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Abstract

We present a simple, agnostic active learning algorithm that works for any hypothesis class of bounded
VC dimension, and any data distribution. Our algorithm extends a scheme of Cohn, Atlas, and Ladner [6]
to the agnostic setting, by (1) reformulating it using a reduction to supervised learning and (2) showing
how to apply generalization bounds even for the non-i.i.d. samples that result from selective sampling.
We provide a general characterization of the label complexity of our algorithm. This quantity is never
more than the usual PAC sample complexity of supervised learning, and is exponentially smaller for some
hypothesis classes and distributions. We also demonstrate improvements experimentally.

1 Introduction

Active learning addresses the issue that, in many applications, labeled data typically comes at a higher cost
(e.g. in time, effort) than unlabeled data. An active learner is given unlabeled data and must pay to view
any label. The hope is that significantly fewer labeled examples are used than in the supervised (non-active)
learning model. Active learning applies to a range of data-rich problems such as genomic sequence annotation
and speech recognition. In this paper we formalize, extend, and provide label complexity guarantees for one
of the earliest and simplest approaches to active learning—one due to Cohn, Atlas, and Ladner [6].

The scheme of [6] examines data one by one in a stream and requests the label of any data point about
which it is currently unsure. For example, suppose the hypothesis class consists of linear separators in the
plane, and assume that the data is linearly separable. Let the first six data be labeled as follows.
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The learner does not need to request the label of the seventh point (indicated by the arrow) because it is not
unsure about the label: any straight line with the ⊕s and ⊖s on opposite sides has the seventh point with
the ⊖s. Put another way, the point is not in the region of uncertainty [6], the portion of the data space for
which there is disagreement among hypotheses consistent with the present labeled data.

Although very elegant and intuitive, this approach to active learning faces two problems:

1. Explicitly maintaining the region of uncertainty can be computationally cumbersome.

2. Data is usually not perfectly separable.

Our main contribution is to address these problems. We provide a simple generalization of the selective
sampling scheme of [6] that tolerates adversarial noise and never requests many more labels than a standard
agnostic supervised learner would to learn a hypothesis with the same error.

1Email: {dasgupta,djhsu,cmontel}@cs.ucsd.edu
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In the previous example, an agnostic active learner (one that does not assume a perfect separator exists) is
actually still uncertain about the label of the seventh point, because all six of the previous labels could be
inconsistent with the best separator. Therefore, it should still request the label. On the other hand, after
enough points have been labeled, if an unlabeled point occurs at the position shown below, chances are its
label is not needed.
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To extend the notion of uncertainty to the agnostic setting, we divide the observed data points into two
groups, Ŝ and T :

• Set Ŝ contains the data for which we did not request labels. We keep these points around and assign
them the label we think they should have.

• Set T contains the data for which we explicitly requested labels.

We will manage things in such a way that the data in Ŝ are always consistent with the best separator in
the class. Thus, somewhat counter-intuitively, the labels in Ŝ are completely reliable whereas the labels in
T could be inconsistent with the best separator. To decide whether we are uncertain about the label of a
new point x, we reduce to supervised learning: we learn hypotheses h+1 and h−1 such that

• h+1 is consistent with all the labels in Ŝ ∪ {(x,+1)} and has minimal empirical error on T , while

• h−1 is consistent with all the labels in Ŝ ∪ {(x,−1)} and has minimal empirical error on T .

If, say, the true error of the hypothesis h+1 is much larger than that of h−1, we can safely infer that the
best separator must also label x with −1 without requesting a label; if the error difference is only modest,
we explicitly request a label. Standard generalization bounds for an i.i.d. sample let us perform this test by
comparing empirical errors on Ŝ ∪ T .

The last claim may sound awfully suspicious, because Ŝ ∪ T is not i.i.d.! Indeed, this is in a sense the core
sampling problem that has always plagued active learning: the labeled sample T might not be i.i.d. (due to
the filtering of examples based on an adaptive criterion), while Ŝ only contains unlabeled examples (with
made-up labels). Nevertheless, we prove that in our case, it is in fact correct to effectively pretend Ŝ ∪ T
is an i.i.d. sample. A direct consequence is that the label complexity of our algorithm (the number of
labels requested before achieving a desired error) is never much more than the usual sample complexity of
supervised learning (and in some cases, is significantly less).

An important algorithmic detail is the specific choice of generalization bound we use in deciding whether
to request a label or not. A small polynomial difference in generalization rates (between n−1/2 and n−1,
say) can get magnified into an exponential difference in label complexity, so it is crucial for us to use a good
bound. We use a normalized bound that takes into account the empirical error (computed on Ŝ ∪T—again,
not an i.i.d. sample) of the hypothesis in question.

Earlier work on agnostic active learning [1,12] has been able to upper bound label complexity in terms of a
parameter of the hypothesis class (and data distribution) called the disagreement coefficient. We give label
complexity bounds for our method based on this same quantity, and we get a better dependence on it, linear
rather than quadratic.

To summarize, in this paper we present and analyze a simple agnostic active learning algorithm for general
hypothesis classes of bounded VC dimension. It extends the selective sampling scheme of Cohn et al. [6] to the
agnostic setting, using normalized generalization bounds, which we apply in a simple but subtle manner. For
certain hypothesis classes and distributions, our analysis yields improved label complexity guarantees over the
standard sample complexity of supervised learning. We also demonstrate such improvements experimentally.
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1.1 Related work

A large number of algorithms have been proposed for active learning, under a variety of learning models. In
this section, we consider only methods whose generalization behavior has been rigorously analyzed.

An early landmark result, from 1989, was the selective sampling scheme of Cohn, Atlas, and Ladner [6]
described above. This simple active learning algorithm, designed for separable data, has been the inspiration
for a lot of subsequent work. A few years later, the seminal work of Freund, Seung, Shamir, and Tishby [9]
analyzed an algorithm called query-by-committee that operates in a Bayesian setting and uses an elegant
sampling trick for deciding when to query points. The core primitive required by this algorithm is the
ability to sample randomly from the posterior over the hypothesis space. In some cases this can be achieved
efficiently [10], for instance when the hypothesis class consists of linear separators in R

d (with a uniform prior)
and the data is distributed uniformly over the surface of the unit sphere in R

d. In this particular setting,
the authors showed that the number of labels required to achieve generalization error ε is just O(d log 1/ε),
exponentially lower than the usual supervised sample complexity of O(d/ε).

Subsequently, Dasgupta, Kalai, and Monteleoni [8] showed that a simple variant of the perceptron algorithm
also achieves this label complexity, even for a worst-case (non-Bayesian) choice of target hypothesis.

All the work mentioned so far assumes separable data. This case was studied abstractly by Dasgupta [7],
who found that a parameter called the splitting index loosely characterizes the label complexity of actively
learning hypothesis classes of bounded VC dimension. As yet, it is not known how to realize this label
complexity in a computationally efficient way, except in special cases.

A natural way to formulate active learning in the agnostic setting is to ask the learner to return a hypothesis
with error at most ν +ε (where ν is the error of the best hypothesis in the specified class) using as few labels
as possible. A basic constraint on the label complexity was pointed out by Kääriäinen [14], who showed that
for any ν ∈ (0, 1/2), there are data distributions that force any active learner that achieves error at most
ν + ε to request Ω((ν/ε)2) labels.

The first rigorously-analyzed agnostic active learning algorithm, called A2, was developed recently by Balcan,
Beygelzimer, and Langford [1]. Like Cohn-Atlas-Ladner [6], this algorithm uses a region of uncertainty,
although the lack of separability complicates matters and A2 ends up explicitly maintaining an ε-net of
the hypothesis space. Subsequently, Hanneke [12] characterized the label complexity of the A2 algorithm
in terms of a parameter called the disagreement coefficient. Another thread of work focuses on agnostic
learning of thresholds for data that lie on a line; in this case, a precise characterization of label complexity
can be given [4, 5].

These previous results either make strong distributional assumptions (such as separability, or a uniform
input distribution) [2, 6–9,13], or else they are computationally prohibitive in general [1, 7, 9].

Our work was inspired by both [6] and [1], and we have built heavily upon their insights.2 We bound the
label complexity of our method in terms of the same parameter as used for A2 [12], and get a somewhat
better dependence (linear rather than quadratic).

A common feature of Cohn-Atlas-Ladner, A2, and our method is that they are all fairly non-aggressive in
their choice of query points. They are content with querying all points on which there is even a small amount
of uncertainty, rather than, for instance, pursuing the maximally uncertain point. Recently, Balcan, Broder,
and Zhang [2] showed that for the hypothesis class of linear separators, under distributional assumptions
on the data (for instance, a uniform distribution over the unit sphere), a more aggressive strategy can yield
better label complexity.

2It has been noted that the Cohn-Atlas-Ladner scheme can easily be made tractable using a reduction to supervised learning
in the separable case [16, p. 68]. Although our algorithm is most naturally seen as an extension of Cohn-Atlas-Ladner, a similar
reduction to supervised learning (in the agnostic setting) can be used for A2, as we demonstrate in Appendix B.
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2 Preliminaries

2.1 Learning framework and uniform convergence

Let X be the input space, D a distribution over X×{±1} and H a class of hypotheses h : X → {±1} with VC
dimension vcdim(H) = d < ∞. Recall that the nth shattering coefficient S(H, n) is defined as the maximum
number of ways in which H can label a set of n points; by Sauer’s lemma, this is at most O(nd) [3, p. 175].
We denote by DX the marginal of D over X . In our active learning model, the learner receives unlabeled
data sampled from DX ; for any sampled point x, it can optionally request the label y sampled from the
conditional distribution at x. This process can be viewed as sampling (x, y) from D and revealing only x to
the learner, keeping the label y hidden unless the learner explicitly requests it. The error of a hypothesis h
under D is errD(h) = Pr(x,y)∼D[h(x) 6= y], and on a finite sample Z ⊂ X × {±1}, the empirical error of h is

err(h,Z) =
1

|Z|
∑

(x,y)∈Z

1l[h(x) 6= y],

where 1l[·] is the 0-1 indicator function. We assume for simplicity that the minimal error ν = inf{errD(h) :
h ∈ H} is achieved by a hypothesis h∗ ∈ H.

Our algorithm and analysis use the following normalized uniform convergence bound [3, p. 200].

Lemma 1 (Vapnik and Chervonenkis [17]). Let F be a family of measurable functions f : Z → {0, 1} over a
space Z. Denote by EZf the empirical average of f over a subset Z ⊂ Z. Let αn =

√
(4/n) ln(8S(F , 2n)/δ).

If Z is an i.i.d. sample of size n from a fixed distribution over Z, then, with probability at least 1− δ, for all
f ∈ F :

−min
(
αn

√
EZf, α2

n + αn

√
Ef

)
≤ Ef − EZf ≤ min

(
α2

n + αn

√
EZf, αn

√
Ef

)
.

2.2 Disagreement coefficient

The active learning algorithm we will shortly describe is not very aggressive: rather than seeking out points
that are maximally informative, it queries every point that it is somewhat unsure about. The early work of
Cohn-Atlas-Ladner [6] and the recent A2 algorithm [1] are similarly mellow in their querying strategy. The
label complexity improvements achievable by such algorithms are nicely captured by a parameter called the
disagreement coefficient, introduced recently by Hanneke [12] in his analysis of A2.

To motivate the disagreement coefficient, imagine that we are in the midst of learning, and that our current
hypothesis ht has error at most β. Suppose we even know the value of β. Then the only candidate hypotheses
we still need to consider are those that differ from ht on at most a 2β fraction of the input distribution,
because all other hypotheses must have error more than β. To make this a bit more formal, we impose a
(pseudo-)metric ρ on the space of hypotheses, as follows.

Definition 1. The disagreement pseudo-metric ρ on H is defined by

ρ(h, h′) = Pr
x∼DX

[h(x) 6= h′(x)]

for h, h′ ∈ H. Let B(h, r) = {h′ ∈ H : ρ(h, h′) ≤ r} be the ball centered around h of radius r.

Returning to our earlier scenario, we need only consider hypotheses in B(ht, 2β) and thus, when we see a
new data point x, there is no sense in asking for its label if all of B(ht, 2β) agrees on what this label should
be. The only points we potentially need to query are

{x : h(x) 6= h′(x) for some h, h′ ∈ B(ht, 2β)}.

Intuitively, the disagreement coefficient captures how the measure of this set grows with β. The following is
a slight variation of the original definition of Hanneke [12].
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Algorithm 1

Input: stream (x1, x2, . . . , xm) i.i.d. from DX

Initially, Ŝ0 := ∅ and T0 := ∅.
For n = 1, 2, . . . ,m:

1. For each ŷ ∈ {±1}, let hŷ := LEARNH(Ŝn−1 ∪ {(xn, ŷ)}, Tn−1).

2. If err(h−ŷ, Ŝn−1 ∪Tn−1)− err(hŷ, Ŝn−1 ∪Tn−1) > ∆n−1 (or if no such h−ŷ is found) for some ŷ ∈ {±1},
then Ŝn := Ŝn−1 ∪ {(xn, ŷ)} and Tn := Tn−1.

3. Else request yn; Ŝn := Ŝn−1 and Tn := Tn−1 ∪ {(xn, yn)}.

Return hf = LEARNH(Ŝm, Tm).

Figure 1: The agnostic selective sampling algorithm. See (1) for a possible setting for ∆n.

Definition 2. The disagreement coefficient θ = θ(D,H, ε) > 0 is

θ = sup

{
Prx∼DX

[∃h ∈ B(h∗, r) s.t. h(x) 6= h∗(x)]

r
: r ≥ ε + ν

}

where h∗ = arg infh∈H errD(h) and ν = errD(h∗).

Clearly, θ ≤ 1/(ε + ν); furthermore, it is a constant bounded independently of 1/(ε + ν) in several cases
previously considered in the literature [12]. For example, if H is homogeneous linear separators and DX is
the uniform distribution over the unit sphere in R

d, then θ = Θ(
√

d).

3 Agnostic selective sampling

Here we state and analyze our general algorithm for agnostic active learning. The main techniques employed
by the algorithm are reductions to a supervised learning task and generalization bounds applied to differences
of empirical errors.

3.1 A general algorithm for agnostic active learning

Figure 1 states our algorithm in full generality. The input is a stream of m unlabeled examples drawn
i.i.d from DX ; for the time being, m can be thought of as Õ((d/ε)(1 + ν/ε)) where ε is the accuracy
parameter.3

The algorithm operates by reduction to a special kind of supervised learning that includes hard constraints.

For A,B ⊂ X ×{±1}, let LEARNH(A,B) denote a supervised learner that returns a hypothesis
h ∈ H consistent with A, and with minimum error on B. If there is no hypothesis consistent
with A, it reports this.

For some simple hypothesis classes like intervals on the line, or rectangles in R
2, it is easy to construct such

a learner. For more complex classes like linear separators, the main bottleneck is the hardness of minimizing
the 0 − 1 loss on B (that is, the hardness of agnostic supervised learning). If a convex upper bound on this
loss function is used instead, as in the case of soft-margin support vector machines, it is straightforward to
incorporate hard constraints; but at present the rigorous guarantees accompanying our algorithm apply only
if 0 − 1 loss is used.

3The Õ notation suppresses log 1/δ and terms polylogarithmic in those that appear.
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Algorithm 1 maintains two sets of labeled examples, Ŝ and T , each of which is initially empty. Upon
receiving xn, it learns two4 hypotheses, hŷ = LEARNH(Ŝ ∪ {(xn, ŷ)}, T ) for ŷ ∈ {±1}, and then compares

their empirical errors on Ŝ ∪ T . If the difference is large enough, it is possible to infer how h∗ labels xn

(as we show in Lemma 3). In this case, the algorithm adds xn, with this inferred label, to Ŝ. Otherwise,
the algorithm requests the label yn and adds (xn, yn) to T . Thus, Ŝ contains examples with inferred labels
consistent with h∗, and T contains examples with their requested labels. Because h∗ might err on some
examples in T , we just insist that LEARNH find a hypothesis with minimal error on T . Meanwhile, by
construction, h∗ is consistent with Ŝ (as we shall see), so we require LEARNH to only consider hypotheses
consistent with Ŝ.

3.2 Bounds for error differences

We still need to specify ∆n, the threshold value for error differences that determines whether the algorithm
requests a label or not. Intuitively, ∆n should reflect how closely empirical errors on a sample approximate
true errors on the distribution D. Note that our algorithm is modular with respect to the choice of ∆n, so,
for example, it can be customized for a particular input distribution and hypothesis class. Below we provide
a simple and adaptive setting that works for any distribution and hypothesis class with finite VC dimension.

The setting of ∆n can only depend on observable quantities, so we first clarify the distinction between
empirical errors on Ŝn ∪ Tn and those with respect to the true (hidden) labels.

Definition 3. Let Ŝn and Tn be as defined in Algorithm 1. Let Sn (shedding the hat accent) be the set of
labeled examples identical to those in Ŝn, except with the true hidden labels swapped in. Thus, for example,
Sn ∪ Tn is an i.i.d. sample from D of size n. Finally, let

errn(h) = err(h, Sn ∪ Tn) and êrrn(h) = err(h, Ŝn ∪ Tn).

It is straightforward to apply Lemma 1 to empirical errors on Sn∪Tn, i.e. to errn(h), but we cannot use such
bounds algorithmically: we do not request the true labels for points in Ŝn and thus cannot reliably compute
errn(h). What we can compute are error differences errn(h) − errn(h′) for pairs of hypotheses (h, h′) that
agree on (and thus make the same mistakes on) Ŝn, since for such pairs, we have

errn(h) − errn(h′) = êrrn(h) − êrrn(h′).5

These empirical error differences are means of {−1, 0,+1}-valued random variables. We need to rewrite
them in terms of {0, 1}-valued random variables for some of the concentration bounds we will be using.

Definition 4. For a pair (h, h′) ∈ H × H, define g+
h,h′(x, y) = 1l[h(x) 6= y ∧ h′(x) = y] and g−h,h′(x, y) =

1l[h(x) = y ∧ h′(x) 6= y].

With this notation, we have err(h,Z)−err(h′, Z) = EZ [g+
h,h′ ]−EZ [g−h,h′ ] for any Z ⊂ X×{±1}. Now, applying

Lemma 1 to G = {g+
h,h′ : (h, h′) ∈ H ×H} = {g−h,h′ : (h, h′) ∈ H ×H}, and noting that S(G, n) ≤ S(H, n)2,

gives the following lemma.

Lemma 2. Let αn =
√

(4/n) ln(8S(H, 2n)2/δ). With probability at least 1 − δ over an i.i.d. sample Z of
size n from D, we have for all (h, h′) ∈ H ×H,

err(h,Z) − err(h′, Z) ≤ errD(h) − errD(h′) + α2
n + αn

(√
EZ [g+

h,h′ ] +
√

EZ [g−h,h′ ]
)

.

With Z = Sn ∪ Tn, the error difference on the left-hand side is errn(h) − errn(h′), which can be empirically
determined because it is equal to êrrn(h)− êrrn(h′). But the terms in the square root on the right-hand side
still pose a problem, which we fix next.

4If LEARNH cannot find a hypothesis consistent with Ŝ ∪ {(xn, y)} for some y, then assuming h∗ is consistent with Ŝ, it

must be that h∗(x) = −y. In this case, we simply add (xn,−y) to Ŝ, regardless of the error difference.
5This observation is enough to immediately justify the use of additive generalization bounds for ∆n. However, we need to

use normalized (multiplicative) bounds to achieve a better label complexity.
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Corollary 1. Let βn =
√

(4/n) ln(8(n2 + n)S(H, 2n)2/δ). Then, with probability at least 1−δ, for all n ≥ 1

and all (h, h′) ∈ H ×H consistent with Ŝn, we have

êrrn(h) − êrrn(h′) ≤ errD(h) − errD(h′) + β2
n + βn(

√
êrrn(h) +

√
êrrn(h′)).

Proof. For each n ≥ 1, we apply Lemma 2 using Z = Sn ∪ Tn and δ = δ/(n2 + n). Then, we apply a union
bound over all n ≥ 1. Thus, with probability at least 1− δ, the bounds in Lemma 2 hold simultaneously for
all n ≥ 1 and all (h, h′) ∈ H2 with Sn ∪ Tn in place of Z. The corollary follows because errn(h)− errn(h′) =
êrrn(h) − êrrn(h′); and because ESn∪Tn

[g+
h,h′ ] ≤ êrrn(h) and ESn∪Tn

[g−h,h′ ] ≤ êrrn(h′). To see the first of
these expectation bounds, witness that because h and h′ agree on Sn,

ESn∪Tn
[g+

h,h′ ] =
1

n

∑

(x,y)∈Tn

1l[h(x) 6= y ∧ h′(x) = y] ≤ 1

n

∑

(x,y)∈Tn

1l[h(x) 6= y] = êrrn(h).

The second bound is similar.

Corollary 1 implies that we can effectively apply the normalized uniform convergence bounds from Lemma 1
to empirical error differences on Ŝn ∪ Tn, even though Ŝn ∪ Tn is not an i.i.d. sample from D. In light of
this, we use the following setting of ∆n:

∆n := β2
n + βn

(√
êrrn(h+1) +

√
êrrn(h−1)

)
(1)

where βn =
√

(4/n) ln(8(n2 + n)S(H, 2n)2/δ) = Õ(
√

d log n/n) as per Corollary 1.

3.3 Correctness and fall-back analysis

We now justify our setting of ∆n with a correctness proof and fall-back guarantee.

The following lemma elucidates how the inferred labels in Ŝ serve as a mechanism for implicitly maintaining a
candidate set of hypotheses that always includes h∗. The fall-back guarantee then follows almost immediately.

Lemma 3. With probability at least 1 − δ, the hypothesis h∗ = arg infh∈H errD(h) is consistent with Ŝn for
all n ≥ 0 in Algorithm 1.

Proof. Apply the bounds in Corollary 1 (they hold with probability at least 1−δ) and proceed by induction on
n. The base case is trivial since Ŝ0 = ∅. Now assume h∗ is consistent with Ŝn. Suppose upon receiving xn+1,
we discover êrrn(h+1)− êrrn(h−1) > ∆n. We will show that h∗(xn+1) = −1 (assume both h+1 and h−1 exist,
since it is clear h∗(xn+1) = −1 if h+1 does not exist). Suppose for the sake of contradiction that h∗(xn+1) =
+1. We know that êrrn(h∗) ≥ êrrn(h+1) (by the inductive hypothesis h∗ is consistent with Ŝn, and yet the
learner chose h+1 in preference to it) and êrrn(h+1) − êrrn(h−1) > β2

n + βn(
√

êrrn(h+1) +
√

êrrn(h−1)). In
particular, êrrn(h+1) > β2

n. Therefore,

êrrn(h∗) − êrrn(h−1) = (êrrn(h∗) − êrrn(h+1)) + (êrrn(h+1) − êrrn(h−1))

>
√

êrrn(h+1)(
√

êrrn(h∗) −
√

êrrn(h+1)) + β2
n + βn(

√
êrrn(h+1) +

√
êrrn(h−1))

> βn(
√

êrrn(h∗) −
√

êrrn(h+1)) + β2
n + βn(

√
êrrn(h+1) +

√
êrrn(h−1))

= β2
n + βn(

√
êrrn(h∗) +

√
êrrn(h−1)).

Now Corollary 1 implies that errD(h∗) > errD(h−1), a contradiction.

Theorem 1. Let ν = infh∈H errD(h) and d = vcdim(H). There exists a constant c > 0 such that
the following holds. If Algorithm 1 is given a stream of m unlabeled examples, then with probability at
least 1 − δ, the algorithm returns a hypothesis with error at most ν + c · ((1/m)(d log m + log(1/δ)) +√

(ν/m)(d log m + log(1/δ))).
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Proof. Lemma 3 implies that h∗ is consistent with Ŝm with probability at least 1−δ. Using the same bounds
from Corollary 1 (already applied in Lemma 3) on h∗ and hf together with the fact êrrm(hf ) ≤ êrrm(h∗), we

have errD(hf ) ≤ ν + β2
m + βm

√
ν + βm

√
errD(hf ), which in turn implies errD(hf ) ≤ ν + 3β2

m + 2βm
√

ν.

So, Algorithm 1 returns a hypothesis with error at most ν + ε when m = Õ((d/ε)(1 + ν/ε)); this is (asymp-
totically) the usual sample complexity of supervised learning. Since the algorithm requests at most m labels,
its label complexity is always at most Õ((d/ε)(1 + ν/ε)).

3.4 Label complexity analysis

We can also bound the label complexity of our algorithm in terms of the disagreement coefficient θ. This
yields tighter bounds when θ is bounded independently of 1/(ε+ν). The key to deriving our label complexity
bounds based on θ is noting that the probability of requesting the (n + 1)st label is intimately related to θ
and ∆n.

Lemma 4. There exist constants c1, c2 > 0 such that, with probability at least 1 − 2δ, for all n ≥ 1, the
following holds. Let h∗(xn+1) = ŷ where h∗ = arg infh∈H errD(h). Then, the probability that Algorithm 1
requests the label yn+1 is

Prxn+1∼DX
[Request yn+1] ≤ Prxn+1∼DX

[errD(h−ŷ) ≤ c1ν + c2β
2
n]

where βn is as defined in Corollary 1 and ν = infh∈H errD(h).

Proof. See Appendix A.

Lemma 5. In the same setting as Lemma 4, there exists a constant c > 0 such that Prxn+1∼DX
[Request yn+1] ≤

c · θ · (ν + β2
n), where θ = θ(D,H, 3β2

m + 2βm
√

ν) is the disagreement coefficient, ν = infh∈H errD(h), and βn

is as defined in Corollary 1.

Proof. Suppose h∗(xn+1) = −1. By the triangle inequality, we have that errD(h+1) ≥ ρ(h+1, h
∗)− ν, where

ρ is the disagreement metric on H (Definition 1). By Lemma 4, this implies that the probability of requesting
yn+1 is at most the probability that ρ(h+1, h

∗) ≤ (c1 + 1)ν + c2β
2
n for some constants c1, c2 > 0. We can

choose the constants so that (c1 + 1)ν + c2β
2
n ≥ ν + 3β2

m + 2βm
√

ν. Then, the definition of the disagreement
coefficient gives the conclusion that Prxn+1∼DX

[ρ(h+1, h
∗) ≤ (c1 + 1)ν + c2β

2
n] ≤ θ · ((c1 + 1)ν + c2β

2
n).

Now we give our main label complexity bound for agnostic active learning.

Theorem 2. Let m be the number of unlabeled data given to Algorithm 1, d = vcdim(H), ν = infh∈H errD(h),
βm as defined in Corollary 1, and θ = θ(D,H, 3β2

m + 2βm
√

ν). There exists a constant c1 > 0 such that for
any c2 ≥ 1, with probability at least 1 − 2δ:

1. If ν ≤ (c2 − 1)β2
m, Algorithm 1 returns a hypothesis with error as bounded in Theorem 1 and the

expected number of labels requested is at most

1 + c1c2θ ·
(

d log2 m + log
1

δ
log m

)
.

2. Else, the same holds except the expected number of labels requested is at most

1 + c1θ ·
(

νm + d log2 m + log
1

δ
log m

)
.

Furthermore, if L is the expected number of labels requested as per above, then with probability at least 1− δ′,
the algorithm requests no more than L +

√
3L log(1/δ′) labels.
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Proof. Follows from Lemma 5 and a Chernoff bound for the Poisson trials 1l[Request yn].

With the substitution ε = 3β2
m + 2βm

√
ν as per Theorem 1, Theorem 2 entails that for any hypothesis class

and data distribution for which the disagreement coefficient θ = θ(D,H, ε) is bounded independently of
1/(ε + ν) (see [12] for some examples), Algorithm 1 only needs Õ(θd log2(1/ε)) labels to achieve error ε ≈ ν
and Õ(θd(log2(1/ε) + (ν/ε)2)) labels to achieve error ε ≪ ν. The latter matches the dependence on ν/ε in
the Ω((ν/ε)2) lower bound [14].

The linear dependence on θ improves on the quadratic dependence shown for A2 [12]6. For an illustrative
consequence of this, suppose DX is the uniform distribution on the sphere in R

d and H is homogeneous
linear separators; in this case, θ = Θ(

√
d). Then the label complexity of A2 depends at least quadratically

on the dimension, whereas the corresponding dependence for our algorithm is d3/2. A specially-designed
setting of ∆n (say, specific to the input distribution and hypothesis class) may be able to further reduce the
dependence to d (see [2]).

4 Experiments

We implemented Algorithm 1 in a few simple cases to experimentally demonstrate the label complexity
improvements. In each case, the data distribution DX was uniform over [0, 1]; the stream length was m =
10000, and each experiment was repeated 20 times with different random seeds. Our first experiment studied
linear thresholds on the line. The target hypothesis was fixed to be h∗(x) = sign(x−0.5). For this hypothesis
class, we used two different noise models, each of which ensured infh∈H errD(h) = errD(h∗) = ν for a pre-
specified ν ∈ [0, 1]. The first model was random misclassification: for each point x ∼ DX , we independently
labeled it h∗(x) with probability 1−ν and −h∗(x) with probability ν. In the second model (also used in [4]),
for each point x ∼ DX , we independently labeled it +1 with probability (x−0.5)/(4ν)+0.5 and −1 otherwise,
thus concentrating the noise near the boundary. Our second experiment studied intervals on the line. Here,
we only used random misclassification, but we varied the target interval length p+ = Prx∼DX

[h∗(x) = +1].

The results show that the number of labels requested by Algorithm 1 was exponentially smaller than the
total number of data seen (m) under the first noise model, and was polynomially smaller under the second
noise model (see Figure 2; we verified the polynomial vs. exponential distinction on separate log-log scale
plots). In the case of intervals, we observe an initial phase (of duration roughly ∝ 1/p+) in which every label
is requested, followed by a more efficient phase, confirming the known active-learnability of this class [7,12].
These improvements show that our algorithm needed significantly fewer labels to achieve the same error as
a standard supervised algorithm that uses labels for all points seen.

As a sanity check, we examined the locations of data for which Algorithm 1 requested a label. We looked at
two particular runs of the algorithm: the first was with H = intervals, p+ = 0.2, m = 10000, and ν = 0.1; the
second was with H = boxes (d = 2), p+ = 0.49, m = 1000, and ν = 0.01. In each case, the data distribution
was uniform over [0, 1]d, and the noise model was random misclassification. Figure 3 shows that, early on,
labels were requested everywhere. But as the algorithm progressed, label requests concentrated near the
boundary of the target hypothesis.

5 Conclusion and future work

We have presented a simple and natural approach to agnostic active learning. Our extension of the selective
sampling scheme of Cohn-Atlas-Ladner [6]

1. simplifies the maintenance of the region of uncertainty with a reduction to supervised learning, and

2. guards against noise with a suitable algorithmic application of generalization bounds.

6It may be possible to reduce A2’s quadratic dependence to a linear dependence by using normalized bounds, as we do here.
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Figure 2: Labeling rate plots. The plots show the number of labels requested (vertical axis) versus the total
number of points seen (labeled + unlabeled, horizontal axis) using Algorithm 1. (a) H = thresholds: under
random misclassification noise with ν = 0 (solid), 0.1 (dashed), 0.2 (dot-dashed); under the boundary noise
model with ν = 0.1 (lower dotted), 0.2 (upper dotted). (b) H = intervals: under random misclassification
with (p+, ν) = (0.2, 0.0) (solid), (0.1, 0.0) (dashed), (0.2, 0.1) (dot-dashed), (0.1, 0.1) (dotted).

(a) (b)

Figure 3: Locations of label requests. (a) H = intervals, h∗ = [0.4, 0.6]. The top histogram shows the
locations of first 400 label requests (the x-axis is the unit interval); the bottom histogram is for all (2141)
label requests. (b) H = boxes, h∗ = [0.15, 0.85]2. The first 200 requests occurred at the ×s, the next 200 at
the ▽s, and the final 109 at the ©s.
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Our algorithm relies on a threshold parameter ∆n for comparing empirical errors. We prescribe a very simple
and natural choice for ∆n – a normalized generalization bound from supervised learning – but one could
hope for a more clever or aggressive choice, akin to those in [2] for linear separators.

Finding consistent hypotheses when data is separable is often a simple task. In such cases, reduction-based
active learning algorithms can be relatively efficient (answering some questions posed in [15]). On the other
hand, agnostic supervised learning is computationally intractable for many hypothesis classes (e.g. [11]),
and of course, agnostic active learning is at least as hard in the worst case. Our reduction to supervised
learning is benign in the sense that the learning problems we need to solve are over samples from the
original distribution, so we do not create pathologically hard instances (like those arising from hardness
reductions [11]) unless they are inherent in the data. Nevertheless, an important research direction is to
develop consistent active learning algorithms that only require solving tractable (e.g. convex) optimization
problems. A similar reduction-based scheme may be possible.
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A Proof of Lemma 4

Let γn =
√

(4/n) ln(8(n2 + n)S(H, 2n)/δ) (which is at most βn). With probability at least 1 − 2δ:

• (Lemma 1) For all n ≥ 1, all h ∈ H, we have

−γ2
n − γn

√
errD(h) ≤ errD(h) − errn(h) ≤ γn

√
errD(h).

• (Lemma 3) h∗ is consistent with Ŝn for all n ≥ 0.

Throughout, we make repeated use of the simple fact A ≤ B +C
√

A ⇒ A ≤ B +C2 +C
√

B for non-negative
A,B,C.

Now suppose h∗(xn+1) = −1 and Algorithm 1 requests the label yn+1. We need to show that errD(h+1) ≤
c1ν + c2β

2
n for some positive constants c1 and c2. Since the algorithm requests a label, we have

êrrn(h+1) − êrrn(h−1) ≤ β2
n + βn(

√
êrrn(h+1) +

√
êrrn(h−1)).

We bound the LHS from below with êrrn(h+1) − êrrn(h−1) ≥ êrrn(h+1) − êrrn(h∗) = errn(h+1) − errn(h∗)
and the RHS from above using êrrn(h+1) ≤ errn(h+1) and êrrn(h−1) ≤ errn(h∗). Therefore,

errn(h+1) ≤ errn(h∗) + β2
n + βn

√
errn(h+1) + βn

√
errn(h∗),

which, in turn, implies

errn(h+1) ≤ errn(h∗) + 2β2
n + βn

√
errn(h∗) + βn

√
errn(h∗) + β2

n + βn

√
errn(h∗).

Uniform convergence of errors allows the bounds errn(h+1) ≥ errD(h+1) − γn

√
errD(h+1) and errn(h∗) ≤

ν + γ2
n + γn

√
ν, so it follows that

errD(h+1) − βn

√
errD(h+1) ≤ ν + 3β2

n + βn

√
ν + βn

√
ν + β2

n + βn

√
ν

+ βn

√
ν + 2β2

n + βn

√
ν + βn

√
ν + β2

n + βn

√
ν

≤ ν + (4 +
√

3)β2
n + 3βn

√
ν.

This implies errD(h+1) ≤ 3ν + (12 + 2
√

3)β2
n as needed.

B Recasting A
2 with reductions to supervised learning

Here we recast the A2 algorithm [1] with reductions to supervised learning, making it more straightforwardly
implementable.

Our reduction uses the subroutine LEARNH(S, T ), a supervised learner that returns a hypothesis h ∈ H
consistent with S and with minimal error on T (or fails if none exist). The original A2 algorithm explicitly
maintains version spaces and regions of uncertainty; these sets are implicitly maintained with our reduction:

1. The first argument S to LEARNH forces the algorithm to only consider hypotheses in the current
version space.

2. Upon receiving a labeled sample T from the current region of uncertainty, we use LEARNH to determine
which unlabeled data the algorithm is still uncertain of.
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Reduction-based A2

Input: X := {x1, x2, . . . , xm} i.i.d. from DX .
Initially, U1 := X, S1 := ∅, n1 := 0.
For phase i = 1, 2, . . .:

1. Let Ti,ni
be a random subset of Ui of size 2ni , and let TO

i,ni
:= {(x,O(x)) : x ∈ Ti,ni

}, requesting labels
as needed (some may have already been requested in previous repeats of this phase).

• If (|Ui|/|X|)∆i,ni
≤ ε, then return hf := LEARNH(Si, Ti,ni

).

2. Initialize temporary variables C ′ := ∅, S′ := ∅.

3. For each x ∈ Ui:

(a) For each ŷ ∈ {±1}, let hŷ := LEARNH(Si, T
O
i,ni

).

(b) If err(h−ŷ, TO
i,ni

) − err(hŷ, TO
i,ni

) > ∆i,ni
(or if no such h−ŷ exists) for some ŷ ∈ {±1},

then C ′ := C ′ ∪ {x} and S′ := S′ ∪ {(x, ŷ)}.

4. Ui+1 := Ui \ C ′, Si+1 := Si ∪ S′.

• If |Ui+1|/|X| ≤ ε, then return hf := LEARNH(Si+1, ∅).

5. If |Ui+1| > (1/2)|Ui|, then set ni := ni + 1 and repeat phase i.

6. Else set ni+1 := 0 and continue to phase i + 1.

Figure 4: A2 recast with reductions to supervised learning. The setting of ∆i,ni
is discussed in the analysis.

B.1 Algorithm

The algorithm, specified in Figure 4, uses an initial unlabeled sample X ⊆ X of size m = Õ(d/ε2) drawn
i.i.d. from the input distribution DX . This set X serves as a proxy for DX so that computing the mass of the
current region of uncertainty can be performed simply by counting. Consequently, the algorithm will learn
a hypothesis with error close to the minimal error achievable on X. However, this can easily be translated
to errors with respect to the full distribution by standard uniform convergence arguments.

We can think of the initial sample X from DX as just the x parts of a labeled sample Z = {(x1, y1), . . . , (xm, ym)}
from D; the labels y1, . . . , ym remain hidden unless the algorithm requests them. Let O : X → {±1} be the
mapping from the unlabeled data in X to their respective hidden labels. Also, for any unlabeled subset T
of X, let TO = {(x,O(x)) : x ∈ T} be the corresponding labeled subset of Z.

The algorithm proceeds in phases; the goal of each phase i is to cut the current region of uncertainty Ui in
half. Toward this end, the algorithm labels a random subset of Ui and uses LEARNH to check which points
in Ui it is still uncertain about. The algorithm is uncertain about a point x ∈ Ui if it cannot infer h∗(x),
where h∗ = arg minh∈H err(h,XO).

B.2 Analysis

Let h∗ = arg minh∈H err(h,XO) and let Hi = {h ∈ H : h(x) = ŷ ∀(x, ŷ) ∈ Si}. We assume that with
probability at least 1 − δ, the following holds for all phases i ≥ 1 (including repeats):

∀h ∈ Hi err(h∗, TO
i,ni

) − err(h, TO
i,ni

) ≥ err(h∗, UO
i ) − err(h,UO

i ) − ∆i,ni
.

For example, standard generalization bounds can be used here for the ∆i,ni
, with appropriate δ-sharing.

Lemma 6. With probability at least 1 − δ, for all i ≥ 1, we have h∗ ∈ Hi and err(h∗, UO
i ) ≤ err(h,UO

i ) for
all h ∈ Hi.
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Proof. By induction. The base case is trivial. So assume it’s true for i and we’ll show it’s true for i + 1.
Suppose for sake of contradiction that some (x, y) is added to S′ in step 3, but h∗(x) 6= y. Then

err(h∗, UO
i ) − err(hŷ, UO

i ) ≥ err(h∗, TO
i,ni

) − err(hŷ, TO
i,ni

) − ∆i,ni

≥ err(h−ŷ, TO
i,ni

) − err(hŷ, TO
i,ni

) − ∆i,ni

> ∆i,ni
− ∆i,ni

so err(h∗, UO
i ) > err(hŷ, UO

i ), a contradiction of the inductive hypothesis. Therefore, h∗(x) = y for all
(x, y) ∈ S′ (and thus those ultimately added to Si+1), so h∗ ∈ Hi+1.

The error of a hypothesis h ∈ Hi+1 on XO decomposes as follows:

err(h,XO) =
|X \ Ui+1|

|X| err(h,X \ UO
i+1) +

|Ui+1|
|X| err(h,UO

i+1)

=
|X \ Ui+1|

|X| err(h∗,X \ UO
i+1) +

|Ui+1|
|X| err(h∗, UO

i+1)

+
|Ui+1|
|X| (err(h,UO

i+1) − err(h∗, UO
i+1))

= err(h∗,XO) +
|Ui+1|
|X| (err(h,UO

i+1) − err(h∗, UO
i+1))

(the second equality follows because hypotheses in Hi+1 agree on X \ UO
i+1 = {x : (x, y) ∈ Si+1}). Since

err(h,XO) ≥ err(h∗,XO), we have err(h,UO
i+1) ≥ err(h∗, UO

i+1) for all h ∈ Hi+1.

Lemma 7. If Reduction-based A2 returns a hypothesis hf , then hf has error err(hf ,XO) ≤ err(h∗,XO)+ε.

Proof. We use the same decomposition of err(h,XO) for h ∈ Hi as in the previous lemma. If h =
arg minh′∈Hi

err(h′, TO
i,ni

), then err(h,UO
i ) ≤ err(h∗, UO

i ) + ∆i,ni
and thus err(h,XO) ≤ err(h∗,XO) +

(|Ui|/|X|)∆i,ni
. Also, any hypothesis h ∈ Hi has error at most err(h∗,XO) + |Ui|/|X|. The exit conditions

ensure that these upper bounds are always at most err(h∗,XO) + ε.

Both the fall-back label complexity guarantee as well as those for certain specific hypothesis classes and
distributions (e.g. thresholds on the line, homogeneous linear separators under the uniform distribution)
carry over from A2 proper to Reduction-based A2.
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