ≥ δ

4
√
d
,

β · |ai,j | ∈

 β ·
√
πδ · |yi,j |

4
√

2d
(

2
√
d+

√
2 ln(4/δ)

) , β · 4√2d ln(8d/δ) · |yi,j |
δ

 , i ∈ [d], j ∈ [k] .

Proof From Theorem 9, it follows that

Pr
(
σ1(W ) ≤ 2

√
d+

√
2 ln(4/δ) and σd(W ) ≥ δ/(4

√
d)
)
≥ 1− δ

2
.

Condition on this 1 − δ/2 probability event. Recall that w̃i is the i-th column of W−1. The
distribution of each 〈wd+1, w̃i〉 is N(0,‖w̃i‖22), and

1

σ1(W )
≤ ‖w̃i‖2 ≤

1

σd(W )
.

So, by Proposition 10 and union bound,

Pr

(
∀i ∈ [d] �

√
πδ

4
√

2dσ1(W )
≤ |〈wd+1, w̃i〉| ≤

√
2 ln(8d/δ)

σd(W )

)
≥ 1− δ

2
.

Since ai,j = 〈wd+1, w̃i〉yi,j , combining these probability bounds proves the claim.

When calling LLL, we may treat the lattice basis coefficients as integers by rescaling. By
Lemma 11, the number of bits required to represent these coefficients may grow from B to

B +O

log max

{
d3/2 + d

√
log(1/δ)

βδ
,
β
√
d log(d/δ)

δ

} .

With the required value of β from the statement of Theorem 2, the running time of LLL—and also
of Algorithm 1—is therefore poly(d, k, log(B), log(κ(X)), log(1/δ)).

Appendix C. Direct algorithm for phase retrieval

In the phase retrieval problem, there is a single hidden vector x, and for each i ∈ [d + 1], we draw
wi ∼ N(0, Id) and observe yi :=

∣∣〈wi,x〉
∣∣. Our goal is to recover x by finding the vector of

unknown signs s := (s1, s2, . . . , sd) ∈ {±1}d, where si := sign(〈wi,x〉) for each i ∈ [d]. A
modified version of our main algorithm, specified in Algorithm 2, constructs a lattice where the
shortest vector’s coefficients are exactly the same as s or −s.

The performance guarantee of this algorithm is given below in an analogous result to Theorem 2.
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Algorithm 2 Lattice-based algorithm for phase retrieval
input Data (wi, yi) for i ∈ [d+ 1], parameter β > 0.
output Hidden point x̂ (up to a sign), or “failure”.

1: ifW := [w1|w2| · · · |wd]
> is singular then

2: return “failure”.
3: end if
4: Define a = (ai : i ∈ [d]) ∈ Rd by

ai := 〈wd+1, w̃i〉yi ,

where w̃i is the i-th column ofW−1.
5: Construct basis

B =
[
b0 b1 · · · bd

]
:=

[
Id+1

βyd+1 −βa>

]
∈ R(d+2)×(d+1) .

6: Let (ẑ0, ẑ) ∈ Z× Zd specify an approximate solution ẑ0b0 +
∑

i ẑibi ∈ Λ(B) to the Shortest
Vector Problem for Λ(B) using LLL.

7: if |ẑ0| = |ẑ1| = |ẑ2| = · · · = |ẑd| is not true then
8: return “failure”
9: end if

10: Let x̂ be a solution to the system of linear equations (in t ∈ Rd)

〈wi, t〉 = sign(ẑi)yi , i ∈ [d] .

11: return x̂.

Theorem 12 For any δ ∈ (0, 1), if

β ≥
2d/2
√
d+ 1 · 2d

(
2
√
d+

√
2 ln(4/δ)

)
·
(

2 · 2d/2
√
d+ 1 + 1

)d+1

δ2‖x‖2 π

then with probability at least 1− δ, Algorithm 2 returns x̂ = x.

Let Eδ be the event that

1. the smallest singular value ofW is bounded from below: σd(W ) ≥ δ/(4
√
d);

2. the spectral norm ofW is bounded from above:‖W ‖2 ≤ 2
√
d+

√
2 ln(4/δ);

3. for each i ∈ [d] and (z0, z) ∈ ZR such that |zi − z0| > 0,

〈
wi, (zi − z0)x

〉2 ≥ ‖x‖22 ·
π

2
·
(

δ

2d|ZR|

)2

. (5)

Also, let R := 2d/2
√
d+ 1 and ZR := {(z0, z) ∈ Z× Zd : 0 < z2

0 +‖z‖22 ≤ R2}.
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Lemma 13 For any δ ∈ (0, 1),Pr (Eδ) ≥ 1− δ.

The proof of this lemma is completely analogous to that of Lemma 3, so we omit it.
Let s0 := sign(〈wd+1,x〉). The following lemma shows there exists a short lattice vector which

solves the recovery problem. Its proof is analogous to that of Lemma 4, so again we omit it.

Lemma 14 On the event Eδ

L(s0, s) =

 1
s

−βs0yd+1 + β
∑d

i aisi

 =

1
s
0

 ,
‖L(s0, s)‖2 =

√
d+ 1 .

Finally, we state a lemma that lower-bounds the length of lattice vectors that are not integer
multiples of L(s0, s).

Lemma 15 For any δ ∈ (0, 1), conditioned on the event Eδ, for every coefficient vector (z0, z) that
is not an integer multiple of (s0, s), we have

‖L(z0, z)‖22 > min
{
R2, z2

0 +‖z‖22 + β2r2
δ

}
.

where

rδ := δ2 ·
‖x‖2 π

2d|ZR|(2
√
d+

√
2 ln(4/δ))

.

Proof Let (z0, z) ∈ ZR be any coefficient vector. Then the last coordinate of the corresponding
lattice vector is

d∑
i=1

aizi − z0yd+1 =
d∑
i=1

aizi − z0s0

d∑
i=1

aisi

(using the relation from Lemma 14 and the fact that s2
0 = 1)

=

d∑
i=1

ai (zi − z0s0si)

=
d∑
i=1

〈wd+1, w̃i〉
∣∣〈wi,x〉

∣∣ (zi − z0s0si) .

Because z is not an integer multiple of s and z0s0 is an integer, there exists an index i∗ ∈ [d] such
that zi − z0s0si∗ 6= 0. Then the sum can be rewritten as

〈wd+1, w̃i∗〉
∣∣〈wi∗ , (zi∗ − z0s0si∗)x〉

∣∣+
∑
i 6=i∗
〈wd+1, w̃i〉

∣∣〈wi, (zi − z0s0si)x〉
∣∣ . (6)
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We now show that the first term puts small probability mass over any short interval independent of
the value of the summation over i 6= i∗. This gives a lower bound on the absolute value of the last
coordinate by considering an interval around the negative of the second term.

Since (z0, z) ∈ ZR implies (z0s0si∗ , z) ∈ ZR for either of the two values of s0 and si∗ , the
third condition in Eδ gives∣∣∣〈wi∗ , (zi∗ − z0s0si∗)x

〉∣∣∣ ≥ ‖x‖22 · π2 ·
(

δ

2d|ZR|

)2

.

Since W−1 is full rank, there is a component of w̃i∗ which is orthogonal to the span of
{w̃i}i 6=i∗ . We write this as

u = w̃i∗ +
∑
i 6=i∗

aiwi

where 〈u,wi〉 = 0 for all i 6= i∗. Now let ai for i 6= i∗ be the coefficients above, and let ai∗ := 1.
Then u = W−1a for a = (a1, a2, . . . , ad), and thus

‖u‖2 ≥
1

2
√
d+

√
2 ln(4/δ)

·‖a‖2 ≥
1

2
√
d+

√
2 ln(4/δ)

,

where the first inequality follows from

σd(W
−1) ≥ 1

2
√
d+

√
2 ln(4/δ)

on the event Eδ and the second inequality from ai∗ = 1.
Thus Eq. (6) can be rewritten as the sum of two independent terms

〈wd+1,u〉
∣∣〈wi∗ , (zi∗ − z0s0si∗)x〉

∣∣+∑
i 6=i∗

(
〈wd+1,−aiw̃i〉|〈wi∗ , (zi∗ − z0s0si∗)x〉+ 〈wd+1, w̃i〉

∣∣〈wi, (zi − z0s0si)x〉
∣∣) (7)

The first term, 〈wd+1,u〉
∣∣〈wi∗ , (zi∗ − z0s0si∗)x〉

∣∣, has distribution N(0, σ2), where

σ2 ≥ ‖u‖2|〈wi∗ , (zi∗ − z0s0si∗)x〉|

≥
‖x‖22 π2

(
δ

2d|ZR|

)2

(
2
√
d+

√
2 ln(4/δ)

)2 .

The event that Eq. (6) is small is when the Gaussian distribution returns a value in the interval of
length 2rδ centered around the second term. The probability of this event is no more than

1√
2πσ2

· 2rδ ≤
2rδ
π
·

2
√
d+

√
2 ln(4/δ)

‖x‖2
(

δ
2d|ZR|

) ≤ δ

by the choice of rδ. Therefore, with probability at least 1 − δ, the quantity in 6 is at least rδ, so
the contribution of the last coordinate to the norm of the lattice vector is at least β2r2

δ , so the norm
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of this lattice vector is at least
√
z2

0 + ‖z‖22 + β2r2
δ . To complete the proof we note that for all

(z0, z) 6∈ ZR, by definition the norm of ‖z‖2 is at least R.

We now prove Theorem 12. By the choices of R and β and Lemma 15, every incorrect coef-
ficient vector has norm at least 2d/2

√
d+ 1, so it will not be returned by the LLL algorithm. By

Lemma 14 there exists a short vector with coefficients (s0, s), so LLL recovers the correct signs.

Appendix D. Omitted proofs

D.1. Proof of Proposition 1

Claim 1 λ(X) ≥ mini∈[k] ‖xi −Π(−i)xi‖2 where Π(−i) is the orthogonal projection to the span
of {xj}j 6=i.

Proof Let v be a non-zero vector in the lattice with basis X . Write v =
∑k

j=1 zjxj , where
z1, z2, . . . , zk ∈ Z. Pick any i ∈ [k] such that zi 6= 0, and let r := −

∑
j 6=i zjxj , so

‖v‖22 = ‖zixi − r‖22 ≥
∥∥∥zixi −Π(−i)zixi

∥∥∥2

2
= |zi|

∥∥∥xi −Π(−i)xi

∥∥∥2

2
≥
∥∥∥xi −Π(−i)xi

∥∥∥2

2
.

Above, the first inequality follows from the Pythagorean theorem, and the second inequality follows
because zi ∈ Z \ {0}.

By Claim 1, it suffices to lower-bound the distance between xi and the subspace spanned by
{xj}j 6=i, for every i ∈ [k]. So fix i ∈ [k], and any non-zero vector ri in the span of {xj}j 6=i.
Let the singular value decomposition of X be given by X = USV >, where U ∈ Rd×k has
orthonormal columns, S = diag(σ1(X), σ2(X), . . . , σk(X)) � 0 is diagonal, and V ∈ Rk×k
is orthogonal. Let αj ∈ Rk denote the j-th column of V >. Then xi = USαi, and there exists
non-zero βi ∈ Rk orthogonal to αi such that ri = USβi. Moreover,

〈xi, ri〉2

〈xi,xi〉〈ri, ri〉
=

(α>i SU
>USβi)

2

(α>i SU
>USαi) (β>i SU

>USβi)
=

(α>i S
2βi)

2

(α>i S
2αi) (β>i S

2βi)
.

By Wielandt’s inequality (Horn and Johnson, 1985, 7.4.34), the ratio is bounded above by(
σ1(S2)/σk(S

2)− 1

σ1(S2)/σk(S
2) + 1

)2

=

(
κ(X)2 − 1

κ(X)2 + 1

)2

=: φ .

By the Pythagorean theorem, the distance between xi and the span of ri is

‖xi‖2

(
1− 〈xi, ri〉2

〈xi,xi〉〈ri, ri〉

)1/2

≥ ‖xi‖2
√

1− φ .

Since this holds for any ri in the span of {xj}j 6=i, the distance between xi and the span of {xj}j 6=i
is also at least

‖xi‖2
√

1− φ = ‖xi‖2 ·
2κ(X)

κ(X)2 + 1
.

The claim in Proposition 1 follows.

20



CORRESPONDENCE RETRIEVAL

D.2. Proof of Lemma 3

It suffices to show the following probability bounds: (i) Pr(σd(W ) ≤ δ/(4
√
d)) ≤ δ/4; (ii)

Pr(‖W ‖2 > 2
√
d +

√
2 ln(4/δ)) ≤ δ/4; (iii) Pr(Eq. (5) does not hold) ≤ δ/(2dk|ZR|) for each

i ∈ [d], j ∈ [k], and (z0, z) ∈ ZR such that |zi,j− z0|+
∑

j′ 6=j |zi,j′ | > 0. Combining these bounds
with a union bound proves the claim.

The first two bounds follow from Theorem 9. The third requires Proposition 10 and the obser-
vation that the inner product in Eq. (5) is distributed as N(0,‖v‖22), where v := (zi,j − z0)xπi(j) +∑

j′ 6=j zi,j′xπi(j′). The condition on (z0, z) implies that v is a non-zero vector in the lattice Λ(X),
which has‖v‖2 ≥ λ(X) by definition.

D.3. Proof of Proposition 6

Let M̃ := [a|b] ∈ Rd×2. The non-zero singular values of the matrix M = [a + b|a − b] are the
same as the square-roots of the non-zero eigenvalues of

MM> = 2aa> + 2bb> = 2M̃M̃
>
.

This matrix, in turn, has the same non-zero eigenvalues as the matrix

2M̃
>
M̃ = 2

[
‖a‖22 〈a, b〉
〈b,a〉 ‖b‖22

]
.

The eigenvalues λ1 ≥ λ2 of this matrix can be computed explicitly:

λ1 = ‖a‖22 +‖b‖22 +

√(
‖a‖22 +‖b‖22

)2
− 4

(
‖a‖22‖b‖

2
2 − 〈a, b〉2

)
,

λ2 = ‖a‖22 +‖b‖22 −
√(
‖a‖22 +‖b‖22

)2
− 4

(
‖a‖22‖b‖

2
2 − 〈a, b〉2

)
.

Their ratio is

λ1

λ2
=

1 +

√
1− 4 sin2(θ)

(r+1/r)
2

1−
√

1− 4 sin2(θ)

(r+1/r)
2

,

where r = ‖a‖2 /‖b‖2, and θ is the angle between a and b. The quantity 4 sin2(θ)/
(
r + 1/r

)2 is
always in the interval [0, 1]. A Taylor series expansion argument shows that

1 +
√

1− x
1−
√

1− x
≤ 4

x
, x ∈ [0, 1] ,

so we conclude

σ1(M)

σ2(M)
=

√
λ1

λ2
≤ r + 1/r∣∣sin(θ)

∣∣ .
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D.4. Proof of Proposition 7

By homogeneity, we may assume‖u‖2 = 1. Let g := 〈w,u〉 ∼ N(0, 1), and let y := w − gu.
Observe that g and y are independent, and

Ey = 0 , Ey⊗2 = Id − u⊗2 =
d∑
j=1

e⊗2
j − u

⊗2 , Ey⊗3 = 0 .

Using these facts, we have

E〈w,u〉2 (w⊗2 − Id) = Eg2 (g2u⊗2 + y⊗2 − Id) = Eg4u⊗2 − Eg2u⊗2 = 2u⊗2 ,

E〈w,u〉3w⊗3 = Eg3 (gu+ y)⊗3

= Eg3
(
g3u⊗3 + g (u⊗ y ⊗ y + y ⊗ u⊗ y + y ⊗ y ⊗ u)

)
= Eg6u⊗3 + Eg4

d∑
j=1

(
u⊗ ej ⊗ ej + ej ⊗ u⊗ ej + ej ⊗ ej ⊗ u− 3u⊗3

)
= 6u⊗3 + 3T (u) ,

E〈w,u〉3w = Eg3 (gu+ y) = 3u ,

so E〈w,u〉3 (w⊗3 − T (w)) = 6u⊗3. This proves the claims in Proposition 7.
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