On the approximation power of two-layer networks of random ReLUs

Daniel Hsu
Joint work with Clayton Sanford, Rocco Servedio, Manolis Vlatakis
Columbia University

November 3, 2021
Columbia Statistics Department Student Seminar

Two-layer networks of random ReLUs ("random ReLU networks")

$$
f \in \operatorname{span}\{\underbrace{x \mapsto \max \left\{0, \mathbf{w}^{(i)} \cdot x-\mathbf{b}^{(i)}\right\}}_{\mathbf{g}^{(i)}}: i \in[r]\}, \quad\left(\left(\mathbf{w}^{(i)}, \mathbf{b}^{(i)}\right)\right)_{i=1}^{r} \sim \mathcal{D}
$$

Approximating Lipschitz functions by two-layer networks of random ReLUs

Two-layer networks of random ReLUs:

$$
\mathcal{F}_{r}:=\operatorname{span}\{\underbrace{x \mapsto \max \left\{0, \mathbf{w}^{(i)} \cdot x-\mathbf{b}^{(i)}\right\}}_{\mathbf{g}^{(i)}}: i \in[r]\}, \quad\left(\left(\mathbf{w}^{(i)}, \mathbf{b}^{(i)}\right)\right)_{i=1}^{r} \sim \mathcal{D},
$$

where \mathcal{D} is probability distribution for bottom-level parameters $\left(\mathbf{w}^{(i)}, \mathbf{b}^{(i)}\right) \in S^{d-1} \times \mathbb{R}$

Approximating Lipschitz functions by two-layer networks of random ReLUs

Two-layer networks of random ReLUs:

$$
\mathcal{F}_{r}:=\operatorname{span}\{\underbrace{x \mapsto \max \left\{0, \mathbf{w}^{(i)} \cdot x-\mathbf{b}^{(i)}\right\}}_{\mathbf{g}^{(i)}}: i \in[r]\}, \quad\left(\left(\mathbf{w}^{(i)}, \mathbf{b}^{(i)}\right)\right)_{i=1}^{r} \sim \mathcal{D}
$$

where \mathcal{D} is probability distribution for bottom-level parameters $\left(\mathbf{w}^{(i)}, \mathbf{b}^{(i)}\right) \in S^{d-1} \times \mathbb{R}$

Question:

What is the minimum width r s.t. \mathcal{F}_{r} can ε-approximate any L-Lipschitz functions in $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ (with high probability)?

$$
\operatorname{Pr}\left[\inf _{\hat{f} \in \mathcal{F}_{r}}\left\|\hat{f}-f^{\star}\right\|_{\mathcal{L}^{2}\left([-1,1]^{d}\right)} \leq \varepsilon\right] \geq 0.9 \quad \text { for all } L \text {-Lipschitz } f^{*}:[-1,1]^{d} \rightarrow \mathbb{R}
$$

$$
\|f\|_{\mathcal{L}^{2}\left([-1,1]^{d}\right)}=\sqrt{\underset{\mathrm{x} \sim \operatorname{Unif}\left([-1,1]^{d}\right)}{\mathbb{E}}\left[f(\mathrm{x})^{2}\right]}
$$

Approximating Lipschitz functions by two-layer networks of random ReLUs

Two-layer networks of random ReLUs:

$$
\mathcal{F}_{r}:=\operatorname{span}\{\underbrace{x \mapsto \max \left\{0, \mathbf{w}^{(i)} \cdot x-\mathbf{b}^{(i)}\right\}}_{\mathbf{g}^{(i)}}: i \in[r]\}, \quad\left(\left(\mathbf{w}^{(i)}, \mathbf{b}^{(i)}\right)\right)_{i=1}^{r} \sim \mathcal{D}
$$

where \mathcal{D} is probability distribution for bottom-level parameters $\left(\mathbf{w}^{(i)}, \mathbf{b}^{(i)}\right) \in S^{d-1} \times \mathbb{R}$

Question:

What is the minimum width r s.t. \mathcal{F}_{r} can ε-approximate any L-Lipschitz functions in $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ (with high probability)?

$$
\operatorname{Pr}\left[\inf _{\hat{f} \in \mathcal{F}_{r}}\left\|\hat{f}-f^{\star}\right\|_{\mathcal{L}^{2}\left([-1,1]^{d}\right)} \leq \varepsilon\right] \geq 0.9 \quad \text { for all } L \text {-Lipschitz } f^{*}:[-1,1]^{d} \rightarrow \mathbb{R}
$$

Our work: upper- and lower-bounds on this minimum width, for all d, ε, and L

$$
\|f\|_{\mathcal{L}^{2}\left([-1,1]^{d}\right)}=\sqrt{\underset{\mathrm{x} \sim \operatorname{Unif}\left([-1,1]^{d}\right)}{\mathbb{E}}\left[f(\mathrm{x})^{2}\right]}
$$

Motivations

Motivations

1. Approximation capability of neural networks at (or near) random initialization
[Andoni, Panigrahy, Valiant, \& Zhang, '14; Bach, '17; Ji, Telgarsky, \& Xian, '19; Yehudai \& Shamir, '19; ...]
and kernel methods
[Aizerman, Braverman, Rozonoer, '64; Cho \& Saul, '09; ...]

Motivations

1. Approximation capability of neural networks at (or near) random initialization
[Andoni, Panigrahy, Valiant, \& Zhang, '14; Bach, '17; Ji, Telgarsky, \& Xian, '19; Yehudai \& Shamir, '19; . . .]
and kernel methods
[Aizerman, Braverman, Rozonoer, '64; Cho \& Saul, '09; ...]

2. Interplay between dimension d and relative error ε / L

Our results (informally)

Question: What width is needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε ?

Our results (informally)

Question: What width is needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε ?
Answer: It depends!

Our results (informally)

Question: What width is needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε ?
Answer: It depends!

$$
\leq \operatorname{poly}(d) \quad \text { if } L / \varepsilon=O(1)
$$

Our results (informally)

Question: What width is needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε ?
Answer: It depends!

$$
\begin{array}{ll}
\leq \operatorname{poly}(d) & \text { if } L / \varepsilon=O(1) \\
\leq \operatorname{poly}(L / \varepsilon) & \text { if } d=O(1)
\end{array}
$$

Our results (informally)

Question: What width is needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε ?
Answer: It depends!

$$
\begin{array}{ll}
\leq \operatorname{poly}(d) & \text { if } L / \varepsilon=O(1) \\
\leq \operatorname{poly}(L / \varepsilon) & \text { if } d=O(1) \\
\geq \exp (\Omega(d)) & \text { if } L / \varepsilon=\Omega(\sqrt{d})
\end{array}
$$

Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε ?

	Width	Comments
Maiorov, '99	$\geq \exp (\Omega(d))$	$L / \varepsilon \rightarrow \infty$
Yehudai \& Shamir, '19; Kamath, Montasser, \& Srebro, '20	$\geq \exp (\Omega(d))$	$L / \varepsilon \geq \operatorname{poly}(d)$
Andoni, Panigrahy, Valiant, \& Zhang, '14	$\leq d^{O(L / \varepsilon)^{2}}$	\exp activation
Bach, '17;	$\leq(L / \varepsilon)^{O(d)}$	\mathcal{L}^{∞} approx
Ji, Telgarsky, \& Xian, '19		

Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε ?

	Width	Comments
Maiorov, '99	$\geq \exp (\Omega(d))$	$L / \varepsilon \rightarrow \infty$
Yehudai \& Shamir, '19; Kamath, Montasser, \& Srebro, '20	$\geq \exp (\Omega(d))$	$L / \varepsilon \geq \operatorname{poly}(d)$
Andoni, Panigrahy, Valiant, \& Zhang, '14	$\leq d^{O(L / \varepsilon)^{2}}$	\exp activation
Bach, '17;	$\leq(L / \varepsilon)^{O(d)}$	\mathcal{L}^{∞} approx
Ji, Telgarsky, \& Xian, '19		

Maiorov's bound (for $H^{1}\left([-1,1]^{d}\right)$) applies to networks with arbitrary bottom-level weights, but only holds asymptotically as $L / \varepsilon \rightarrow \infty$

Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε ?

	Width	Comments
Maiorov, '99	$\geq \exp (\Omega(d))$	$L / \varepsilon \rightarrow \infty$
Yehudai \& Shamir, '19; Kamath, Montasser, \& Srebro, '20	$\geq \exp (\Omega(d))$	$L / \varepsilon \geq \operatorname{poly}(d)$
Andoni, Panigrahy, Valiant, \& Zhang, '14	$\leq d^{O(L / \varepsilon)^{2}}$	\exp activation
Bach, '17;	$\leq(L / \varepsilon)^{O(d)}$	\mathcal{L}^{∞} approx
Ji, Telgarsky, \& Xian, '19		

Hard function of YS and KMS has poly (d) Lipschitz constant

Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε ?

	Width	Comments
Maiorov, '99	$\geq \exp (\Omega(d))$	$L / \varepsilon \rightarrow \infty$
Yehudai \& Shamir, '19; Kamath, Montasser, \& Srebro, '20	$\geq \exp (\Omega(d))$	$L / \varepsilon \geq \operatorname{poly}(d)$
Andoni, Panigrahy, Valiant, \& Zhang, '14	$\leq d^{O(L / \varepsilon)^{2}}$	\exp activation
Bach, '17;	$\leq(L / \varepsilon)^{O(d)}$	\mathcal{L}^{∞} approx
Ji, Telgarsky, \& Xian, '19		

Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε ?

	Width	Comments
Maiorov, '99	$\geq \exp (\Omega(d))$	$L / \varepsilon \rightarrow \infty$
Yehudai \& Shamir, '19; Kamath, Montasser, \& Srebro, '20	$\geq \exp (\Omega(d))$	$L / \varepsilon \geq \operatorname{poly}(d)$
Andoni, Panigrahy, Valiant, \& Zhang, '14	$\leq d^{O(L / \varepsilon)^{2}}$	\exp activation
Bach, '17;		
Ji, Telgarsky, \& Xian, '19	$\leq(L / \varepsilon)^{O(d)}$	\mathcal{L}^{∞} approx

\mathcal{L}^{∞} approximation is stronger than \mathcal{L}^{2} approximation

Some prior work

Question: What width is needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε ?

	Width	Comments
Maiorov, '99	$\geq \exp (\Omega(d))$	$L / \varepsilon \rightarrow \infty$
Yehudai \& Shamir, '19; Kamath, Montasser, \& Srebro, '20	$\geq \exp (\Omega(d))$	$L / \varepsilon \geq \operatorname{poly}(d)$
Andoni, Panigrahy, Valiant, \& Zhang, '14	$\leq d^{O(L / \varepsilon)^{2}}$	\exp activation
Bach, '17;	$\leq(L / \varepsilon)^{O(d)}$	\mathcal{L}^{∞} approx
Ji, Telgarsky, \& Xian, '19		

Upshot: Prior work doesn't reveal the correct minimum width for arbitrary d and L / ε

Outline for rest of talk

1. Upper- and lower-bounds on the minimum width
2. Proof sketches
3. Some consequences

Part 1. Upper- and lower-bounds on the minimum width

Our main results

$$
\operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right):=\min \left\{r \in \mathbb{N}: \operatorname{Pr}\left[\inf _{\hat{f} \in \mathcal{F}_{r}}\left\|\hat{f}-f^{\star}\right\|_{\mathcal{L}^{2}\left([-1,1]^{d}\right)} \leq \varepsilon\right] \geq 0.9\right\}
$$

smallest width r s.t. \mathcal{F}_{r} (with bottom-level weights $\sim \mathcal{D}$) ε-approximates f^{\star} with probability $\geq 90 \%$

Our main results

$$
\operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right):=\min \left\{r \in \mathbb{N}: \operatorname{Pr}\left[\inf _{\hat{f} \in \mathcal{F}_{r}}\left\|\hat{f}-f^{\star}\right\|_{\mathcal{L}^{2}\left([-1,1]^{d}\right)} \leq \varepsilon\right] \geq 0.9\right\}
$$

smallest width r s.t. \mathcal{F}_{r} (with bottom-level weights $\sim \mathcal{D}$) ε-approximates f^{\star} with probability $\geq 90 \%$

$$
Q_{k, d}:=\left|\left\{\alpha \in \mathbb{Z}^{d}:\|\alpha\|_{2} \leq k\right\}\right| \quad \text { number of integer lattice points in radius } k \text { ball in } \mathbb{R}^{d}
$$

Our main results

$$
\operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right):=\min \left\{r \in \mathbb{N}: \operatorname{Pr}\left[\inf _{\hat{f} \in \mathcal{F}_{r}}\left\|\hat{f}-f^{\star}\right\|_{\mathcal{L}^{2}\left([-1,1]^{d}\right)} \leq \varepsilon\right] \geq 0.9\right\}
$$

smallest width r s.t. \mathcal{F}_{r} (with bottom-level weights $\sim \mathcal{D}$) ε-approximates f^{\star} with probability $\geq 90 \%$

$$
Q_{k, d}:=\left|\left\{\alpha \in \mathbb{Z}^{d}:\|\alpha\|_{2} \leq k\right\}\right| \quad \text { number of integer lattice points in radius } k \text { ball in } \mathbb{R}^{d}
$$

Theorem 1 (upper bound). For any L, ε, d, there exists a parameter distribution \mathcal{D} such that

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \leq Q_{2 L / \varepsilon, d}^{O(1)}
$$

Our main results

$$
\operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right):=\min \left\{r \in \mathbb{N}: \operatorname{Pr}\left[\inf _{\hat{f} \in \mathcal{F}_{r}}\left\|\hat{f}-f^{\star}\right\|_{\mathcal{L}^{2}\left([-1,1]^{d}\right)} \leq \varepsilon\right] \geq 0.9\right\}
$$

smallest width r s.t. \mathcal{F}_{r} (with bottom-level weights $\sim \mathcal{D}$) ε-approximates f^{\star} with probability $\geq 90 \%$

$$
Q_{k, d}:=\left|\left\{\alpha \in \mathbb{Z}^{d}:\|\alpha\|_{2} \leq k\right\}\right| \quad \text { number of integer lattice points in radius } k \text { ball in } \mathbb{R}^{d}
$$

Theorem 1 (upper bound). For any L, ε, d, there exists a parameter distribution \mathcal{D} such that

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \leq Q_{2 L / \varepsilon, d}^{O(1)}
$$

Theorem 2 (lower bound). For any L, ε, d, and parameter distribution \mathcal{D},

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \geq \Omega\left(Q_{\frac{1}{18} L / \varepsilon, d}\right)
$$

Our main results

$$
\operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right):=\min \left\{r \in \mathbb{N}: \operatorname{Pr}\left[\inf _{\hat{f} \in \mathcal{F}_{r}}\left\|\hat{f}-f^{\star}\right\|_{\mathcal{L}^{2}\left([-1,1]^{d}\right)} \leq \varepsilon\right] \geq 0.9\right\}
$$

smallest width r s.t. \mathcal{F}_{r} (with bottom-level weights $\sim \mathcal{D}$) ε-approximates f^{\star} with probability $\geq 90 \%$

$$
Q_{k, d}:=\left|\left\{\alpha \in \mathbb{Z}^{d}:\|\alpha\|_{2} \leq k\right\}\right| \quad \text { number of integer lattice points in radius } k \text { ball in } \mathbb{R}^{d}
$$

Theorem 1 (upper bound). For any L, ε, d, there exists a parameter distribution \mathcal{D} such that

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \leq Q_{2 L / \varepsilon, d}^{O(1)}
$$

Theorem 2 (lower bound). For any L, ε, d, and parameter distribution \mathcal{D},

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \geq \Omega\left(Q_{\frac{1}{18} L / \varepsilon, d}\right)
$$

Lower-bound, in fact, applies to any target-independent \mathcal{F}_{r} (not just span of random ReLUs)

Counting integer lattice points in a ball

$Q_{k, d}:=\left|\left\{\alpha \in \mathbb{Z}^{d}:\|\alpha\|_{2} \leq k\right\}\right| \quad$ number of integer lattice points in radius k Euclidean ball

Counting integer lattice points in a ball

$$
Q_{k, d}:=\left|\left\{\alpha \in \mathbb{Z}^{d}:\|\alpha\|_{2} \leq k\right\}\right| \quad \text { number of integer lattice points in radius } k \text { Euclidean ball }
$$

Generalized Gauss Circle Problem: As $k \rightarrow \infty$,

$$
Q_{k, d}=\operatorname{vol}\left(B_{d}\right) \cdot k^{d} \cdot(1+o(1)) \approx \frac{1}{\sqrt{\pi d}}\left(\frac{2 \pi e k^{2}}{d}\right)^{d / 2} \cdot(1+o(1))
$$

(GGCP is to show " $o(1)$ " is actually $O\left(k^{-2+\delta}\right)$ for all $\delta>0$)

Counting integer lattice points in a ball

$$
Q_{k, d}:=\left|\left\{\alpha \in \mathbb{Z}^{d}:\|\alpha\|_{2} \leq k\right\}\right| \quad \text { number of integer lattice points in radius } k \text { Euclidean ball }
$$

Generalized Gauss Circle Problem: As $k \rightarrow \infty$,

$$
Q_{k, d}=\operatorname{vol}\left(B_{d}\right) \cdot k^{d} \cdot(1+o(1)) \approx \frac{1}{\sqrt{\pi d}}\left(\frac{2 \pi e k^{2}}{d}\right)^{d / 2} \cdot(1+o(1))
$$

(GGCP is to show " $o(1)$ " is actually $O\left(k^{-2+\delta}\right)$ for all $\delta>0$)
But when d is large compared to k^{2}, more favorable bounds are obtained via (simple) combinatorics:

$$
\binom{d}{\leq k^{2}} \leq Q_{k, d} \leq\binom{ k^{2}+2 d-1}{k^{2}}
$$

Counting integer lattice points in a ball

$Q_{k, d}:=\left|\left\{\alpha \in \mathbb{Z}^{d}:\|\alpha\|_{2} \leq k\right\}\right| \quad$ number of integer lattice points in radius k Euclidean ball
Generalized Gauss Circle Problem: As $k \rightarrow \infty$,

$$
Q_{k, d}=\operatorname{vol}\left(B_{d}\right) \cdot k^{d} \cdot(1+o(1)) \approx \frac{1}{\sqrt{\pi d}}\left(\frac{2 \pi e k^{2}}{d}\right)^{d / 2} \cdot(1+o(1))
$$

(GGCP is to show " $o(1)$ " is actually $O\left(k^{-2+\delta}\right)$ for all $\delta>0$)
But when d is large compared to k^{2}, more favorable bounds are obtained via (simple) combinatorics:

$$
\binom{d}{\leq k^{2}} \leq Q_{k, d} \leq\binom{ k^{2}+2 d-1}{k^{2}}
$$

Theorems $1 \& 2 \Longrightarrow \sup _{L \text {-Lipschitz } f^{\star}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right)= \begin{cases}\operatorname{poly}(d) & \text { if } L / \varepsilon=\Theta(1) \\ \operatorname{poly}(L / \varepsilon) & \text { if } d=\Theta(1) \\ \exp (\Theta(d)) & \text { if } L / \varepsilon=\Theta(\sqrt{d})\end{cases}$

Part 2. Proof sketches

Proof of upper-bound (sketch)

Theorem 1 (upper bound). For any L, ε, d, there exists a parameter distribution \mathcal{D} such that

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \leq Q_{2 L / \varepsilon, d}^{O(1)}
$$

Proof of upper-bound (sketch)

Theorem 1 (upper bound). For any L, ε, d, there exists a parameter distribution \mathcal{D} such that

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \leq Q_{2 L / \varepsilon, d}^{O(1)}
$$

Follow standard recipe [e.g., Andoni, Panigrahy, Valiant, \& Zhang, '14] with some tweaks:

Proof of upper-bound (sketch)

Theorem 1 (upper bound). For any L, ε, d, there exists a parameter distribution \mathcal{D} such that

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \text { MinWidth }_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \leq Q_{2 L / \varepsilon, d}^{O(1)}
$$

Follow standard recipe [e.g., Andoni, Panigrahy, Valiant, \& Zhang, '14] with some tweaks:

1. Get $\varepsilon / 2$-approximation of L-Lipschitz f^{\star} using orthonormal basis functions

$$
\sqrt{2} \sin (\pi \alpha \cdot x / 2) \quad \text { and } \quad \sqrt{2} \cos (\pi \alpha \cdot x / 2)
$$

for $\alpha \in \mathbb{Z}^{d}$ with $\|\alpha\|_{2} \leq 2 L / \varepsilon$

Proof of upper-bound (sketch)

Theorem 1 (upper bound). For any L, ε, d, there exists a parameter distribution \mathcal{D} such that

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \leq Q_{2 L / \varepsilon, d}^{O(1)}
$$

Follow standard recipe [e.g., Andoni, Panigrahy, Valiant, \& Zhang, '14] with some tweaks:

1. Get $\varepsilon / 2$-approximation of L-Lipschitz f^{\star} using orthonormal basis functions

$$
\sqrt{2} \sin (\pi \alpha \cdot x / 2) \quad \text { and } \quad \sqrt{2} \cos (\pi \alpha \cdot x / 2)
$$

for $\alpha \in \mathbb{Z}^{d}$ with $\|\alpha\|_{2} \leq 2 L / \varepsilon$
2. Construct suitable parameter distribution \mathcal{D}, so every trigonometric polynomial

$$
p^{\star} \in \operatorname{span}\left\{\sin (\pi \alpha \cdot x), \cos (\pi \alpha \cdot x): \alpha \in \mathbb{Z}^{d},\|\alpha\|_{2} \leq k\right\}
$$

with bounded coefficients has

$$
\operatorname{MinWidth}_{\varepsilon / 2, d, \mathcal{D}}\left(p^{\star}\right) \leq \operatorname{poly}(d, k, 1 / \varepsilon) \cdot Q_{k, d}^{O(1)}
$$

Proof of upper-bound (sketch)

Theorem 1 (upper bound). For any L, ε, d, there exists a parameter distribution \mathcal{D} such that

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \leq Q_{2 L / \varepsilon, d}^{O(1)}
$$

Follow standard recipe [e.g., Andoni, Panigrahy, Valiant, \& Zhang, '14] with some tweaks:

1. Get $\varepsilon / 2$-approximation of L-Lipschitz f^{\star} using orthonormal basis functions

$$
\sqrt{2} \sin (\pi \alpha \cdot x / 2) \quad \text { and } \quad \sqrt{2} \cos (\pi \alpha \cdot x / 2)
$$

for $\alpha \in \mathbb{Z}^{d}$ with $\|\alpha\|_{2} \leq 2 L / \varepsilon$
2. Construct suitable parameter distribution \mathcal{D}, so every trigonometric polynomial

$$
p^{\star} \in \operatorname{span}\left\{\sin (\pi \alpha \cdot x), \cos (\pi \alpha \cdot x): \alpha \in \mathbb{Z}^{d},\|\alpha\|_{2} \leq k\right\}
$$

with bounded coefficients has

$$
\operatorname{MinWidth}_{\varepsilon / 2, d, \mathcal{D}}\left(p^{\star}\right) \leq \operatorname{poly}(d, k, 1 / \varepsilon) \cdot Q_{k, d}^{O(1)}
$$

Basis of "sinusoidal ridge functions" are especially convenient for this step

Proof of lower-bound (sketch)

Theorem 2 (lower bound). For any L, ε, d, and parameter distribution \mathcal{D},

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \geq \Omega\left(Q_{\frac{1}{18} L / \varepsilon, d}\right)
$$

Proof of lower-bound (sketch)

Theorem 2 (lower bound). For any L, ε, d, and parameter distribution \mathcal{D},

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \geq \Omega\left(Q_{\frac{1}{18} L / \varepsilon, d}\right)
$$

We generalize a dimension argument of [Barron, '93]:

Proof of lower-bound (sketch)

Theorem 2 (lower bound). For any L, ε, d, and parameter distribution \mathcal{D},

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \geq \Omega\left(Q_{\frac{1}{18} L / \varepsilon, d}\right)
$$

We generalize a dimension argument of [Barron, '93]:

1. If $\varphi_{1}, \ldots, \varphi_{N} \in \mathcal{L}^{2}$ are orthonormal with $N \geq r$, then \mathcal{F}_{r} is $\sqrt{1-\frac{r}{N}}$-far from at least one φ_{i}

Proof of lower-bound (sketch)

Theorem 2 (lower bound). For any L, ε, d, and parameter distribution \mathcal{D},

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \geq \Omega\left(Q_{\frac{1}{18} L / \varepsilon, d}\right)
$$

We generalize a dimension argument of [Barron, '93]:

1. If $\varphi_{1}, \ldots, \varphi_{N} \in \mathcal{L}^{2}$ are orthonormal with $N \geq r$, then \mathcal{F}_{r} is $\sqrt{1-\frac{r}{N}}$-far from at least one φ_{i} - \mathcal{F}_{r} (or any dimension r subspace of \mathcal{L}^{2}) cannot approximate them all if $r \ll N$

Proof of lower-bound (sketch)

Theorem 2 (lower bound). For any L, ε, d, and parameter distribution \mathcal{D},

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \geq \Omega\left(Q_{\frac{1}{18} L / \varepsilon, d}\right)
$$

We generalize a dimension argument of [Barron, '93]:

1. If $\varphi_{1}, \ldots, \varphi_{N} \in \mathcal{L}^{2}$ are orthonormal with $N \geq r$, then \mathcal{F}_{r} is $\sqrt{1-\frac{r}{N}}$-far from at least one φ_{i} - \mathcal{F}_{r} (or any dimension r subspace of \mathcal{L}^{2}) cannot approximate them all if $r \ll N$
2. The $N=Q_{k, d}$ sinusoidal ridge functions (from upper-bound proof) are $O(k)$-Lipschitz

Proof of lower-bound (sketch)

Theorem 2 (lower bound). For any L, ε, d, and parameter distribution \mathcal{D},

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \geq \Omega\left(Q_{\frac{1}{18} L / \varepsilon, d}\right)
$$

We generalize a dimension argument of [Barron, '93]:

1. If $\varphi_{1}, \ldots, \varphi_{N} \in \mathcal{L}^{2}$ are orthonormal with $N \geq r$, then \mathcal{F}_{r} is $\sqrt{1-\frac{r}{N}}$-far from at least one φ_{i} - \mathcal{F}_{r} (or any dimension r subspace of \mathcal{L}^{2}) cannot approximate them all if $r \ll N$
2. The $N=Q_{k, d}$ sinusoidal ridge functions (from upper-bound proof) are $O(k)$-Lipschitz
3. Combine these facts + scaling argument, with $k=\Theta(L / \varepsilon)$

Proof of lower-bound (sketch)

Theorem 2 (lower bound). For any L, ε, d, and parameter distribution \mathcal{D},

$$
\sup _{f^{\star}:[-1,1]^{d} \rightarrow \mathbb{R}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right) \geq \Omega\left(Q_{\frac{1}{18} L / \varepsilon, d}\right)
$$

We generalize a dimension argument of [Barron, '93]:

1. If $\varphi_{1}, \ldots, \varphi_{N} \in \mathcal{L}^{2}$ are orthonormal with $N \geq r$, then \mathcal{F}_{r} is $\sqrt{1-\frac{r}{N}}$-far from at least one φ_{i}

- \mathcal{F}_{r} (or any dimension r subspace of \mathcal{L}^{2}) cannot approximate them all if $r \ll N$

2. The $N=Q_{k, d}$ sinusoidal ridge functions (from upper-bound proof) are $O(k)$-Lipschitz
3. Combine these facts + scaling argument, with $k=\Theta(L / \varepsilon)$

If $\mathcal{D}_{\text {weights }}$ is invariant to coordinate permutations, then the hard-to-approximate function is explicit:

$$
x \mapsto \varepsilon \sin \left(\pi\left(x_{1}+x_{2}+\cdots\right)\right)
$$

Key lemma

Lemma. Let H be a Hilbert space, and fix orthonormal $\varphi_{1}, \ldots, \varphi_{N} \in H$. Let \mathbf{W} be (possibly random) finite-dimensional subspace of H with $r:=\mathbb{E}[\operatorname{dim}(\mathbf{W})]<\infty$. Then there is some $i \in[N]$ such that

$$
\mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right] \geq 1-\frac{r}{N}
$$

Key lemma

Lemma. Let H be a Hilbert space, and fix orthonormal $\varphi_{1}, \ldots, \varphi_{N} \in H$. Let \mathbf{W} be (possibly random) finite-dimensional subspace of H with $r:=\mathbb{E}[\operatorname{dim}(\mathbf{W})]<\infty$. Then there is some $i \in[N]$ such that

$$
\mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right] \geq 1-\frac{r}{N}
$$

Proof. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{d}}$ be ONB for \mathbf{W}, with $\mathbf{d}:=\operatorname{dim}(\mathbf{W})$, and let $\Pi_{\mathbf{W}}$ be orthoprojector for \mathbf{W}.

Key lemma

Lemma. Let H be a Hilbert space, and fix orthonormal $\varphi_{1}, \ldots, \varphi_{N} \in H$. Let \mathbf{W} be (possibly random) finite-dimensional subspace of H with $r:=\mathbb{E}[\operatorname{dim}(\mathbf{W})]<\infty$. Then there is some $i \in[N]$ such that

$$
\mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right] \geq 1-\frac{r}{N}
$$

Proof. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{d}}$ be ONB for \mathbf{W}, with $\mathbf{d}:=\operatorname{dim}(\mathbf{W})$, and let $\Pi_{\mathbf{W}}$ be orthoprojector for \mathbf{W}.

$$
\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right]
$$

Key lemma

Lemma. Let H be a Hilbert space, and fix orthonormal $\varphi_{1}, \ldots, \varphi_{N} \in H$. Let \mathbf{W} be (possibly random) finite-dimensional subspace of H with $r:=\mathbb{E}[\operatorname{dim}(\mathbf{W})]<\infty$. Then there is some $i \in[N]$ such that

$$
\mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right] \geq 1-\frac{r}{N}
$$

Proof. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{d}}$ be ONB for \mathbf{W}, with $\mathbf{d}:=\operatorname{dim}(\mathbf{W})$, and let $\Pi_{\mathbf{W}}$ be orthoprojector for \mathbf{W}.

$$
\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right]=\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[1-\left\|\Pi_{\mathbf{W}} \varphi_{i}\right\|_{H}^{2}\right]
$$

Key lemma

Lemma. Let H be a Hilbert space, and fix orthonormal $\varphi_{1}, \ldots, \varphi_{N} \in H$. Let \mathbf{W} be (possibly random) finite-dimensional subspace of H with $r:=\mathbb{E}[\operatorname{dim}(\mathbf{W})]<\infty$. Then there is some $i \in[N]$ such that

$$
\mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right] \geq 1-\frac{r}{N}
$$

Proof. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{d}}$ be ONB for \mathbf{W}, with $\mathbf{d}:=\operatorname{dim}(\mathbf{W})$, and let $\Pi_{\mathbf{W}}$ be orthoprojector for \mathbf{W}.

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right] & =\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[1-\left\|\Pi_{\mathbf{W}} \varphi_{i}\right\|_{H}^{2}\right] \\
& =1-\frac{1}{N} \mathbb{E}\left[\sum_{i=1}^{N}\left\|\Pi_{\mathbf{W}} \varphi_{i}\right\|_{H}^{2}\right]
\end{aligned}
$$

Key lemma

Lemma. Let H be a Hilbert space, and fix orthonormal $\varphi_{1}, \ldots, \varphi_{N} \in H$. Let \mathbf{W} be (possibly random) finite-dimensional subspace of H with $r:=\mathbb{E}[\operatorname{dim}(\mathbf{W})]<\infty$. Then there is some $i \in[N]$ such that

$$
\mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right] \geq 1-\frac{r}{N}
$$

Proof. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{d}}$ be ONB for \mathbf{W}, with $\mathbf{d}:=\operatorname{dim}(\mathbf{W})$, and let $\Pi_{\mathbf{W}}$ be orthoprojector for \mathbf{W}.

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right] & =\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[1-\left\|\Pi_{\mathbf{W}} \varphi_{i}\right\|_{H}^{2}\right] \\
& =1-\frac{1}{N} \mathbb{E}\left[\sum_{i=1}^{N}\left\|\Pi_{\mathbf{W}} \varphi_{i}\right\|_{H}^{2}\right] \\
& =1-\frac{1}{N} \mathbb{E}\left[\sum_{i=1}^{N} \sum_{k=1}^{\mathbf{d}}\left\langle\mathbf{u}_{k}, \varphi_{i}\right\rangle_{H}^{2}\right]
\end{aligned}
$$

Key lemma

Lemma. Let H be a Hilbert space, and fix orthonormal $\varphi_{1}, \ldots, \varphi_{N} \in H$. Let \mathbf{W} be (possibly random) finite-dimensional subspace of H with $r:=\mathbb{E}[\operatorname{dim}(\mathbf{W})]<\infty$. Then there is some $i \in[N]$ such that

$$
\mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right] \geq 1-\frac{r}{N}
$$

Proof. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{d}}$ be ONB for \mathbf{W}, with $\mathbf{d}:=\operatorname{dim}(\mathbf{W})$, and let $\Pi_{\mathbf{W}}$ be orthoprojector for \mathbf{W}.

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right] & =\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[1-\left\|\Pi_{\mathbf{W}} \varphi_{i}\right\|_{H}^{2}\right] \\
& =1-\frac{1}{N} \mathbb{E}\left[\sum_{i=1}^{N}\left\|\Pi_{\mathbf{W}} \varphi_{i}\right\|_{H}^{2}\right] \\
& =1-\frac{1}{N} \mathbb{E}\left[\sum_{i=1}^{N} \sum_{k=1}^{\mathbf{d}}\left\langle\mathbf{u}_{k}, \varphi_{i}\right\rangle_{H}^{2}\right] \\
& \geq 1-\frac{1}{N} \mathbb{E}\left[\sum_{k=1}^{\mathbf{d}} 1\right]
\end{aligned}
$$

Key lemma

Lemma. Let H be a Hilbert space, and fix orthonormal $\varphi_{1}, \ldots, \varphi_{N} \in H$. Let \mathbf{W} be (possibly random) finite-dimensional subspace of H with $r:=\mathbb{E}[\operatorname{dim}(\mathbf{W})]<\infty$. Then there is some $i \in[N]$ such that

$$
\mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right] \geq 1-\frac{r}{N}
$$

Proof. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{\mathbf{d}}$ be ONB for \mathbf{W}, with $\mathbf{d}:=\operatorname{dim}(\mathbf{W})$, and let $\Pi_{\mathbf{W}}$ be orthoprojector for \mathbf{W}.

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[\inf _{g \in \mathbf{W}}\left\|g-\varphi_{i}\right\|_{H}^{2}\right] & =\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[1-\left\|\Pi_{\mathbf{W}} \varphi_{i}\right\|_{H}^{2}\right] \\
& =1-\frac{1}{N} \mathbb{E}\left[\sum_{i=1}^{N}\left\|\Pi_{\mathbf{W}} \varphi_{i}\right\|_{H}^{2}\right] \\
& =1-\frac{1}{N} \mathbb{E}\left[\sum_{i=1}^{N} \sum_{k=1}^{\mathbf{d}}\left\langle\mathbf{u}_{k}, \varphi_{i}\right\rangle_{H}^{2}\right] \\
& \geq 1-\frac{1}{N} \mathbb{E}\left[\sum_{k=1}^{\mathrm{d}} 1\right]=1-\frac{r}{N}
\end{aligned}
$$

Part 3. Some consequences

Depth separation

- Recent line-of-inquiry on separations between poly-size "shallow" nets and poly-size "deep" nets [Telgarsky, '16; Eldan \& Shamir, '16; Daniely, '17; Safran \& Shamir, '17; Safran, Eldan, \& Shamir, '19; ...]

Depth separation

- Recent line-of-inquiry on separations between poly-size "shallow" nets and poly-size "deep" nets [Telgarsky, '16; Eldan \& Shamir, '16; Daniely, '17; Safran \& Shamir, '17; Safran, Eldan, \& Shamir, '19; ...]

All known "hard" functions exhibiting the separation have been highly oscillatory

Depth separation

- Recent line-of-inquiry on separations between poly-size "shallow" nets and poly-size "deep" nets [Telgarsky, '16; Eldan \& Shamir, '16; Daniely, '17; Safran \& Shamir, '17; Safran, Eldan, \& Shamir, '19; ...]

All known "hard" functions exhibiting the separation have been highly oscillatory

Telgarsky's iterated tent map

Oscillatory radial function

- [Safran, Eldan, \& Shamir, '19]: Is there a 1-Lipschitz function that separates poly (d)-size depth-2 nets from $\operatorname{poly}(d)$-size depth-3 nets?

Depth separation

- Recent line-of-inquiry on separations between poly-size "shallow" nets and poly-size "deep" nets [Telgarsky, '16; Eldan \& Shamir, '16; Daniely, '17; Safran \& Shamir, '17; Safran, Eldan, \& Shamir, '19; ...]

All known "hard" functions exhibiting the separation have been highly oscillatory

Telgarsky's iterated tent map

Oscillatory radial function

- [Safran, Eldan, \& Shamir, '19]: Is there a 1-Lipschitz function that separates poly(d)-size depth-2 nets from $\operatorname{poly}(d)$-size depth-3 nets?

Our results \Rightarrow No, for constant \mathcal{L}^{2} approximation error

Lower-bounds for kernel methods

- Lower-bound applies to all methods that pick \hat{f} from a target-independent subspace of dimension r — including kernel methods based on $r=n$ examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)$:

$$
\hat{f} \in \operatorname{span}\left\{\mathrm{~K}\left(x^{(i)}, \cdot\right): i=1, \ldots, n\right\}
$$

Lower-bounds for kernel methods

- Lower-bound applies to all methods that pick \hat{f} from a target-independent subspace of dimension r — including kernel methods based on $r=n$ examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)$:

$$
\hat{f} \in \operatorname{span}\left\{\mathrm{~K}\left(x^{(i)}, \cdot\right): i=1, \ldots, n\right\}
$$

Example: Lower-bound for learning parity functions under uniform distribution on $\{-1,1\}^{d}$ with non-adaptive membership queries (MQs) [Bubeck (after Allen-Zhu \& Li), '20]

Lower-bounds for kernel methods

- Lower-bound applies to all methods that pick \hat{f} from a target-independent subspace of dimension r — including kernel methods based on $r=n$ examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)$:

$$
\hat{f} \in \operatorname{span}\left\{\mathrm{~K}\left(x^{(i)}, \cdot\right): i=1, \ldots, n\right\}
$$

Example: Lower-bound for learning parity functions under uniform distribution on $\{-1,1\}^{d}$ with non-adaptive membership queries (MQs) [Bubeck (after Allen-Zhu \& Li), '20]

- Why? Learnable - with noise! — using non-adaptive MQs in poly (d) time [e.g., Feldman, '07] (Learner allowed to choose $x^{(1)}, \ldots, x^{(n)} \in\{-1,1\}^{d}$, which subsequently get labels $y^{(i)}$'s)

Lower-bounds for kernel methods

- Lower-bound applies to all methods that pick \hat{f} from a target-independent subspace of dimension r _ including kernel methods based on $r=n$ examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)$:

$$
\hat{f} \in \operatorname{span}\left\{\mathrm{~K}\left(x^{(i)}, \cdot\right): i=1, \ldots, n\right\}
$$

Example: Lower-bound for learning parity functions under uniform distribution on $\{-1,1\}^{d}$ with non-adaptive membership queries (MQs) [Bubeck (after Allen-Zhu \& Li), '20]

- Why? Learnable - with noise! — using non-adaptive MQs in poly (d) time [e.g., Feldman, '07] (Learner allowed to choose $x^{(1)}, \ldots, x^{(n)} \in\{-1,1\}^{d}$, which subsequently get labels $y^{(i)}$'s)
- Let $\varphi_{1}, \ldots, \varphi_{N}$ be the $N=2^{d}$ parity functions on $\{-1,1\}^{d}$, which is ONB for $\mathcal{L}^{2}\left(\{-1,1\}^{d}\right)$

Lower-bounds for kernel methods

- Lower-bound applies to all methods that pick \hat{f} from a target-independent subspace of dimension r _ including kernel methods based on $r=n$ examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)$:

$$
\hat{f} \in \operatorname{span}\left\{\mathrm{~K}\left(x^{(i)}, \cdot\right): i=1, \ldots, n\right\}
$$

Example: Lower-bound for learning parity functions under uniform distribution on $\{-1,1\}^{d}$ with non-adaptive membership queries (MQs) [Bubeck (after Allen-Zhu \& Li), '20]

- Why? Learnable - with noise! — using non-adaptive MQs in poly (d) time [e.g., Feldman, '07] (Learner allowed to choose $x^{(1)}, \ldots, x^{(n)} \in\{-1,1\}^{d}$, which subsequently get labels $y^{(i)}$'s)
- Let $\varphi_{1}, \ldots, \varphi_{N}$ be the $N=2^{d}$ parity functions on $\{-1,1\}^{d}$, which is ONB for $\mathcal{L}^{2}\left(\{-1,1\}^{d}\right)$
- Proposition [B/AZL, '20]: Every kernel method, even if allowed non-adaptive MQs, needs

$$
n \geq(1-\varepsilon) \cdot 2^{d}
$$

examples to guarantee mean squared error $\leq \varepsilon$ when any of the φ_{i} could be the true target

Lower-bounds for kernel methods

- Lower-bound applies to all methods that pick \hat{f} from a target-independent subspace of dimension r _ including kernel methods based on $r=n$ examples $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)$:

$$
\hat{f} \in \operatorname{span}\left\{\mathrm{~K}\left(x^{(i)}, \cdot\right): i=1, \ldots, n\right\}
$$

Example: Lower-bound for learning parity functions under uniform distribution on $\{-1,1\}^{d}$ with non-adaptive membership queries (MQs) [Bubeck (after Allen-Zhu \& Li), '20]

- Why? Learnable - with noise! — using non-adaptive MQs in poly (d) time [e.g., Feldman, '07] (Learner allowed to choose $x^{(1)}, \ldots, x^{(n)} \in\{-1,1\}^{d}$, which subsequently get labels $y^{(i)}$'s)
- Let $\varphi_{1}, \ldots, \varphi_{N}$ be the $N=2^{d}$ parity functions on $\{-1,1\}^{d}$, which is ONB for $\mathcal{L}^{2}\left(\{-1,1\}^{d}\right)$
- Proposition [B/AZL, '20]: Every kernel method, even if allowed non-adaptive MQs, needs

$$
n \geq(1-\varepsilon) \cdot 2^{d}
$$

examples to guarantee mean squared error $\leq \varepsilon$ when any of the φ_{i} could be the true target

- Easy consequence of the key lemma!

Recap and closing

1. Width needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε :

$$
\sup _{L \text {-Lipschitz } f^{\star}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right)=Q_{\Theta(L / \varepsilon), d}^{\Theta(1)}= \begin{cases}\operatorname{poly}(d) & \text { if } L / \varepsilon=\Theta(1) \\ \operatorname{poly}(L / \varepsilon) & \text { if } d=\Theta(1) \\ \exp (\Theta(d)) & \text { if } L / \varepsilon=\Theta(\sqrt{d})\end{cases}
$$

Recap and closing

1. Width needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε :

$$
\sup _{L \text {-Lipschitz } f^{\star}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right)=Q_{\Theta(L / \varepsilon), d}^{\Theta(1)}= \begin{cases}\operatorname{poly}(d) & \text { if } L / \varepsilon=\Theta(1) \\ \operatorname{poly}(L / \varepsilon) & \text { if } d=\Theta(1) \\ \exp (\Theta(d)) & \text { if } L / \varepsilon=\Theta(\sqrt{d})\end{cases}
$$

2. Sheds some light on other questions related to neural nets \& kernel methods ...

Recap and closing

1. Width needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε :

$$
\sup _{L \text {-Lipschitz } f^{\star}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right)=Q_{\Theta(L / \varepsilon), d}^{\Theta(1)}= \begin{cases}\operatorname{poly}(d) & \text { if } L / \varepsilon=\Theta(1) \\ \operatorname{poly}(L / \varepsilon) & \text { if } d=\Theta(1) \\ \exp (\Theta(d)) & \text { if } L / \varepsilon=\Theta(\sqrt{d})\end{cases}
$$

2. Sheds some light on other questions related to neural nets \& kernel methods ..
3. Also have results for Sobolev classes H^{s} for $s \geq 1$ (see paper: arXiv:2102.02336)

Recap and closing

1. Width needed to approximate L-Lipschitz functions up to $\mathcal{L}^{2}\left([-1,1]^{d}\right)$ error ε :

$$
\sup _{L \text {-Lipschitz } f^{\star}} \operatorname{MinWidth}_{\varepsilon, d, \mathcal{D}}\left(f^{\star}\right)=Q_{\Theta(L / \varepsilon), d}^{\Theta(1)}= \begin{cases}\operatorname{poly}(d) & \text { if } L / \varepsilon=\Theta(1) \\ \operatorname{poly}(L / \varepsilon) & \text { if } d=\Theta(1) \\ \exp (\Theta(d)) & \text { if } L / \varepsilon=\Theta(\sqrt{d})\end{cases}
$$

2. Sheds some light on other questions related to neural nets \& kernel methods .
3. Also have results for Sobolev classes H^{s} for $s \geq 1$ (see paper: arXiv:2102.02336)

Thank you!

We gratefully acknowledge support from the NSF (CCF-\{1563155, 1703925, 1740833, 1763970, 1814873\} and IIS-\{1563785, 1838154\}), a Google Faculty Research Award, an Onassis Foundation Scholarship, a Sloan Research Fellowship, and the Simons Collaboration on Algorithms and Geometry.

