
Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling

WEI LI, ShanghaiTech University/SIMIT/UCAS
YIXIN CHEN, ShanghaiTech University/DGene
MATHIEU DESBRUN, ShanghaiTech/Caltech
CHANGXI ZHENG, Columbia University
XIAOPEI LIU, ShanghaiTech University

Fig. 1. Rocket launching. Our novel solver can accurately simulate fluid flows of either laminar or turbulent nature in an efficient and scalable manner. Here,
a large-scale simulation of a rocket launch (computed with 4 GPUs on a grid of size 500×1200×500, 3.7 hours of computation for 1s of simulation); two-way
coupling automatically propels the rocket in the air while generating a turbulent wake affecting the entire simulation domain (thermal effects are ignored).

Despite their cinematic appeal, turbulent flows involving fluid-solid cou-
pling remain a computational challenge in animation. At the root of this
current limitation is the numerical dispersion from which most accurate
Navier-Stokes solvers suffer: proper coupling between fluid and solid often
generates artificial dispersion in the form of local, parasitic trains of velocity
oscillations, eventually leading to numerical instability. While successive
improvements over the years have led to conservative and detail-preserving
fluid integrators, the dispersive nature of these solvers is rarely discussed
despite its dramatic impact on fluid-structure interaction. In this paper, we
introduce a novel low-dissipation and low-dispersion fluid solver that can
simulate two-way coupling in an efficient and scalable manner, even for
turbulent flows. In sharp contrast with most current CG approaches, we
construct our solver from a kinetic formulation of the flow derived from sta-
tistical mechanics. Unlike existing lattice Boltzmann solvers, our approach
leverages high-order moment relaxations as a key to controlling both dissipa-
tion and dispersion of the resulting scheme. Moreover, we combine our new
fluid solver with the immersed boundary method to easily handle fluid-solid

Authors’ addresses: Wei Li, Yixin Chen, Xiaopei Liu, School of Information Science and
Technology (Shanghai Engineering Research Center of Intelligent Vision and Imaging)
of ShanghaiTech University, Shanghai, China; Wei Li is also affiliated with the Shanghai
Institute of Microsystem and Information Technology (SIMIT) and the University of
the Chinese Academy of Sciences (UCAS); Mathieu Desbrun, California Institute of
Technology, Pasadena (CA), USA, on sabbatical at SIST in ShanghaiTech University,
Shanghai, China; Changxi Zheng, Columbia University, New York (NY), USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/7-ART47 $15.00
https://doi.org/10.1145/3386569.3392400

coupling through time adaptive simulations. Our kinetic solver is highly
parallelizable by nature, making it ideally suited for implementation on
single- or multi-GPU computing platforms. Extensive comparisons with
existing solvers on synthetic tests and real-life experiments are used to high-
light the multiple advantages of our work over traditional and more recent
approaches, in terms of accuracy, scalability, and efficiency.
CCS Concepts: • Computing methodologies→ Physical simulation.
Additional Key Words and Phrases: Fluid Simulation, Kinetic Theory, Lattice
Boltzmann Method, Fluid-Solid Coupling, Immersed Boundary Method.
ACM Reference Format:
Wei Li, Yixin Chen, Mathieu Desbrun, Changxi Zheng, and Xiaopei Liu. 2020.
Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling. ACM
Trans. Graph. 39, 4, Article 47 (July 2020), 20 pages. https://doi.org/10.1145/
3386569.3392400

1 INTRODUCTION
The intricate interplay between fluid and solids is a common occur-
rence all around us: from the fluttering of a dry leaf in the wind to
the tumbling of a paper cup, the interaction, or coupling, between
the motions of a fluid and of a solid is all the more complex than the
flow is turbulent. Automatically capturing such complex phenom-
ena being particularly desirable for movie production, numerous
approaches to fluid-solid coupling have been proposed in the CG
literature, most of them combining an incompressible Navier-Stokes
solver with a rigid- or deformable-body simulator.Whether they rely
on uniform grids [Carlson et al. 2004; Robinson-Mosher et al. 2008;
Qiu et al. 2015], body-fitted meshes [Feldman et al. 2005; Klingner
et al. 2006; Elcott et al. 2007; Clausen et al. 2013], cut-cells [Batty et al.
2007; Ng et al. 2009; Azevedo et al. 2016; Liu et al. 2015], or are based
on particles [Akinci et al. 2012; Ihmsen et al. 2013; Band et al. 2018],

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392400
https://doi.org/10.1145/3386569.3392400
https://doi.org/10.1145/3386569.3392400

47:2 • Li, W. et al

Fig. 2. Tornado. Four air inlets at the bottom of the simulation domain generate strong vortices, which quickly entangle to form a large tornado, entraining
cars and cows. This two-way coupling simulation at Re=80, 000 was performed on a 640×720×640 grid with a 4-GPU server; each frame required 139 sec.

existing simulation techniques for fluid-solid coupling all share the
same limitation: they cannot handle turbulent flows robustly, as
instabilities appear around fast moving solids. Moreover, the fre-
quent need for a global pressure solve in these numerical methods
is an additional hurdle towards obtaining efficient implementations
allowing large-scale, high-resolution simulations.
In this paper, we start from a very different perspective. Instead

of discretizing the usual incompressible Navier-Stokes equations,
we adopt a more general kinetic description of fluid flows based on
the continuous Boltzmann equation [Chen and Doolen 1998; Aidun
and Clausen 2010]. However, we show that the existing lattice Boltz-
mann methods (LBM), used to discretize this statistical mechanics
equation, systematically fail to properly treat high-order moments
of the distribution functions. Instead, we introduce a variant of the
central-moment relaxation model which provides a low-dissipation,
low-dispersion fluid solver exceeding all current CG solvers on ba-
sic CFD obstacle courses such as 2D Taylor-Green vortex or vortex
sheet tests. By combining this new kinetic solver with the Immersed
Boundary (IB) method [Peskin 1972; Li et al. 2016] to achieve two-
way fluid-solid coupling via time-adaptive LBM simulation, we offer
a robust and efficient numerical approach that can not only offer
realtime simulation for a 64×64×64 grid on a typical workstation
(with an NVIDIA 2080Ti GPU), but also high-resolution simulations
(e.g., 500×1200×500) on a compute cluster for large-scale phenomena
through scalable parallel computing, see Fig. 1.

1.1 Related work
Flow simulation and fluid-solid coupling have a long history in both
the Computer Graphics (CG) community and the Computational
Fluid Dynamics (CFD) community as we now briefly review.
Turbulent flow simulation. Starting from the work of Foster and

Metaxas [1996], fluid simulation quickly developed in graphics.
Stam [1999] proposed an unconditionally stable semi-Lagrangian
advection scheme, which unfortunately produced excessive numeri-
cal diffusion. In order to better capture vortices in flow simulations,
higher order advection methods were then proposed, such as the
BFECC scheme [Kim et al. 2005], the MacCormack scheme [Selle
et al. 2008], andmore recently, the advection-reflection scheme [Zehn-
der et al. 2018] and the “BiMocq2” method [Qu et al. 2019], which
were shown to better preserve vortical details in time. Although

very efficient, these schemes rely on uniform grids, so extensions
to octree [Losasso et al. 2004] and other forms of grids [Lentine
et al. 2010; Zhu et al. 2013; Setaluri et al. 2014] were proposed, along
with schemes designed for tetrahedral meshes [Klingner et al. 2006;
Mullen et al. 2009; Ando et al. 2013]. Lagrangian particles have
also been used to simulate fluids, based for instance on smoothed
particle hydrodynamics [Desbrun and Gascuel 1996; Becker and
Teschner 2007; Solenthaler and Pajarola 2009; Akinci et al. 2012;
Ihmsen et al. 2014; Peer et al. 2015], but cannot capture turbulent
flows for low particle counts due to their low order accuracy. Hybrid
methods [Zhu and Bridson 2005; Raveendran et al. 2011; Jiang et al.
2015; Zhang et al. 2016] fare better in terms of accuracy, but are still
most appropriate for slow, viscous fluids unless longer runtimes are
allowed [Fu et al. 2017]. Vortex methods [Park and Kim 2005; Golas
et al. 2012] excel at preserving vortical details, and solvers based on
vortex particles [Selle et al. 2005], vortex filaments [Weißmann and
Pinkall 2010] and vortex sheets [Brochu et al. 2012; Pfaff et al. 2012;
Zhang and Bridson 2014; Zhang et al. 2015] have been shown effec-
tive and scalable. Two-way coupling using vortex methods remains,
however, largely unexplored. Note that a number of approaches have
also proposed the injection of artificial turbulence to flow simulation
(see [Thürey et al. 2013], and recent data-driven approaches [Jeong
et al. 2015; Chu and Thürey 2017; Xie et al. 2018]), but once again,
fluid-solid coupling in this context is largely unexplored.

Fluid-solid coupling. Fluid-solid coupling has been actively stud-
ied in both CG and CFD. In graphics, various authors have discussed
how to enforce proper solid boundary conditions (especially for
pressure) to keep the fluid incompressible, which then provides
the correct force to drive the motion of the solids. This has been
achieved via voxelized boundary approximations [Takahashi et al.
2002; Génevaux et al. 2003; Robinson-Mosher et al. 2008; Azevedo
et al. 2016], a fully-Eulerianmethod [Teng et al. 2016], or a rigid-fluid
approach [Carlson et al. 2004], and can even be used for deformable
shells [Guendelman et al. 2005]. However, all these methods are
either inaccurate or unstable when fluids become turbulent: small
timesteps inevitably increase dispersion errors for typical high-order
accurate advection schemes (see Figs. 13 and 24), which eventu-
ally lead to inaccuracies. The use of boundary-conforming Eulerian
simulation improves accuracy dramatically [Klingner et al. 2006],
and has been adopted in most CFD approaches [Lv et al. 2010;

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling • 47:3

Fig. 3. Blowing up stacked boxes. In this two-way coupling example, an impulse jet through an air inlet is blowing away two stacks of boxes; passive smoke
particles are injected to visualize the air flow interacting with the motion of the solid boxes. Two different Reynolds numbers are used: Re=2, 666 (top), and
Re=8, 000 (bottom) where stronger turbulence (and thus, smoke plumes with higher frequencies) is observed.

Dai and Schmidt 2005]; but in the case of dynamic solids, frequent
remeshing is required, which is computationally very expensive.
Cut-cell-based approaches, where grids around solid boundaries are
subdivided into boundary-conforming regions and finite-volume-
based formulations are employed inside these regions, offering a
good compromise [Roble et al. 2005; Batty et al. 2007; Ng et al. 2009;
Gibou and Min 2012; Weber et al. 2015; Edwards and Bridson 2014],
even for thin solids [Azevedo et al. 2016]. However, cut-cell-based
approaches need to track fresh cells (cells that were inside the solid
and are now in the fluid) and dead cells (in fluid before, now in
solid), which can be costly. For particle-based fluid solvers, solids
are often approximated by dense boundary particles to allow proper
coupling [Colagrossi and Landrini 2003; Solenthaler and Pajarola
2008; Akinci et al. 2012; Schechter and Bridson 2012; de Goes et al.
2015; Bender and Koschier 2016; Band et al. 2017; Koschier and Ben-
der 2017], but penalty forces have also been proposed to enforce
boundary conditions [Becker et al. 2009; Ihmsen et al. 2013]. How-
ever, many of these methods do not ensure consistent pressure in
the fluid domain and on solids [Band et al. 2018]. In hybrid grid-
particle methods, boundary conditions are treated using grid-based
techniques [Zhang et al. 2016; Fei et al. 2018; Hu et al. 2018]. The
CFD community has also proposed a large number of numerical
solutions to the problem of fluid-solid coupling [Hirt et al. 1974;
Gibou and Min 2012; Lācis et al. 2016]. One of the most common and
efficient approaches is the Immersed Boundary (IB) method [Peskin
2002], especially its diffused formulation [Li et al. 2016] as it does
not need to track fresh cells and avoids pressure oscillation issues
that sharp-interface variants suffer from [Seo and Mittal 2011]. Note
that IB does not forgo the need for a global pressure solve.

Kinetic methods. While all the methods we discussed above are de-
signed to approximate the traditional Navier-Stokes (NS) equations,
a few alternatives have been proposed over the years, the most suc-
cessful being arguably kinetic methods as used for fluid simulation in
CG for over a decade [Thürey 2007; Thürey and Rüde 2009; Liu et al.
2014; Guo et al. 2017; Li et al. 2019; Li et al. 2020]. Instead of trying to
numerically simulate the NS equations, kinetic approaches rely on
statistical mechanics: they aim to simulate the continuous Boltzmann
transport equation, which indicates the evolution in time of the prob-
ability density encoding the presence of fluid volumes at a given po-
sition with a given velocity. Key to the accuracy of kinetic methods

is their collision (or relaxation) modeling. While early techniques re-
lied on Bhatnagar-Gross-Krook (BGK) [Chen and Doolen 1998] and
raw-moment multiple-relaxation-time (MRT) [d’Humières 2002]
models, they suffered from low accuracy due to strong dispersion
error and/or lack of Galilean invariance. The development of central-
moment MRT models [Geier et al. 2006; De Rosis 2017; De Rosis and
Luo 2019] dramatically increased both accuracy and stability. As ki-
netic methods do not need pressure projections, fluid-solid coupling
can be quite easily included through a bounce-back treatment over
curved solid surfaces [Mei et al. 1999], although tracking fresh and
dead cells is now needed. Instead, the “diffused” IB method can be
used [Feng and Michaelides 2004; Wu and Shu 2009, 2010; Li et al.
2016], for which no cell tracking is necessary. However, coupling
for fast solid motions or turbulent flows is often unstable due to the
penalty nature of IB: the resulting stiffness cannot be handled with
the usual fixed normalized time steps of kinetic methods.

1.2 Overview of contributions
Given the bottleneck that pressure projection imposes on traditional
CG methods offering accurate fluid-solid coupling, it is tempting
to investigate other approaches. Kinetic approaches to fluid flows,
such as the lattice Boltzmann method (LBM), offer an appealing
alternative: due to its use of Boltzmann transport equations, the
issue of properly discretizing advection is completely bypassed, and
the absence of global pressure solves makes for extremely efficient
parallel implementations; moreover, this approach can be easily
combined with immersed boundary (IB) method [Peskin 1972; Li
et al. 2016] to achieve one-way and two-way fluid-solid coupling,
removing the difficulty of pressure boundary treatment. However,
some really important practical issues remain. First, LBM does not
currently compete with state-of-the-art CG solvers in terms of ac-
curacy and preservation of turbulence details. In fact, the study
of dissipative and dispersive errors in LBM is virtually inexistent
(with the notable exception of [Xu and Sagaut 2011] in 2D). Second,
the penalty-based IB method induces instability when interaction
between fast-moving solids and/or turbulence occurs.

In this paper, we remedy these two issues to offer efficient, accu-
rate and robust simulations of fluid-solid coupling in the presence
of strong turbulence and large velocity variations. Our technical
contributions are mostly two-fold:

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

47:4 • Li, W. et al

• First, we show that the high-order relaxation rates of the non-
orthogonal central-moment MRT model from [De Rosis and
Luo 2019], typically dismissed as non-physical, are crucial to
guarantee low-dissipation and low-dispersion of the fluid solver.
We propose a simple linear regression to estimate relaxation rates
on the fly, and show that the resulting modified LBM simulation
outperforms existing incompressible fluid CG solvers in how it
preserves turbulence details.
• Second, we introduce a universal mapping for LBM simulation,
which formally links physical parameters with the typical nor-
malized parameters used in LBM. This physical-to-simulated
scaling is then used to provide time-adaptive simulation, ensur-
ing stability and improved computational efficiency.

We will demonstrate the benefits (accuracy, low-dispersion, low-
dissipation, and computational efficiency) of the resulting solver
with tests and comparisons in 2D and 3D to current NS-based and
kinetic methods, as well as comparisons with real-life flows.

2 PRIMER OF LATTICE BOLTZMANN SOLVERS
We start by briefly reviewing the main ideas of the lattice Boltz-
mann method (LBM) and its recent advances that impart several
advantages over traditional Navier-Stokes solvers. Our goal in this
section is not to provide a thorough introduction of LBM (we refer
the reader to [Krüger et al. 2017] or our supplementary material
instead), but to lay out the foundation for our contributions. Readers
already familiar with LBM may directly jump to §2.4 instead.

2.1 Fluid model
From a macroscopic model... Behind most fluid simulation meth-

ods is the continuum model of fluid dynamics, namely the law of
conservation of mass,

∂ρ

∂t
+ ∇·(ρu) = 0, (1)

together with the Navier-Stokes (momentum) equation,
∂

∂t
(ρu) + ∇·(ρu⊗u) = −∇p + ∇ · σ + F . (2)

This classical model views a fluid as a continuum body described
by physical quantities such as density ρ, velocity u, pressure p,
shear stress tensor σ and external forces F per unit volume. These
quantities are technically defined at each location x in the entire
fluid domain; but they aremacroscopic: they represent local averages
that are observable in the fluid. In this sense, Eqs. (1) and (2) paint a
macroscopic picture of fluid dynamics.

... To a microscopic description of fluid. In stark contrast to a macro-
scopic picture, one may also model fluid dynamics from the evolu-
tion of a large number of microscopic fluid particles, moving and
colliding: after all, a fluid at rest is not merely a static continuum; it
is teeming with molecules moving around all the time. Attempting
a full description of those microscopic particles is intractable, so a
practical approach, issued from statistical physics, considers instead
probability distributions of fluid particles. Formally, it considers a
distribution function, f (x,v, t), that indicates the probability for a
microscopic particle to be at position x at time t and moving with
velocityv . Note that herev is the possible velocity of a microscopic
fluid particle, different from the macroscopic fluid velocity u used

in the Navier-Stokes equation (2) — for example, even for a fluid at
rest (i.e., u = 0), the velocityv of a fluid particle may be arbitrarily
off from zero: local fluid velocities just average to zero locally.

... And finally, to a Boltzmann transport model. In the kinetic the-
ory of statistical physics, the mesoscopic evolution of f (x,v, t) is
governed by the continuous Boltzmann transport equation,

∂ f

∂t
+v · ∇f = Ω(f) + F · ∇v f , (3)

where Ω is the so-called collision term, modeling the change of dis-
tribution function f (x,v, t) due to particle collisions. This operator
can be effectively modeled as a relaxation process of f (x,v, t) to-
wards its local equilibrium state: without external forces, a fluid over
time tends to become distributed homogeneously. A well-known
model of this relaxation process, used in many LBM works, is the
Bhatnagar-Gross-Krook (BGK [Bhatnagar et al. 1954]) model,

Ω(f) = −(f − f̄)/τ , (4)
where τ is the relaxation time, i.e., the averaged time between suc-
cessive collisions determining how fast the equilibrium is being
reached, which is related to the kinematic viscosity ν , and f̄ is
the (Maxwellian) equilibrium distribution, given by the Maxwell-
Boltzmann distribution (see supplementary material for details).
Navier-Stokes vs. Boltzmann. From the distribution function f

satisfying Eq. (3), one can in fact recover the macroscopic variables
used in (1) and (2): macroscopic variables are simply integrals of
microscopic values. For example, as shown in [Shan et al. 2006],

ρ =

∫
f dv, ρu =

∫
v f dv, and p = 1

3

∫
∥v −u∥22 f dv . (5)

That is, macroscopic quantities are simply “coarse-grained” from
the microscopic probability distribution f . Consequently, it should
come as no surprise that the Boltzmann model provides, in fact,
a more detailed picture of fluid dynamics than the continuum NS
model, so a proper numerical solver of Eq. (3) should be able to
capture whatever fluid dynamics the continuum NS-based model
can capture. Indeed, a multiscale perturbation analysis (known as
the Chapman-Enskog expansion [Chen and Doolen 1998]) shows
that the Navier-Stokes equation (2) is the first-order approximation
of the continuous Boltzmann equation (3)1.
Consequences on incompressibility. Not only is the continuous

Boltzmann model more expressive, but its numerical solvers side-
step several challenges faced by traditional NS solver. The contin-
uum model in Eqs. (1) and (2) considers the compressibility of fluids,
which can impose severe limits on the timestep size of the numerical
solver. To allow for much larger timestep sizes, most solvers further
assume incompressibility of the fluids. This unphysical condition,
however, gives rise to another challenge: the need for a pressure
solve, involving a global equation. Since no fluid is absolutely in-
compressible, this pressure is merely a mathematical concept (a
Lagrangian multiplier) that ensures incompressibility. As a result,
while the no-penetration or no-slip pressure boundary conditions
have been commonly used in graphics applications, it remains con-
troversial what precise pressure boundary condition should be used
1There exist models that give higher-order approximations of the continuous Boltzmann
equation. For example, the second-order approximation is known as the Burnett model.
Physical measurements have shown that this latter model gives a better prediction than
the Navier-Stokes model in certain cases that involve high-frequency wave phenomena.

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling • 47:5

to achieve high simulation accuracy [Gresho and Sani 1987]. In
contrast, solving the continuous Boltzmann equation requires no
assumption of incompressibility, thus, no pressure solve.
Consequences on non-linear advection. Another challenge stems

from the fact that the advection term in Eq. (2) is nonlinear. To
accurately capture the momentum advection, CFD methods rely on
expensive nonlinear advection solves, while the advection step in
CG is often approximated by the semi-Lagrangian scheme [Stam
1999] or any of its higher-order variants. Although computationally
efficient, most semi-Lagrangian advection schemes suffer from nu-
merical dissipation at large timestep sizes (the fluid motion quickly
smears out), numerical dispersion at small timestep sizes (spurious
wiggles appear), and are sometimes even unable to fully conserve
mass, momentum, or energy. These limitations become prominent
especially for high Reynolds number flows in which turbulence
prevails — a scenario to which we pay particular attention in this
work. On the contrary, the Boltzmann model (3) advects only f ,
not u: this is just a linear advection, requiring a much simpler (and
artifact-free) numerical recipe as briefly outlined next.

2.2 Lattice Boltzmann Methods
Generally known as lattice Boltzmann methods (LBM), numerical
solvers of the continuous Boltzmann equation (3) first discretize
the distribution function f (x,v, t) in space, time, and velocity. The
space and time discretization is similar to that in Navier-Stokes
solvers: the spatial domain is filled with a grid and the simulation
state is timestepped by ∆t . For each position (i.e., grid node), we
also choose a set of q discrete velocity directions {ci }

q−1
i=0 . Therefore,

the grid together with this set of vectors form a lattice structure.
Two such lattice structures for 2D and 3D simulations are shown in
Fig. 4, where q=3D in dimension D, i.e., q=9 in 2D and 27 in 3D.
Hermite basis. Key to the computational efficiency of LBM is its

treatment of velocity discretization. Given a fixed x and t (e.g., for
a grid node at time t), the idea is to view f (x,v, t) as a function of
the velocityv and to represent it using a Hermite series expansion:

f (x,v, t) ≈
1

(2π)D/2
e−
∥v ∥2

2

2D∑
n=0

1
n!a
(n)(x, t) : H (n)(v), (6)

whereD is the number of dimensions (e.g.,D = 3 for 3D simulation),
H (n)(v) are the so-called Hermite polynomials of order n, and the
operator “:” denotes full tensor contraction. Here the notation H
is bold (and so are the coefficients a(n)) because there are multi-
ple Hermite polynomials for each order n forming an orthogonal
basis in the functional space of v ; see their specific forms in our
supplementary material. The coefficients a(n)(x, t) are defined by
projecting f (x,v, t) onto the Hermite polynomials H (n)(v):

a(n)(x, t)=

∫
(2π)

D
2 f (x,v, t)

e−∥v ∥
2/2 H (n)(v)dv ≈

q−1∑
i=0

fi (x, t)H
(n)(ci), (7)

where the last approximation is realized through the Gauss-Hermite
quadrature rule computed using the set of discrete velocity vec-
tors ci , and fi (x, t) denotes a properly scaled version of f (x,ci , t)
(see supplemental material). Combining Eqs. (6) and (7) shows that
f (x,v, t) can be expressed as a linear combination of { fi (x, t)}

q
i=1:

we just have to store these q values per node.

Fig. 4. Lattice structures. We use D2Q9 (a) in 2D and D3Q27 (b) in 3D,
where ci are discretized microscopic velocities. Each discretized distribution
function fi is associated with its corresponding velocity ci .

Discretization and update of distribution values. Next, we can ap-
ply spatial, temporal, and velocity discretizations to the continuous
Boltzmann equation (3). (For now, we will avoid any mention of
scaling between discrete and continuous variables for simplicity;
this important topic will be discussed in detail in Sec. 4.) Assuming
the BGK collision model from Eq. (4) as a particular simple, but
illustrative example, we then obtain the lattice Boltzmann equations
(LBE [Krüger et al. 2017]),

fi (x + ci∆t, t + ∆t) − fi (x, t) = Ωi + Fi , (8)
where Ωi = −

1
τ
(
fi (x, t) − f̄i (x, t)

)
is the BGK operator along the

direction ci , and Fi is the external force projected onto direction
ci (see the specific form of Fi in the supplementary material). The
numerical recipe for timestepping the simulation simply follows
the LBE (8): at each timestep, f̄i and Fi are evaluated at each grid
node independently, then the evaluation of fi (x, t + ∆t) involves
only values on the nodes at x − ci∆t (recall the lattice structure of
Fig. 4). Unlike the updates in Navier-Stokes solvers, no global solve
is needed: the advection is linear, and data locality makes the update
embarrassingly parallel. This gives LBM a significant advantage in
terms of computational efficiency.

Moments. Another advantage of the lattice Boltzmann discretiza-
tion is the direct connection of the values fi on the grid to the
macroscopic physical quantities. For example, the integrals in Eq. (5)
can be evaluated also using Gauss-Hermite quadrature, namely,

ρ(x, t) ≡

q−1∑
i=0

fi (x, t) and ρ(x, t)u(x, t) ≡

q−1∑
i=0

ci fi (x, t). (9)

Note that ρ and ρu in Eq. (5) are just the zeroth- and first-order
moments of f (x,v, t). These definitions can be extended to higher
orders, where the n-th order moment is an n-th order tensor. For
example, the second-order moment Π is a D ×D matrix whose
components (indexed by subscripts a,b) are

Πab (x, t) =

∫
vavb f dv ≈

q−1∑
i=0

ci ,aci ,b fi (x, t). (10)

The second-order moment components also have physical inter-
pretations: they represent the total momentum flux of the fluid at
(x, t). Higher-order moments do not have physical interpretations,
however; this does not mean, as we will see later, that they are
irrelevant, far from it. Note that the components mj of all the k-
order moments (k up to 6 for the D3Q27 lattice discretization, and
k up to 4 in 2D for D2Q9) are linear combination of terms of the

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

47:6 • Li, W. et al

form cαi ,ac
β
i ,bc

γ
i ,c fi (for a,b, c ∈ {x,y,z}, and α, β,γ ∈ {0,1,2}) as

seen from Eqs. (9) and (10) for low orders; for instance, in 3D,m0
is simply the zeroth order moment (equal to density),m1,m2,m3
are the components of the vector representing the first-order mo-
ment,m4, ...,m9 are the components of the symmetric second-order
moment Π, etc. The vector of all moment components can thus be
simply expressed through a linear transformationm = Mf , where
f is a vector stacking all fi for i = 0..q−1,m is a vector stacking
the moment components mj for j = 0..q−1 at the same location
and time, and M is a fixed square and invertible q×q matrix whose
simple expression can be found in [De Rosis and Luo 2019] or in
our supplemental material.

Moment space relaxation. Historically, LBM has been considered
less accurate than Navier-Stokes solvers. This is largely because
the lattice BGK model (second-order Hermite expansion of Eq. (4),
see supplementary material) used in early LBM simulations causes
significant numerical dispersion. The recent introduction of the
central-moment MRTmodel [Geier et al. 2006; De Rosis 2017; De Ro-
sis and Luo 2019] significantly improves LBM’s accuracy — one of
our major contributions, explained in §3, is to further improve this
model to offer low dissipation and low dispersion in order to allow
for a stable and accurate fluid-solid two-way coupling in turbulent
flows. The idea of moment space relaxation is simple: instead of
relaxing f with a fixed rate 1/τ as in the lattice BGK model derived
from Eq. (4), we relax each moment with an individual rate. Using
the notation defined above for the vector f of all values fi and
the vectorm of all moment components at a grid node, the BGK
operator in Eq. (8) amounts to write Ω=− 1

τ (f − f̄), where f̄ and Ω
stack the local equilibrium distributions f̄i and collision terms Ωi
respectively; moment space relaxation replaces this operator with

Ω = −M−1RM(f − f̄) = −M−1R(m −m), (11)
instead, wherem stacks the moments of equilibrium distribution
M f̄ , and R is a diagonal matrix whose diagonal elements {ri }i=1..q
specify the individual relaxation rates. The rationale behind using
various relaxation rates is the observation that different moments
approach their local equilibrium values with different rates: the
zeroth-order moment is density (recall Eq. (9)), whose relaxation
rate is zero since it is a conserved quantity; the first-order moments
are momentum (which should in principle be conserved but is af-
fected by body forces) whose relaxation rates are set to 1 [De Rosis
et al. 2019]; the second-order moments, which represent the mo-
mentum flux, relax towards their equilibrium states depending on
the kinematic viscosity ν of the fluid. Therefore, the relaxation rates
of low-order moments (at least up to the second order) can be set
from their physical interpretations, which was proven to increase
the accuracy of LBM significantly [De Rosis and Luo 2019].

2.3 Incorporating immersed boundary
When a solid is fully or partially immersed in a fluid, boundary
conditions ub on the fluid velocity, such as no-slip (ub = us) or
slipping (ub · n=us · n) conditions where us is the solid velocity
and n is the boundary surface normal, need to be imposed. The
immersed boundary (IB) method [Peskin 1972] enforces these con-
ditions through penalty forces, and its diffuse-interface variant can
easily be incorporated in an LBM solver to locally and efficiently
deal with complex geometries in fluids [Li et al. 2016].

Fig. 5. Immersed boundary method. To enforce proper velocity condi-
tions around solid boundaries, penalty forces Fs→f (Xp) are first computed
at samples Xp on the solid. By spreading Fs→f (Xp) to fluid node xk with
a 2 × 2 kernel, the force F(xk) can be computed to affect the fluid mo-
tion around the solid boundary. Conversely, reactive forces Ff→s (Xp) then
affects the motion of the solid.

Given a spatial location Xp located on the solid boundary (see red
points in Fig. 5), we can first calculate the fluid velocity u(Xp) by
disregarding the presence of the solid and simply interpolating the
local macroscopic fluid velocities u(xk) via a distance-based kernel
at nearby grid nodes xk . As the resulting velocity is unlikely to
match the desired boundary velocity ub (Xp) imposed by the solid,
penalty forces per unit volume on both fluid and solid are used to
enforce proper boundary condition, expressed as:

Fs→f (Xp)=ρ
ub (Xp) − u(Xp)

∆t
, Ff→s (Xp)=−Fs→f (Xp), (12)

where Fs→f (Xp) and Ff→s (Xp) denote forces from solid to fluid
and from fluid to solid, respectively. The forces Fs→f (Xp) at various
locations {Xp }p sampling the solid boundary can be spread (using
the same distance-based kernel as for the velocity interpolation)
to the local fluid nodes xk to obtain a resulting force F(xk) at each
nearby fluid node, see Fig. 5. In order to capture boundary vortices
as finely as possible, a fairly local kernel is desirable not to smooth
the boundary flow too much (for the specific form of the kernel used
in practice, see our supplementary material). For the solid, forces
and their resulting torques are summed up (i.e., integrated) to give
the total force Fs and total torque τ s which then drive the motion
of the solid; they are expressed as:

Fs =
∑

p
Ff→s (Xp)∆sp , τ s =

∑
p
(Xp −B) ×Ff→s (Xp)∆sp , (13)

where B is the barycenter of the solid, and ∆sp is the associated
surface area that sample Xp covers.

2.4 Discussion and overview
In recent LBM works based on the moment space relaxation model,
the firstD(D+3)/2 relaxation rates ri (corresponding to components
of the zeroth, first, and second order moments) are set based on the
physical properties of the fluid; however, the other higher-order
rates are usually set to a constant in [0, 2], the lack of physical inter-
pretations of their associated higher-order moments providing no
clear way to fix them more meaningfully. However, various authors
acknowledge that these high-order rates have some influence on
the dissipation of the high-frequencies of the probability distribu-
tions in practice. Yet no concrete values offering a form of optimal
choice have been proposed — even if a few authors suggested fixed,
hand-tuned values that seem to offer good results in practice.

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling • 47:7

Despite having only a few meaningful rates set, this recent relax-
ation model has been shown far superior in accuracy to previous
models. Still, the inability to optimally set most of the rates remains
a frustrating limitation. In the next section, we show how these
rates can be found on-the-fly based on the local distribution values
to offer a low-dissipation and low-dispersion fluid solver.

3 LOW DISSIPATION AND LOW DISPERSION SOLVER
In this section, we introduce a fluid solver with low dissipation
and low dispersion by formulating a high-order adaptive central-
moment-based relaxation model, where “high-order” refers to high-
order expansion of probability distributions byHermite polynomials,
not to high-order discretizations of spatial or temporal derivatives.
More specifically, we show how locally adapting the relaxation
rates according to the current fluid state makes the LBM solver
outperform all recent NS schemes on common numerical tests.

3.1 Central-moment space relaxation
The intuition behind the moment-space relaxation model is to
project the velocity distributions into a “macroscopic” moment space
and use different rates to control their respective relaxation. How-
ever, the moment space defined by Eq. (11) may violate Galilean
invariance, which is particularly problematic for high Reynolds num-
ber flows. To better respect Galilean invariance, Geier et al. [2006]
proposed the central-moment relaxation model, where the new pro-
jection matrix onto the “central” moment space is now function of
the local macroscopic velocity u: the matrix M(u) is still square and
invertible, but compared to the original form given in §2.2, it now
contains terms of the form (ci ,a − ua)α (ci ,b − ub)β (ci ,c − uc)γ fi .
As classically used in statistics, central moments are preferable to or-
dinary moments, computed in terms of deviations from their mean
instead of from zero, because the high-order central moments de-
pend only on the shape of the distribution, and not to its location,
rendering the moments more meaningful. Note that this implies
that the matrix M(u) must now be computed on-the-fly, as well
as its inverse; however, since analytical forms of both matrices as
a function of u can be computed analytically, this computational
overhead (which increases the cost of evaluating the collision terms
by less than 5% after optimization compared to the simpler BGK
model) turns out to be well worth it, as we will see in detail shortly.

Consequences of central moments. The central-moment model of
relaxation uses all six orders of moments, leading to important nu-
merical consequences, the most obvious one being that the equilib-
rium central moments are Galilean invariant by construction: if we
project the Hermite sixth-order polynomial expansion of the equi-
librium distribution f̄ into central-moment space viam =M(u) f̄ ,
most components ofm become zero, except for

m0 =m9 = ρ, m17 = c
2
s ρ, m18 = c

4
s ρ, m26 = c

6
s ρ. (14)

(Using fewer moments would not lead to such a simplification, jus-
tifying a posteriori the use of all 27 moment coefficients in 3D,
covering all the way to the sixth-order moment.) Note that there
is no macroscopic velocity u in this new equilibrium distribution
expression in moment space, which therefore respects Galilean in-
variance exactly, dramatically improving the accuracy of LBM for
high Reynolds number flows. This property is not shared by current
LBMmethods used in CG such as [Li et al. 2019]. Note that the same

“cancellation” effect happens for external forces as well when all
six orders are used [De Rosis et al. 2019], thus guaranteeing a more
accurate treatment of external forces and coupling.

3.2 Empirical relaxation rates
When central moments are used, most authors end up using high-
order relaxation rates {ri }i>i∗ (where i∗=D(D+3)/2 corresponds to
the index of the final component of the second moment) equal to 1
by lack of physical guidance to select better values. However, recent
work by Li et al. [2019] tried to dig further into setting these rates
properly, albeit in an empirical fashion. First, they use an inverse
re-parameterization to express the relaxation rates ri as:

ri = 1/(τi + 1/2), (15)
where τi ≥ 0 are rescaled high-order relaxation times. Second, they
demonstrate that small values of τi introduce dissipation that helps
filter out dispersion errors. That is, while τi>i∗ = 0 may seem best
in terms of minimizing dissipative errors of the solver, small, flow-
adapted high-order relaxation times can help combat numerical
dispersion as well and thus preserve turbulence better. In other
words, the higher-order relaxation rates ri>i∗ (or, equivalently, the
relaxation times τi>i∗) help find a trade-off between low-dispersion
and low-dissipation for the resulting scheme. They then proposed a
series of fixed, hand-tuned values for τi that they scaled based on the
local gradient of velocity ∇u to add dissipation on the higher-order
moments roughly proportional to the local amount of turbulence.
Adapting the high-order relaxation rates according to the local flow
characteristics was shown to result in turbulence details and flow
instabilities being more faithfully captured. While their adaptive
solution is only empirical, we leverage the main ideas behind it in
order to construct a more systematic approach to compute proper
high-order relaxation rates locally and on-the-fly, as explained next.

3.3 Optimal relaxation rates
We now formally introduce our way to compute higher-order re-
laxation rates to create a low-dissipation and low-dispersion solver.
Measurement functional. In order to evaluate the effects of high-

order relaxation rates (or equivalently, the high-order relaxation
times), we first form a local measurement functional ϵ(xk , t) by
simply summing the normalized change in each of the first three
(physically-meaningful) moments at grid location xk and time t
after one step of LBM integration of Eq. (8); that is,

ϵ(xk , t) =
∥δ t (ρ)k ∥

ρ
+
∥δ t (ρu)k ∥

∥ρu∥
+
∥δ t (Π)k ∥

∥Π∥
, (16)

where the temporal difference operator is: δ t (·) = (·)t+∆t − (·)t ,
and the overline indicates averaging over the whole simulation
process, used for normalization purposes. This functional is such
that when dissipation or dispersion errors increase, the differences
of the three moments over consecutive time steps also increase.
Note that this is not, per se, an error measurement in the sense
that changes in density, momentum, or momentum flux at a given
location happen based on the evolution of a fluid, so one should not
expect this functional to be zero even in case of perfect accuracy;
however, tracking how this functional changes as we change the
high-order relaxation times τi is very instructive. As it happens,
plotting this functional ϵ at various grid node xk and different

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

47:8 • Li, W. et al

Fig. 6. Typical measurement behavior. The measurement functional as
a function of the high-order relaxation rate τi typically exhibits a clear
minimum, indicating a minimal amount of dissipation and dispersion.

times t for arbitrary simulations shows almost always the same
qualitative behavior: when a high-order relaxation time τi is varied,
the measurement functional behaves as indicated in Fig. 6, i.e., it
forms a U-shape curve with a unique global minimum (this example
was obtained from a grid node of the jetstream simulation in Fig. 10
for a particular τi=10). This quasi-convex behavior does not hold
on a few grid nodes, though: if a region is very uniform, then the
functional becomes flat, as high-order relaxation time has basically
no effect locally; inversely, if the grid node is on a sharp velocity
change, the functional shows a constant decay as τi is increased,
since increasing high-order relaxation time will proportionally blur
the jump. Aside from these two special, rare cases, the U-shape
confirms the empirical findings of [Li et al. 2019]: increasing a small
amount of high-order relaxation times from zero reduces ϵ as it acts
against numerical dispersion errors; however, further increasing
the rate τi grows ϵ again due to both excessive dissipation and,
at very large high-order relaxation times, excessive dispersion as
well. Fig. 7 visualizes this phenomenon, where too low a time τi
exhibits dispersion (a), while a larger time introduces dissipation
errors (c) as evidenced by the paired vortices in the red box being
partially merged. Somewhere in between, the ϵ curve reaches a
bottom around which one can expect the best tradeoff between
dispersion and dissipation errors, see Fig. 7(b). Moreover, the various
curves for different high-order i vary quite a bit in their scales (with
higher orders being overall flatter, especially in 3D), but the different
values of τi at the curve’s minimum remain always within a small
range, see Fig. 8(a) for a 2D illustration. This observation indicates
that there is very little to gain in searching for individual optimal
τ ∗i = argminτi ϵ(xk , t) for each of the high-order moments: we
can simply assume a single high-order relaxation time τ ∗ such that
τ ∗i = τ ∗ for all high-order indices i > i∗, as it will not affect the
simulation accuracy significantly; see Fig. 8 (b) which reinforces the
fact that the choice of multiple high-order relaxation times v.s. a
single one hardly matters.
Numerical optimization of τ ∗. Based on these observations, one

may try to adapt the high-order relaxation time τ ∗ optimally at
every grid node and at every time step in order to reduce both dis-
persion and dissipation throughout the simulation. This idea can
be implemented as follows: after using an initial τ ∗ (we found that
τ ∗=0.005 is a safe bet to reduce dispersion while not adding undue
dissipation) for the very first time step of LBM integration, we can
then numerically determine a good relaxation time τ ∗ at each grid

Fig. 7. Effects of high-order relaxation time. Using the vortex-sheet
simulation as an example, if τi is set too small, strong dispersive effects
appear (a); for τi minimizing our measurement functional, we obtain a
low-dissipative and low-dispersive behavior (b); if a slightly higher rate is
used instead, dissipation occurs as evidenced by the vortex pair merging (c).

node xk and at each time step tn by simply evaluating ϵ(xk , tn) nu-
merically from Eq. (16) to sample the curve through a fixed number
of high-order relaxation times: if a clear local minimum is found,
we use that time as our new τ ∗ at this node; if no local minimum is
found (in the rare cases discussed above), we simply keep the previ-
ous local time used at the previous time step. While this approach
favors accuracy in numerically computing the optimal times every-
where, it is far from practical and efficient as it requires too large an
amount of functional evaluations and tentative time integrations
just to evaluate the effect of the high-order relaxation time.
Regression-based evaluation of local τ ∗. Instead, we still wish to

adapt the high-order relaxation time at each node and at each time
step, but using a much more efficient evaluation which, hopefully,
only slightly degrades the resulting integrator. Ideally, one could
predict an optimal τ ∗ at a node purely based on the local fluid state,
which suggests the use of linear regression. As a simple local descrip-
tion of the fluid state, we select the norms of the first three moments
(ρ, ∥ρu∥, ∥Π∥) since the optimal high-order relaxation time should
remain invariant to local rotations of the fluid state, so only local
rotation-invariant measures should be used as explanatory variables
of the regression. Then, in an offline precomputation, we collect
a series of local states sp = (ρp/∥ρ∥, ∥ρpup ∥/∥ρu∥, ∥Πp ∥/∥Π∥, 1)
(we add 1 as an extra variable to allow an affine relationship) and
the corresponding optimal time τ ∗p computed using the brute-force
numerical optimization described in the previous paragraph. In prac-
tice, we run 3 different simulations at different Reynold numbers
and gather all grid nodes and their optimal relaxation times for

Fig. 8. Single vs. multiple high-order relaxation times. If half the high-
order relaxation times are assigned a value τ0 and the other half are assigned
a different value τ1, the measurement functional (a) indicates that the
optimal times are in fact quite similar, with τ ∗0 =0.07 and τ ∗1 =0.11. Using
these multiple times do indeed reduce the error measured here from 2D
Taylor-Green vortex simulation (b), but only marginally — implying that a
single high-order relaxation time is sufficient for practical purposes.

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling • 47:9

Fig. 9. Comparison with non-linear regression. Using a neural network
structure (a) where each layer corresponds to a fully-connected network
with a parameter matrix Θj reduces the relative root mean squared error of
τ ∗ measured w.r.t. the fully optimized value (b), but the difference with linear
regression is too small to affect the resulting velocity fields as indicated by
the measured errors on the 2D Taylor-Green vortex simulation (c).

all time steps (for a total of around 108 samples) in order to make
sure we cover a large variety of local behaviors. We then find the
approximation of τ ∗ as τ̂ ∗p ≈θT sp , and find the optimal four linear
coefficients θ∗ by solving the usual least-squares problem:

θ∗ = argminθ
∑

p

(
τ̂ ∗p (θ) − τ

∗
p

)2
. (17)

Surprisingly, the solutionwe found, i.e.,θ∗=(0.0003, -0.00775, 0.00016,
0.0087) leads to a very small residual, indicating that this simple lin-
ear regression essentially captures a nearly-optimal relaxation time.
We verify this statement next by comparing this regression-based
option with another more sophisticated learning approach.

Comparison with nonlinear regression. In order to test the validity
of our linear regression, we also tried a nonlinear regression to
obtain higher accuracy in the prediction. We implemented a neural-
network-based nonlinear regression, where a fully-connected net-
work with several layers and a sigmoid symmetric activation func-
tion is employed as shown in Fig. 9. The loss function is defined
as in Eq. (17), with the difference that τ̂ ∗p is now represented by
the network, where each layer contains a parameter matrix Θj (j
indicating the index of the network layer) which is to be learned.
We train the neural network using the neural net fitting toolbox
in Matlab [Mathworks, Inc. 2017], and found that the prediction
accuracy for τ ∗ is only slightly improved compared to linear re-
gression, see Fig. 9(b). More importantly, the effects of this better
prediction are barely noticeable on actual numerical tests of the

Fig. 10. Spatial distribution of τ ∗: From the (normalized) visualizations
of scalar fields (a) ρ , (b) ∥ρu ∥ and (c) ∥Π ∥, the predicted τ ∗ field looks, to
first order, like the inverse of ∥ρu ∥. This is confirmed by the optimal vector
θ ∗ of the linear regression: the coefficient for ∥ρu ∥ dominates all the other
coefficients, explaining this approximate relationship.

Fig. 11. 2DTaylor-Green vortex simulation. The (normalized) converged
reference velocity magnitude (a), with error distributions for MC+R solver
(b), BiMocq2 solver (c), and our kinetic solver with linear regression (d). Note
that (b) to (d) are normalized to the same scale for visualization. The right
colorbar shows the relative mean-squared error range.

resulting LBM integrator (see the ℓ2 error difference of the veloc-
ity fields in Fig. 9(c)). Therefore, we adopt the linear regression to
evaluate the best relaxation time τ ∗ due to higher efficiency in the
remainder of this paper.

3.4 Evaluating the resulting LBM solver
Equipped with our regression-based high-order relaxation times
which we efficiently compute at every grid node and for every time
step, we can integrate in time the lattice Boltzmann equations. Fig. 10
illustrates that the optimal relaxation rates are rather intuitively dis-
tributed within the simulation: small momentum (and thus, smooth)
regions of the flow are assigned larger relaxation times to dampen
dispersion, whereas large momentum (i.e., often non-smooth) re-
gions are typically assigned smaller relaxation times as accuracy is
more important there. We now evaluate quantitatively and qualita-
tively the visual pertinence and accuracy of our resulting integrator
compared to current state-of-the-art Navier-Stokes solvers as well
as a recent LBM solver on two usual 2D simulation tests.

2D Taylor-Green vortex simulation. The 2D Taylor–Green vortex
example, representing an unsteady flow of vortices (we use zero
viscosity), is often used for testing and validation of the temporal
accuracy of Navier–Stokes algorithms since an analytical solution is
known, providing a ground-truth velocity field to evaluate numeri-
cal errors. In Fig. 11, we show the expected converged configuration
through its vorticity plot (left), and display the mean-squared error
distributions for three different methods: the reflection-advection
MacCormack solver (MC+R) [Zehnder et al. 2018], the BiMocq2

solver [Qu et al. 2019], and ours. Compared to these most recent
NS solvers, our LBM approach produces significantly smaller er-
ror magnitudes (the root mean squared error is over 35% better,
see Tab. 1), without anisotropic artifacts. Moreover, using either
a network-based regression or a full numerical evaluation of the
high-order relaxation time used in our LBM solver does not visually
change the error plot significantly: Fig. 9(c) shows the time-varying
root mean squared error over the entire domain of the predicted
high-order relaxation time τ ∗ using both linear and network-based
nonlinear regression compared to the slow, but more accurate full
numerical optimization. Clearly, the slowest evaluation results in the

Table 1. Taylor-Green statistics. Relative mean-squared errors for differ-
ent solvers; note that “optimization”, “network” and ”linear regression” refer
to various predictions of high-order relaxation times for our kinetic solver.

MC+R BiMocq2 optimization network linear regression
0.0086962 0.0088046 0.0025124 0.0030662 0.0030658

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

47:10 • Li, W. et al

Fig. 12. 2D vortex sheet simulation. Top row: simulation snapshots at an early stage (t =2.3s); bottom row: simulation snapshots at t =7.5s. (a) & (i) stable
fluids solver (256 × 256); (b) & (j) unconditionally stable MacCormack solver (256 × 256); (c) & (k) reflection-advection MacCormack (MC+R) solver (256 × 256);
(d) & (l) BiMocq2 solver (256 × 256); (e) & (m) nonlinear APA* solver (1024 × 1024), which is taken as a reference; (f) & (n) kinetic solver from [Li et al. 2019]
(256 × 256); (g) & (o) our new kinetic solver with direct optimization (256 × 256); (h) & (p) with linear regression instead.

lowest error, followed by the network-based regression approach,
and finally our fast linear regression version; but the relative errors
are all within 0.8% of each other. Moreover, it does not affect the
simulation accuracy, confirming that the linear regression offers an
excellent compromise between efficiency and accuracy.

2D vortex sheet simulation. We also perform a comparison of our
results against various NS solvers on the 2D vortex sheet simulation.
Fig. 12 shows the results on a 256×256 grid of the stable fluid solver
of [Stam 1999], theMacCormack solver (MC) of [Selle et al. 2008], the
reflection-advection solver (MC+R) [Zehnder et al. 2018], the recent
BiMocq2 solver [Qu et al. 2019], the LBM solver from [Li et al. 2019],
our new LBM solver with linear regression and with full numerical
optimization, as well as the structure-preserving and conservative
solver APA* of [Mullen et al. 2009] computed at high resolution
(1024 × 1024) as a reference. Our new kinetic solver (Fig. 12 (g)&(o)
and (h)&(p)) produces similar vortex distributions to the reference
(Fig. 12 (e)&(m)), without the high-frequency artifacts due to the
strong dispersive nature of the reference conservative solver. In
comparison, many existing solvers do not maintain the rotating
vortices in time as they shear away (see the bottom row of Fig. 12
(i) to (l)). Note that using smaller time steps will also introduce
a large amount of dispersive error for Navier-Stokes solvers, see
Fig. 13; in contrast, our kinetic solver is visually noise-free due to low
dispersion errors for arbitrary time step size. Moreover, Fig. 14 shows
that our solver also exhibits excellent conservation of kinetic energy
as compared to many other solvers, proving that our high-order
relaxation times also promote low dissipation. Note that our kinetic
solver with linear regression produces almost the same results as
direct numerical optimization, confirming our previous findings.

3.5 Handling high Reynolds number flows
While our optimized high-order relaxation rates provide a compro-
mise between dissipation and dispersion errors that helps resolve
turbulence details more accurately, too coarse a grid resolution pre-
vents the proper handling of very turbulent flows: vortices of length
scales equal to or below grid spacing cannot be numerically well
accounted for. Sub-grid modeling is typically used to improve this

situation by trying to approximate the effects of unresolved small-
scale fluid motions (small eddies, swirls, vortices). For instance, one
can employ the wall-adaptive large-eddy (WALE [Weickert et al.
2010]) model to better resolve sub-grid turbulence: it predicts an
eddy viscosity νsub at each grid node to approximate the unresolved
effects. This model is trivially incorporated in our LBM solver by
adding this eddy viscosity to the kinematic viscosity ν discussed in
Sec. 2.2 to alter low-order relaxation rates in order to add sub-grid
flow contributions to the existing grid scale. Note that this modifi-
cation of our solver has zero influence on the numerical tests we
presented earlier: these tests were for flows with very low Reynolds
numbers, so the eddy viscosity νsub was negligible. However, it
adds significant stability when flows are very turbulent, at almost
negligible computational cost.

Fig. 13. Dispersion errors. Existing solvers with high-order advection ex-
hibit different levels of dispersion at small time steps, while our solver pro-
duces low-dissipation and low-dispersion results: for a time step ∆t =0.001
(with ∆x =1), (a) MacCormack solver; (b) reflection-advection MacCormack
solver; (c) BiMocq2 solver; vs. (d) our new LBM solver.

4 ADAPTIVE SIMULATION FOR STABILITY
Now that we have described the construction of a flow simulator
exhibiting very low dissipation and dispersion as well as capturing
fine details and turbulence, directly incorporating the immersed
boundary (IB) method as described in Sec. 2.3 is straightforward. It
already improves upon existing IB-LBM techniques since, due to
reduced dispersivity, our solver can better handle the larger velocity
variations typically present in turbulence, and supports a smaller
IB kernel size to limit the amount of velocity smoothing around
solid boundaries. However, when solid velocity becomes too large
(for instance, due to local spinning or gravity), large penalty forces

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling • 47:11

Fig. 14. Energy conservation. Variations of the total kinetic energy over
time steps (top) show that many existing Navier-Stokes solvers in graphics
are not quite conservative; however. our kinetic solver has a very similar
energy behavior to the APA* solver, a good feature for turbulent flows.

imposed to the fluid can exceed the stability range of the LBM
simulator, making the simulation fail. To address such cases and
guarantee a more accurate treatment, one needs to look carefully at
the spatial and temporal scales that typical LBM simulations proceed
with. In fact, we show that one can adapt temporal (and optionally,
spatial) discretizations of the LBM solver during simulation in order
to safely and efficiently proceed based on the current solid velocity
and macroscopic fluid velocity.

4.1 Dimension scaling in LBM
In Sec. 2.2 when we reviewed the basic LBM discretization and time
integration, we purposely simplified the explanations by assuming
that the discretization of physical fields did not introduce a scale
change. Yet, the time integration of the lattice Boltzmann equa-
tion (8) actually assumes unit time step and grid spacing, which
implies that all physical quantities are implicitly rescaled accord-
ingly. This dimension scaling in LBM is rarely discussed at length,
and we only found two unpublished technical reports [Junk 2006;
Latt 2008] mentioning this point carefully, but none of the IB-LBM
approaches even note this important fact. Therefore, we review next
how the LBM quantities are related to their physical counterparts.
To clearly distinguish physical units from LBM units, we will use
two different fonts: while physical quantities will remain written
in computer modern, outlined letters will be used to refer to LBM
variables. So time t , for instance, becomes t when discretized at the
lattice Boltzmann scale.
Physical vs. LBM units. Assume for now that one uses a regular

spatial grid of spacing ∆x (expressed in real physical units, meters
in this case), and that a time step size ∆t (in seconds) has been fixed.
Lattice Boltzmann discretization first rescales all physical units to
become dimensionless, then converts them into lattice units based
on the grid size (see supplemental document for details). As a result,
we have the following relations between physical and lattice units
for the various physical (real) and lattice (macroscopic) variables:

t =
uref

uref
∆x t, ∆t =

uref

uref
∆x ∆t , x = ∆x x , ∆x = ∆t = 1,

ρ = ρ0 ρ , u =
uref

uref
u , F =

ρ0

∆x

(
uref

uref

)2
F , ν =

uref∆x

uref
ν ,

(18)

Fig. 15. Effective time steps. For the example in Fig. 18, an adaptive sim-
ulation (red cure) requires far fewer time steps than if a fixed uref is chosen
(blue curve). The smallest effective time step happens when the box hits the
ground, creating a sudden velocity change, which in turn reduces the time
step to ensure stability and increased accuracy.

where ρ0 is the fluid density, uref is an arbitrary reference magni-
tude for the fluid velocity u during the simulation, while uref is the
corresponding velocity magnitude in LBM scale; the ratio uref/uref

thus determines the speed scale between real and LBM velocities.
Physical time step sizes. Now, because LBM assumes unit time

steps and grid sizes, the reference LBM velocity uref (which corre-
sponds to the reference velocity uref in physical scale) is typically
set in the range [0.1, 0.2] to ensure stability of the time integra-
tion of Eq. (8) — i.e., to satisfy the CFL condition of stability at
the LBM scale. This means that if one wants to enforce a stable
LBM integration, the only parameter left to adjust scaling between
LBM and physical units is uref. Picking uref = umax, i.e., the maxi-
mum physical velocity magnitude of a given simulation, amounts
to setting uref = umax ≡ 0.2 in LBM scale; this choice means that
the effective time step ∆t that LBM performs when using ∆t=1 is
∆t = 0.2∆x/umax, which corresponds to the Courant condition for
typical fluid solvers working in physical space. However, picking
uref > umax is also feasible: we are then taking more conservative
physical time steps with ∆t < 0.2/umax∆x , thus improving the ac-
curacy of the simulation — but spending more computing time to
simulate a fixed physical duration of simulation as a consequence.
In both cases, the LBM simulation is perfectly stable as we keep uref

in a safe range.
Immersed boundary force exchange. We emphasize also that the

scaling between physical forces F and LBM-derived forces given
in Eq. (18) is non-trivial, and must be used in order to produce the
right coupling between fluid and solid using the penalty approach
described in Sec. 2.3. Surprisingly, we have not found a reference
mentioning this factor in the existing IB-LBM literature. When a
solid is present inside the fluid, its density ρs is used to convert
forces to acceleration so that the solid motion can be integrated.

4.2 Adaptive simulation
Based on the differences between physical and LBM scales, a simple
strategy emerges to ensure that our fluid solver can keep on run-
ning even when large velocities crop up in the course of fluid-solid
interactions: we always keep uref=0.2, but adapt uref to make sure
we can safely handle the current maximum fluid velocity umax while
taking large time steps to efficiently advance the simulation in time.
Adaptive scaling. More precisely, since we always simulate in

LBM scale, we keep the maximum velocity umax ∈ [0.18, 0.22] to
ensure stability. During the simulation, we check umax at each time

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

47:12 • Li, W. et al

Fig. 16. Fixed vs. adaptive time steps. Fixed (a) vs. adaptive (b) time
steps (where uref is changed adaptively) both lead to a velocity field which
is quite similar even after a few seconds of simulation of a two-way coupling
simulation (we show a cross section in pseudocolors), except for small-scale
turbulence details. Insets show visualization of the smoke distribution and
the interacting solid at corresponding times during the simulation.

step; for unstable flows, umax may either exceed 0.22 (thus poten-
tially creating instability) or fall below 0.18, (thus unnecessarily
decreasing the simulation efficiency). In either case, we determine
a uref such that umax can be readjusted to 0.2. This leads to an up-
date uref ← 5urefumax, which means that u is multiplied by a factor
0.2/umax to rescale the velocity. Maintaining umax in a small range
ensures efficiency (we are never far from the best effiency) while
preventing time adaption from having to be performed at each time
step, which could potentially hurt accuracy. Fig. 15 shows the varia-
tion of effective time steps due to time adaption happening during
the simulation of Fig. 18 as a typical example.

Rescaling distribution functions. Note that each timeuref is changed
during a simulation, several variables in LBM including velocity
and force must be properly rescaled according to Eqs. (18) before
proceeding to the next time step. This means that the distribution
function fi and projected force Fi at each grid node need to be both
reset to enforce the rescaling of both macroscopic velocity and force.
While Fi can be easily evaluated via macroscopic variables, the dif-
ficulty of such rescaling is to reconstruct fi so that the simulation
can proceed with as few errors as possible from the reconstruction.
For simplicity, we could reset fi to the Maxwellian equilibrium f̄i ,
which can be directly computed based on ρ and the rescaled velocity
u (see supplementary material). A more accurate choice is to further
add to the equilibrium value the deviation (f̄i− fi) f̄ ′i / f̄i to better
reproduce the former distribution after rescaling, where f̄ ′i is the
the Maxwellian equilibrium after rescaling. This reconstruction ex-
hibits very few visible artifacts, and quickly converges to the proper
distribution within the following couple of time steps.
Discussion. With our rescaling strategy to adapt the effective

time step in order to always safely capture the maximum physical
velocities, the immersed boundary penalty forces are now safe to
use: not only are we guaranteed to remain within the stability range
of the solver, but the accuracy of the integral of the forces exerted
by the fluid onto the solid and vice-versa are also improved due
to our time adaption. Fig. 16 shows an example computed with a
fine, constant effective time step (left) compared to our adaptive
treatment (right), showing that the only visible differences between
adaptive and non-adaptive simulations happen in highly turbulent
regions, whose chaotic nature makes the presence of numerical
errors quite unavoidable in the first place. Fig. 15 plots the variation
of the effective time steps throughout the simulation from Fig. 18,

Fig. 17. Sampling of solid surface. If the solid is discretized with a mesh
with fine, well-shaped triangles (a), one sample per triangle is sufficient to
ensure accurate two-way coupling; if the solid mesh is irregular, uniform
samples over the mesh (b) are necessary in order to guarantee accurate
integration of fluid-solid interaction forces; remeshing is another option.

saving 50% of the computational cost to generate the same duration
of animation as the fixed time step.

4.3 Optional spatial adaptivity
Up to now, we assumed that the grid node spacing ∆x is constant
throughout a simulation. However, improved spatial accuracy can
also be achieved by using grids with varying spacings. A particularly
efficient way to implement this idea is to keep a global grid at a fixed
resolution, but to allow local grid refinements (for instance, near
obstacles or solids) to increase spatial resolution. This approach
leads to local node spacing equal to inverse powers of two of the
global ∆x , affecting the effective time step ∆t as well as the local
forces and viscosity in LBM space across different grid resolutions
(see Eqs. (18)); note that the grid rescaling does not require rescaling
of fi , but forces need to be rescaled as in the effective time adaptive
case. A full treatment of space-time adaption for LBM deserves a
longer exposition and a more thorough examination of its numerical
limitations, we thus leave it for future work.

5 IMPLEMENTATION DETAILS
We now provide implementation details to help with reproducibility.

Sampling of solid surfaces. Having a sufficient number of bound-
ary samples over the solid is important for the immersed boundary
method: each fluid grid cell around the solid should contain enough
boundary samples to properly transmit forces to the fluid. If the
solid is highly tessellated, then each face center can be used as a
boundary sample and the area of the face is used in Eq. (13) to prop-
erly approximate the area integral. If, however, the mesh is not quite
uniform or too coarse, Poisson disk sampling over the mesh [Yuksel
2015] can be used to distribute the boundary samples well, in which
case, the area associated with each sample is defined as the total
surface area divided by the total number of solid samples. Fig. 17
illustrates an example of these two sampling methods. Of course,
mesh refinement or even remeshing can be used instead to improve
the sampling quality, as it only involves pre-processing.
Parallel implementation. Boltzmann solvers are typically highly

parallelizable, and our extensions crucially preserve this property
as all computations are local, with no global solve needed, imply-
ing that the underlying scheme can be highly scalable. Therefore,
we implemented our approach on GPU. We used two different im-
plementations: a single-GPU one, using the NVIDIA TITAN XP
GPU (except for real-time simulation and performance comparison,

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling • 47:13

where NVIDIA 2080Ti GPU was used) to perform fast simulations
for moderate grid sizes or even reach realtime at relatively small grid
sizes; and a multi-GPU one on an NVIDIA P40 GPU cluster for high-
resolution simulations. In both cases, we used parallel optimization
with structure-of-array data layout and atomic summation on CUDA
to improve performance. Tab. 3 reports performance statistics of
the simulation results shown in this paper.

Rendering. In order to render the smoke, we employ particle trac-
ers. To ensure high quality rendering, a large amount of particles are
injected and traced. To render the results, we convert the particles
into a density field stored on a high-resolution uniform grid for
volume rendering, and employ commercial software Octane [OTOY
Octane 2019] for the rendering — except for Figs. 3, 20, and 23, which
are rendered by Mitsuba [Jakob 2010].
Immersed boundary kernel. Choosing a sharper kernel for IB-

LBM has been shown difficult in previous works due to numerical
instability. With our time-adaptive scaling, we can take the smallest,
simplest kernel (thus, with the least amount of velocity blurring
around the solid boundary), which is expressed as:

K(r) =

{
1 − r , r ≤ 1;
0, r > 1. (19)

For a reasonably fine resolution grid, such a kernel function approx-
imates a delta function on the grid well, ensuring proper handling
of boundary conditions near solids.
Enforcing solid boundary conditions. Since the Immersed Bound-

ary method is intrinsically a penalty force method, various types
of solid boundary conditions can be easily dealt with. If Neumann
boundary condition (i.e., free-slip) is desirable, we simply require
ub · n=us · n to only enforce the normal components of solid and
fluid velocities to match. Thus, a force purely along the normal
direction is derived as:

Fs→f (Xp) =
ρ
(
ub − us

)
·n

∆t
n . (20)

Fig. 19 shows a line integral convolution (LIC) visualization of veloc-
ity fields near moving boundaries for no-slip v.s. free-slip conditions.
As expected, free-slip exhibits a stronger turbulent wake than the
no-slip case as evidenced by the additional vortices.
Bootstrapping a simulation. To start a simulation, we need first

to determine the physical scales by defining a spatial resolution ∆x
for the grid, setting a velocity magnitude uref as described in Sec. 4,
defining the fluid density ρ0, the solid density ρs , and the kinematic
viscosity ν of the fluid. Note that all these variables are set with real
physical units. Then, our dimensional scaling of Eqs. (18) allows us
to calculate all variables in LBM scale, and we initialize all fi with
the corresponding equilibrium distribution f̄i . Tab. 3 provides all
physical parameters for the different simulations in this paper.

6 RESULTS AND DISCUSSIONS
We now review various tests and examples we computed to evaluate
our turbulent fluid integrator and our immersed-boundary based
numerical coupling between fluid and solid.

6.1 Simulation tests
In the figures of this paper, we provide a variety of simulation
results that highlight the main characteristics of our contribution:

we show examples for a large spectrum of Reynolds numbers (from
nearly laminar to turbulent flows), for both one-way and two-way
coupling, and for coarse and fine computational grids to demonstrate
scalability. We discuss a few important points below.

One-way coupling. When solids are immersed in a fluid, the sim-
plest case of fluid-solid coupling is when the motion of the solid
(typically scripted or purely driven by gravity) ignores the forces
exerted by the fluid, but the fluid reacts to the solid. This one-way
coupling is easily achieved in our simulation by artificially setting
the forces Ff→s from Eq. (12) to zero. We show one-way coupling
in Fig. 18 for a box moving in both a viscous and a turbulent fluid
(only accounting for collisions against the container), and in Fig. 20
where a solid plate (with a certain thickness) is dropped from a low
and a high altitude inside a viscous or a turbulent fluid, affecting
the surrounding air to form complex smoke volutes.
Two-way coupling. The more complicated fluid-solid coupling

is two-way coupling. Fig. 3 demonstrates a two-way simulation
where an inlet generates a strong impulse jet flow from the left,
pushing two stacks of boxes which end up being blown away — and
affecting the flow in the process. Purely passive smoke particles
are injected to help visualize the air motion. Fig. 23 demonstrates
another example where one-way and two-way coupling are both
present — the falling plank does not account for the air influence,
but the boxes use two-way coupling. The falling plank makes the
air topple the small boxes over, and smoke particles are used once
again to help visualize the complexity of the resulting flow.
Realtime simulation on coarse grids. Since our method is very

efficient due to its local, highly-parallelizable nature, we can achieve
real-time fluid-solid coupling at a grid resolution of 100×50×50, with
an average of 500 timesteps per second, leading to around 30 fps
for animation depending on how fast the flow is (and dropping to
roughly 20 fps if volumetric ray-casting of density field is activated)
using an NVIDIA 2080Ti GPU card. Note that due to our accurate
and low-dissipation solver, our method still manages to capture and
maintain turbulence details on rather coarse resolutions: Fig. 21
depicts a simulation result obtained in realtime on a 50×100×50
grid as an example.
High-resolution simulations. With our multi-GPU implementa-

tion, we easily scale up in grid size for high-resolution simulations.
We used a grid of size 1200×500×500, and a typical two-way cou-
pling simulation at such a high resolution only takes from 1 to 2 sec-
onds per time step; see Tab. 3 for more timing statistics about high-
resolution examples. Fig. 31 shows a high-resolution (1800×400×400)
virtual wind tunnel simulation of a high-speed train, while Fig. 2
shows a high-resolution simulation (640×720×640) of a tornado
formed by four jets at the bottom of the domain, where solids (cars
and cows) inside the tornado are entrained by the rotating turbulent
air. In both cases, fine turbulence details can be observed.

6.2 Analysis
In order to further explain and justify our method, we comment on
different aspects of our solver below.
Compressible vs. incompressible fluid solver. Unlike many fluid

solvers in graphics, we do not strictly enforce incompressibility: our
solver simulates a low Mach number compressible approximation

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

47:14 • Li, W. et al

Fig. 18. Falling box with one-way coupling. A solid box falls inside a box, causing a flow disturbance; in order to visualize the wake finely, smoke particles
are continuously scattered on one side of the box. We use two different Reynolds numbers for the same box motion: Re=3, 333 in (a)-(d), and Re=100, 000 in
(e)-(h). The latter simulation, involving a less viscous fluid, exhibits higher turbulence as evidenced by the creation of very small vortices.

instead, thus avoiding the need for pressure solves that are hard to
parallelize. This approximation is achieved by solving a Boltzmann
equation instead, which is linear in advection. We can thus always
use a constant time step during the simulation even for strong
turbulence, and the advection is easily made conservative, which is
usually difficult for many existing solvers in graphics.

Accuracy of coupling. Coupling accuracy deserves further discus-
sion. We employ the immersed boundary method to handle dynamic
solid boundaries, which is convenient and efficient but has only first-
order accuracy. If higher accuracy is called for, we point out that
our spatial adaptive scheme can locally increase the resolution of
the grid near the solid if so desired. We believe that the solution we
propose is a good compromise between efficiency and accuracy that
can already handle most scenarios in graphics satisfactorily.
Influence of τ ∗ perturbation. We performed further tests to com-

pare direct optimization of the high-order relaxation time v.s. the
use of a simple linear regression. We noticed that solving for τ ∗ with
direct optimization is quite sensitive to the number of equidistant
samples of the function ϵ used to find the minimum: if one hopes to
save computational time by selecting only few samples, it actually
induces numerical errors that act like a non-physical dynamical
instability: for example, in 2D vortex sheet simulation as shown in
Fig. 12, too few samples makes vortices shear away at some point,
see Fig. 22 (a). However, when we increase the number of samples
to increase accuracy, non-physical vortex instability is reduced and
longer preservation of the rotating vortex is observed, see Fig. 22
(b) — but the computational cost needed for optimization increases
dramatically. The linear regression as our final predictor for τ ∗ is
thus not only an efficient alternative to direct optimization, but in
fact, a better solution since it naturally acts as a filter to remove
numerical perturbations of τ ∗, see Fig. 22 (c). This last statement

Fig. 19. Boundary conditions. Our two-way coupling can accommodate
either no-slip (a) or free-slip (b) boundary condition; note the difference
in turbulence patterns visualized by this LIC rendering of a slice of the 3D
velocity field in a simulation where the box moves to the right.

was confirmed by performing a linear regression through a least
squares solution based on (noisy) high-order relaxation times found
through direct optimization with relatively few samples: this modi-
fied linear regression performed in fact better than the simulation
using directly the poorly-optimized relaxation times.
Dispersion error. While rarely mentioned in practice, current

Navier-Stokes solvers suffer from large dispersion errors when small
time steps are used. This is not an issue when computations are
performed with reasonable time steps, but two-way coupling often
imposes much stronger restrictions on the time step size, espe-
cially for coupling in the case of turbulent flows where both fluids
and solids can move very fast, making dispersion a real issue both
numerically and visually. In order to illustrate the low dispersion
property of our solver, we conducted a 2D double layer vortex sim-
ulation [Minion and Brown 1997], which is a simple vortical flow
for which increasing grid resolution should not result in additional
vortex structures. In Fig. 24, the top row (a–d) are simulations with
the MC+R Navier-Stokes solver, for increasing resolutions (from
256×256 to 2048×2048, for the same unit domain), using a relatively
small time step (∆t = 0.001): strong dispersion errors induce visible
non-physical instability. Even if we enlarge the time step to ∆t = 0.01
to try to suppress dispersion, non-physical secondary vortices still
appear for relatively coarse simulations (see (e) and (f), at 256×256
and 1024×1024 resp.). In contrast, our kinetic solver does not induce
non-physical secondary vortices even at the lowest grid resolution
(see (g) and (h), at 256×256 and 1024× 1024 resp.)) with the same
small (effective) time step of ∆t =0.001. Increasing the resolution
to 1024×1024 also results in similar vortex details compared to the
MC+R Navier-Stokes solver at the same high resolution.
Convergence analysis. We also analyze the convergence of our

solver based on several simulation experiments. In our first test, we
ignore immersed solids and consider the case of 2D Taylor-Green
vortex simulation again as shown in Fig. 11 (a) for which a ground
truth solution is known. By varying spatial and time steps, we can
plot the convergence graph as shown in Fig. 25, from which we
can draw a few conclusions. First, compared to the MC+R solver,
our error is much smaller (note our use of a log-log plot). MC+R
solver has third-order convergence for a certain range of time steps
(consistent with what is reported in their paper) while our solver is
second-order in time. Note that we did not plot the curves for too
small time steps to avoid having their dispersion errors obfuscating

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling • 47:15

Fig. 20. Plank drop with one-way-coupling. A solid plank is dropped (and bounces back several times) from a low (top row) and high (bottom row) height,
whose wake affects a static smoke ring. We show the resulting behavior for two different Reynolds numbers: Re=14,000 in (a)-(d), and Re=140, 000 in (e)-(h).

Fig. 21. Coarse-grid simulation. A falling box using one-way coupling
with the surrounding fluid is computed in realtime on a coarse 50×100×50
grid. Due to our solver accuracy, turbulence details are still well captured.

Fig. 22. Influence of relaxation time perturbation. If too few samples
of the measurement functional are used during optimization, the resulting
perturbations of τ ∗ create non-physical artifacts (a), shearing the otherwise
symmetrically-rotating vortices; a finer sampling removes these pertuba-
tions, resulting in a better symmetry (b); however, our linear regression
applied to the noisy optimization values effectively reduces perturbations of
τ ∗, removing most (but not all) artifacts from the inaccurate optimizations.

the curve. However, for spatial convergence, our solver is not only
leading to smaller errors, but it also converges at a rate larger than
second order, a higher convergence compared the MC+R solver.
Time step restriction. A discussion about time step restrictions

for traditional Navier-Stokes solvers and our kinetic solver is also
worthwhile. In general, many Navier-Stokes solvers allow a rather
large range of time steps given a fixed spatial grid resolution and
physical scale (see Fig. 30), but small time steps usually introduce
dispersion errors and should be avoided as we discussed earlier.
In contrast, our kinetic solver allows for very small effective time
steps by adjusting uref; there is, however, an upper limit on the
time step size, above which the solver becomes neither accurate nor
stable (a lower limit also exists due to machine accuracy to represent
floating-point numbers). Since this upper limit is around 0.3 times
the Courant number for flows of normal speed, we believe it is a

Table 2. Profiling. Timings of each step for MC+R and our algorithm.
MC+R solver Our LBM solver

Grid Resolution Advection Diffusion Projection Streaming Immersed Bound. Collision
50×100×50 8.54ms 3.4ms 10.25ms 0.19ms 0.92ms 0.77ms
100×200×100 56.2ms 13.5ms 157.36ms 1.38ms 2.3ms 6.19ms
150×300×150 169.89ms 39.77ms 834.36ms 4.6ms 3.5ms 17.04ms
200×400×200 354.27ms 100.9ms 3166.16ms 11.23ms 8.08ms 32.6ms

rather reasonable constraint — even more so given the efficiency
of our time steps. Besides, as argued earlier, two-way coupling is
typically requiring very small time steps for interesting scenarios.
Performance. Semi-Lagrangian solvers and game engines such

as [NVIDIA FlameWorks 2015] have been shown to be extremely ef-
ficient for fluid animation: most of these fluid solvers can take large
time steps very efficiently by, for instance, relaxing the accuracy of
the pressure solve (via Jacobi iterations and/or fixed iteration counts)
or adopting a multigrid approach. However, this efficiency often
comes at the price of significant visual degradation: as an example,
Fig. 30 shows how the semi-Lagrangian MC+R solver behaves at
different timestep sizes, demonstrating that large timesteps lead to
rather unrealistic behaviors. Moreover, the use of such large time
steps prevents two-way coupling. Since our work emphasizes accu-
racy and predictivity instead, a direct and exhaustive comparison
of efficiency with existing solvers is quite arduous. In order to offer
a fair analysis of the efficiency of our solver compared to existing
semi-Lagrangian solvers, we used our own GPU implementation of
the stable fluids method [Stam 1999] with a CUDA-optimized pre-
conditioned conjugate gradient (PCG) solver from NVIDIA for the
pressure solve, run on an NVIDIA 2080Ti GPU card. PCG iterations
were stopped when the error reached a low threshold or when the
number of iterations reached 300, to allow for reasonable, yet not
too stringent accuracy levels. We also used a timestep size ten times
larger than our LBM physical timestep size, to mimic the typical
setup of stable fluids. Fig. 26 compares computational times for this
instance of stable fluids vs. our LBM solver on a one-second fluid
animation of a turbulent jet flow through a ball (as in Fig. 30), show-
ing that the embarrassing parallelism of LBM results in increasingly
better efficiency as grid resolution increases. Note that a multigrid
implementation on the GPU of the pressure solve may improve the
timings of stable fluids by a factor 5 if the speedup witnessed in
CPU implementations like [Qu 2019] holds; but the pressure solve
is a non-trivial obstacle to parallelization in general, so our LBM
approach will outperform a stable fluid solver (or any of its more
involved variants) for a large enough number of cores and/or GPUs.
We also measured the performance of the MC+R method using the

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

47:16 • Li, W. et al

Fig. 23. Falling plank toppling boxes. In this example, we simulate a falling plank ignoring air interaction, but boxes with two-way coupling. The fall
creates a strong draft which topples the boxes over, and passive smoke is used to visualize the air motion.

Table 3. Statistics. Parameters and performance statistics for the simulations shown in the paper.
Figure Grid Resolution Solid Samples ν ∆x (m) ∆t (s) #GPUs time per ∆t Total time steps Fixed/Adaptive Total time
Fig. 1 500×1200×500 182,897 2×10−4 1/150 1.6×10−5 4 1.43 sec. 41,415 Fixed 987.1 mins.
Fig. 2 640×720×640 1,234,016 8×10−4 1/40 varying 4 1.39 sec. 17,700 Adaptive 410.5 mins
Fig. 3 600×200×200 120,000 6×10−3/2×10−3 1/20 6.25×10−5 1 0.42 sec. 32,450 Fixed 227.2 mins.
Fig. 18 200×400×200 21,600 8×10−3/2×10−4 1/40 varying 1 0.26 sec. 40,000 Adaptive 173.3 mins.
Fig. 20 400×200×400 41,440 4×10−3/4×10−4 1/80 varying 1 0.56 sec. 30,000 Adaptive 280 mins.
Fig. 21 50×100×50 9,600 4×10−3 1/15 3.2×10−3 1 1.9×10−3 sec. 3,000 Fixed 5.7 sec.
Fig. 23 540×260×540 97,920 1.6×10−3 1/60 2.5×10−4 1 1.22 sec. 12,800 Fixed 260.3 mins.
Fig. 31 1800×400×400 513,270 8×10−4 1/100 5×10−5 4 1.42 sec. 25,000 Fixed 591.6 mins.

Fig. 24. 2D double layer vortex.NS solvers consistently exhibit dispersion
errors at small time steps: e.g., [Zehnder et al. 2018] for ∆t = 0.001 and
for power-of-two resolutions from 2562 (a) to 20482 (d). Even for ∆t =0.01,
dispersion errors appear at low (2562) (e) & high (10242) (f) resolutions. Our
kinetic solver does not exhibit this numerical issue at the same low (g) and
high (h) grid resolutions for an effective time step size of ∆t =0.001.

same PCG solver for the same test using various timestep sizes: in
Fig. 30, our LBM simulation shown in (d) using the same physical
timestep size (3×10−3s) and grid resolution as the MC+R result
shown in (c) exhibits smaller-scale turbulence, yet runs 65 times

Fig. 25. Convergence for 2D Taylor-Green vortex simulation.We com-
pare the reflection-advection solver (MC+R) [Zehnder et al. 2018] and ours
in terms of (a) temporal convergence and (b) spatial convergence using the
known analytical solution of the 2D Taylor-Green vortex simulation. Note
that both plots are in log-log scale.

faster; our LBM solver is still 11 times faster than MC+R if it now
uses a 7× larger time step (b), but MC+R becomes slightly more effi-
cient than our solver if a 42× larger timestep is used (a). Moreover,
if we use a resolution reduced by a factor 8 (i.e., a 100×200×100
grid) in our LBM simulation, the visual result (e) is still superior to
MC+R, yet it is now 16 times faster than (a), 110 times faster than (b),
and over 670 times faster than (c). These results, obviously, depend
heavily on the implementation used to compare (in particular, if a
multigrid PCG solver is used), but they indicate a clear advantage in
performance for our massively parallelizable algorithm compared
to existing approaches when accuracy and visual complexity are
taken into account. For completeness, we also provide timings of the
various steps involved in one timestep of our MC+R implementation
described above and of our LBM integrator in Tab. 2.

Comparison to existing coupling work. Fig. 27 shows an animation
for which the whole fluid motion is created due to the no-slip condi-
tion of a cylinder rotating around its main axis: from a static velocity
field, the cylinder motion begins affecting the nearby ring of smoke,
exhibiting slight fluttering at first, and eventually dissipating the
whole ring. This simulation was computed on a 300×150×300 grid. In

Fig. 26. Performance. We compare timings (for one second of animation)
of our GPU-based kinetic solver with a CUDA-optimized implementation of
stable fluids, where the timestep used in the stable fluids solver is 10 times
larger than our solver, and the conjugate-gradient solver used in stable
fluids stops when the error is below a small threshold or when it exceeds
300 iterations; as the grid resolution grows, the massive parallelism of our
approach outperforms the semi-Lagrangian solvers quite significantly.

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling • 47:17

Fig. 27. Drag-induced flow. Starting from a static fluid, the rotation of
cylinder with no-slip condition induces boundary layers which quickly
affects the entire surrounding as evidenced by the early fluttering of an
initially static smoke ring, and its entire dispersion as time evolves. The
same simulation computed via a spectral solver [Cui et al. 2018] (insets, at
corresponding times) cannot capture the same behavior due to the large
amount of bases needed to capture fine details and their non-local support.

Fig. 28. Small-scale virtual wind tunnel. A simple setup where the right-
side of a box acts as an inlet to simulate a wind tunnel reproduces the real
experiment (top) of the usual flow over a cylinder (generating vortices) using
several sources of passive white smoke particles (bottom).

comparison, the fluid-solid coupling approach from [Cui et al. 2018]
cannot capture this fine interaction due to the global support of
the basis functions and/or the number of bases used in this spectral
simulation; we show their result as inset on the same figure, where
we used the same grid resolution as in our simulation, with 5,000
basis functions to capture turbulence details.
Comparison with real experiments. Lastly, we provide two com-

parisons with real experiments. In the first example, we reproduce
a real portable wind-tunnel where the air motion over a cylinder
is highlighted by injecting several lines of smoke, see Fig. 28. We
simply add white particles to the visualization to simulate similar
smoke lines, exhibiting a visually similar wake. While our solid was
held static in the first comparison, we also compare the flow created
by a falling rectangular plane. The real experiment was produced
through high-speed Schlieren photography [Liu et al. 2018].We tried
to simulate the same setup, and visualized the resulting 3D wake

flow using a volume rendering of the norm of the velocity gradient
to simulate Schlieren photography. The complexity of the chaotic
flow is well captured by our simulation as Fig. 29 demonstrates.

6.3 Limitations
Finally, we conclude this section with limitations of our method.
First, our solver cannot reliably support coupling fluids to thin rods
or shells (i.e., with a thickness of the order of the grid spacing),
where velocity gradients are very strong near the boundary, such
as the turbulent jet hitting a thin shell, as force spreading may not
enforce boundary conditions well in this case. Second, memory us-
age is relatively larger than traditional Navier-Stokes solvers for the
same grid resolution — usually two to three times larger depending
on which existing solver we compare to. Considering the higher
effective accuracy and the significant performance improvement we
provide, we believe it is a tolerable practical limitation, especially
since our solver can produce very comparable visual results with a
coarse grid as demonstrated in Fig. 30. Third, our solver does not
allow very large time steps compared to existing semi-Lagrangian
Navier-Stokes solvers. This is, however, not a particularly limiting is-
sue: our solver is still more efficient than other solvers at equivalent
accuracy levels, especially at high resolutions. Moreover, the guaran-
tees we offer make our solver not only well suited for visual effects,
but for CFD simulations as well where large time steps are avoided
to maintain temporal accuracy. Finally, maybe the most important
limitation is cultural: our solver cannot be implemented by just
tweaking an existing Navier-Stokes solver. We realize that this fact
is probably the most significant impediment to its quick adoption.
However, all our simulation results and comparisons demonstrate
that our kinetic solver performs better in both visual quality and
efficiency, the two most important factors in graphics.

7 CONCLUSION
In this paper, a novel method for fluid simulation is proposed to
enable an accurate, efficient, and robust simulation of complex fluid-
solid coupling scenarios. In order to achieve this goal, we adopt a ki-
netic simulation framework based on the lattice Boltzmann method,

Fig. 29. Falling plate.Our two-way coupling simulation is used to compare
the wake of a falling 3D rectangular plate with a real experiment obtained
via high-speed Shlieren photography [Liu et al. 2018] (left); our simulation
approximating the same setup (right) is visualized via 3D volume rendering
of the velocity gradient, exhibiting similar wake flow structures.

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

47:18 • Li, W. et al

(a) MC+R with 42∆t (b) MC+R with 7∆t (c) MC+R with ∆t (d) Ours with ∆t (e) Ours, 8× coarser res.
Fig. 30. Semi-Lagrangian solver vs. LBM. For a simple, turbulent jet flow through a sphere obstacle computed over a domain of size 1m×2m×1m for
Re=20, 000 and a jet speed of 0.4m/s , we compare the results of our own GPU-optimized implementation of the MC+R solver [Zehnder et al. 2018] computed
on a 200 × 400 × 200 grid for a timestep size that is (a) 42 times (resp., (b) 7 times) larger than the one in (c). We also show the result of our LBM solver on a
grid of size 100 × 200 × 100 (i.e., 8 times coarser) in (e), still exhibiting small-scale turbulence that visually matches the finer LBM simulation. While using large
timesteps in semi-Lagrangian methods may lead to higher performance, the resulting visual differences with our LBM solver are pronounced.

for which we introduce a new regression-based evaluation of the
high-order relaxation rates of the central-moment relaxation model.
The resulting fluid integrator exhibits significantly less dissipation
and less dispersion errors than existing Navier-Stokes solvers. Two-
way coupling is implemented via the immersed boundary method,
of which we enforce stability by rescaling time steps (and poten-
tially, the spatial grid size too if needed) based on the maximum
velocity. Through a variety of simulation results and extensive com-
parisons, we prove the accuracy and efficiency of our method, and
demonstrate that it outperforms existing Navier-Stokes solvers and
fluid-solid coupling methods used in graphics.

Future work. As discussed in the paper, spatial adaptivity deserves
more analysis and study, and how to construct space-time adaptive
simulation with a hierarchy of grids is an interesting topic to explore.
Additionally, since our method is highly scalable, it can be further
extended to multi-node, multi-GPU systems. Since the amount of
data copy is not large due to the locality of our scheme, we expect
to achieve real-time, or at least interactive, high-resolution fluid
simulation. Furthermore, finding theoretical grounds which could
explain why our simple linear regression is so powerful in practice
would be satisfying. Finally, extending our two-way coupling to
handle thin and deformable bodies in a robust manner is an obvious
direction for future work.

ACKNOWLEDGMENTS
We thank Qiaodong Cui from UC Santa Barbara, Jonas Zehnder
from U. of Montreal, and Ziyin Qu from UPenn for sharing their
codes for comparisons. We also thank Cangli Yao, Yihui Ma, Yiran
Sun and Chenqi Luo from ShanghaiTech University for helping
with rendering and video editing, as well as Christian Lessig for
comments. Yixin Chen also received generous support from DGene
Digital Technology. The train mesh is from aigei.com; the cow
mesh is from free3D.com; and the rocket and car meshes are both
from cgtrader.com. This work was supported by a startup funding
from ShanghaiTech University, and in part by the US National
Science Foundation (1717178, 1816041, 1910839). Finally, Mathieu
Desbrun gratefully acknowledges the hospitality of ShanghaiTech
University during his sabbatical.

REFERENCES
Cyrus K Aidun and Jonathan R Clausen. 2010. Lattice-Boltzmann method for complex

flows. Annual review of fluid mechanics 42 (2010), 439–472.
Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias

Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans.
Graph. 31, 4 (2012), 62.

Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly adaptive liquid simulations
on tetrahedral meshes. ACM Trans. Graph. 32, 4, Article 103 (2013).

Vinicius C Azevedo, Christopher Batty, and Manuel M Oliveira. 2016. Preserving
geometry and topology for fluid flows with thin obstacles and narrow gaps. ACM
Trans. Graph. 35, 4 (2016), 97.

Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and
Matthias Teschner. 2018. Pressure boundaries for implicit incompressible SPH. ACM
Trans. Graph. 37, 2 (2018), 14.

Stefan Band, Christoph Gissler, and Matthias Teschner. 2017. Moving least squares
boundaries for SPH fluids. In VRIPHYS. 21–28.

Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational
framework for accurate solid-fluid coupling. In ACM Trans. Graph., Vol. 26. 100.

Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free surface
flows. In Symposium on Computer Animation. 209–217.

Markus Becker, Hendrik Tessendorf, and Matthias Teschner. 2009. Direct forcing for
Lagrangian rigid-fluid coupling. IEEE Trans. Vis. Comp. Graph. 15, 3 (2009), 493–503.

Jan Bender and Dan Koschier. 2016. Divergence-free SPH for incompressible and
viscous fluids. IEEE Trans. Vis. Comp. Graph. 23, 3 (2016), 1193–1206.

P. L. Bhatnagar, E. P. Gross, and M. Krook. 1954. A Model for Collision Processes
in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component
Systems. Phys. Rev. 94 (1954), 511–525. Issue 3.

Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time Smoke Animation
with Vortex Sheet Meshes. In Symposium on Computer Animation. 87–95.

Mark Carlson, Peter J Mucha, and Greg Turk. 2004. Rigid fluid: animating the interplay
between rigid bodies and fluid. In ACM Trans. Graph., Vol. 23. 377–384.

Shiyi Chen and Gary D Doolen. 1998. Lattice Boltzmann method for fluid flows. Annual
review of fluid mechanics 30, 1 (1998), 329–364.

Mengyu Chu and Nils Thürey. 2017. Data-driven synthesis of smoke flows with CNN-
based feature descriptors. ACM Trans. Graph. 36, 4, Article 69 (2017).

Pascal Clausen, Martin Wicke, Jonathan R Shewchuk, and James F O’brien. 2013. Sim-
ulating liquids and solid-liquid interactions with Lagrangian meshes. ACM Trans.
Graph. 32, 2 (2013), 17.

Andrea Colagrossi and Maurizio Landrini. 2003. Numerical simulation of interfacial
flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 2 (2003), 448–475.

Qiaodong Cui, Pradeep Sen, and Theodore Kim. 2018. Scalable Laplacian Eigenfluids.
ACM Trans. Graph. 37, 4, Article 87 (2018).

Meizhong Dai and David P Schmidt. 2005. Adaptive tetrahedral meshing in free-surface
flow. J. Comput. Phys. 208, 1 (2005), 228–252.

Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun.
2015. Power particles: an incompressible fluid solver based on power diagrams.
ACM Trans. Graph. 34, 4, Article 50 (2015).

Alessandro De Rosis. 2017. Nonorthogonal central-moments-based lattice Boltzmann
scheme in three dimensions. Physical Review E 95, 1 (2017), 013310.

Alessandro De Rosis, Rongzong Huang, and Christophe Coreixas. 2019. Universal
formulation of central-moments-based lattice Boltzmann method with external
forcing for the simulation of multiphysics phenomena. Physics of Fluids 31, 11
(2019), 117102.

Alessandro De Rosis and Kai H. Luo. 2019. Role of higher-order Hermite polynomials
in the central-moments-based lattice Boltzmann framework. Physical Review E 99, 1

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling • 47:19

Fig. 31. Large-scale virtual wind tunnel. A static high-speed train is placed in a virtual wind tunnel (pushing air from the left); at a Reynold number of
Re=28, 000 and with no-slip condition inducing boundary layer turbulence, passive white particles visualize the flow separation and ensuing vortices. This
simulation was computed at a resolution of 1800×400×400 on a 4-GPU server, each frame (i.e., 1/50 of a second) requiring 142 seconds to simulate.

(2019), 013301.
Mathieu Desbrun and Marie-Paule Gascuel. 1996. Smoothed Particles: A new paradigm

for animating highly deformable bodies. In Computer Animation and Simulation.
61–76.

Dominique d’Humières. 2002. Multiple–relaxation–time lattice Boltzmann models in
three dimensions. Philos. Trans. R. Soc. A 360, 1792 (2002), 437–451.

Essex Edwards and Robert Bridson. 2014. Detailed water with coarse grids: combining
surface meshes and adaptive discontinuous Galerkin. ACM Trans. Graph. 33, 4
(2014), 136.

Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun. 2007.
Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1 (2007), 4.

Yun (Raymond) Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng. 2018. A
Multi-scale Model for Simulating Liquid-fabric Interactions. ACM Trans. Graph. 37,
4, Article 51 (2018).

Bryan E Feldman, James F O’brien, and Bryan M Klingner. 2005. Animating gases with
hybrid meshes. In ACM Trans. Graph., Vol. 24. 904–909.

Zhi-Gang Feng and Efstathios E Michaelides. 2004. The immersed boundary-lattice
Boltzmann method for solving fluid–particles interaction problems. J. Comput. Phys.
195, 2 (2004), 602–628.

Nick Foster and Dimitri Metaxas. 1996. Realistic Animation of Liquids. Graph. Models
Image Process. 58, 5 (1996), 471–483.

Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A
Polynomial Particle-In-Cell Method. ACM Trans. Graph. (SIGGRAPH) 36, 6 (2017),
222:1–222:12.

Martin Geier, Andreas Greiner, and Jan G. Korvink. 2006. Cascaded digital lattice
Boltzmann automata for high Reynolds number flow. Physical Review E 73, 6 Pt 2
(2006), 066705–066705.

Olivier Génevaux, Arash Habibi, and Jean-Michel Dischler. 2003. Simulating Fluid-Solid
Interaction.. In Graphics Interface. 31–38.

Frédéric Gibou and Chohong Min. 2012. Efficient symmetric positive definite second-
order accurate monolithic solver for fluid/solid interactions. J. Comput. Phys. 231, 8
(2012), 3246–3263.

Abhinav Golas, Rahul Narain, Jason Sewall, Pavel Krajcevski, Pradeep Dubey, and
Ming Lin. 2012. Large-scale Fluid Simulation Using Velocity-vorticity Domain
Decomposition. ACM Trans. Graph. (SIGGRAPH ASIA) 31, 6, Article 148 (2012).

Philip M. Gresho and Robert L. Sani. 1987. On pressure boundary conditions for the
incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 7, 10 (1987),
1111–1145.

Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. 2005. Coupling
water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24, 3 (2005),
973–981.

Yulong Guo, Xiaopei Liu, and Xuemao Xu. 2017. A unified detail-preserving liquid
simulation by two-phase lattice Boltzmann modeling. IEEE Trans. Vis. Comp. Graph.
23, 5 (2017), 1479–1491.

CyrillWHirt, AnthonyAAmsden, and JL Cook. 1974. An arbitrary Lagrangian-Eulerian
computing method for all flow speeds. J. Comput. Phys. 14, 3 (1974), 227–253.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chen-
fanfu Jiang. 2018. A moving least squares material point method with displacement
discontinuity and two-way rigid body coupling. ACM Trans. Graph. 37, 4 (2018),
150.

Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias
Teschner. 2013. Implicit incompressible SPH. IEEE Trans. Vis. Comp. Graph. 20, 3

(2013), 426–435.
Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias

Teschner. 2014. Implicit incompressible SPH. IEEE Trans. Vis. Comp. Graph. 20, 3
(2014), 426–435.

Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.
SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, Markus Gross, et al. 2015. Data-

driven fluid simulations using regression forests. ACM Trans. Graph. 34, 6, Article
199 (2015).

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The Affine Particle-in-cell Method. ACM Trans. Graph. (SIGGRAPH) 34, 4,
Article 51 (2015).

Dirk Junk, Michael; Kehrwald. 2006. On the relation between lattice variables and physical
quantities in lattice Boltzmann simulations. Technical Report. Fraunhofer Institute
for Industrial Mathematics. http://nbn-resolving.de/urn:nbn:de:bsz:352-254002

ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and Jarek Rossignac. 2005. FlowFixer:
Using BFECC for Fluid Simulation. In Eurographics Conference on Natural Phenomena.
51–56.

Bryan M Klingner, Bryan E Feldman, Nuttapong Chentanez, and James F O’brien. 2006.
Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3 (2006), 820–825.

Dan Koschier and Jan Bender. 2017. Density maps for improved SPH boundary handling.
In Symposium on Computer Animation. Article 1.

TimmKrüger, HalimKusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva, and
Erlend Magnus Viggen. 2017. The Lattice Boltzmann Method. Springer International
Publishing.

Uǧis Lācis, Kunihiko Taira, and Shervin Bagheri. 2016. A stable fluid–structure-
interaction solver for low-density rigid bodies using the immersed boundary pro-
jection method. J. Comput. Phys. 305 (2016), 300–318.

Jonas Latt. 2008. Choice of units in lattice Boltzmann simulations. Technical Report.
http://lbmethod.org/_media/

Michael Lentine, Wen Zheng, and Ronald Fedkiw. 2010. A Novel Algorithm for Incom-
pressible Flow Using Only a Coarse Grid Projection. ACM Trans. Graph. 29, 4 (2010),
Art. 114.

Wei Li, Kai Bai, and Xiapei Liu. 2019. Continuous-Scale Kinetic Fluid Simulation. IEEE
Trans. Vis. Comp. Graph. 25, 9 (2019), 2694–2709.

Wei Li, Daoming Liu, Mathieu Desbrun, Jin Huang, and Xiaopei Liu. 2020. Kinetic-based
Multiphase Flow Simulation. IEEE Trans. Vis. Comp. Graph. (2020).

Zhe Li, Julien Favier, Umberto D’Ortona, and Sébastien Poncet. 2016. An immersed
boundary-lattice Boltzmann method for single-and multi-component fluid flows. J.
Comput. Phys. 304 (2016), 424–440.

Beibei Liu, Gemma Mason, Julian Hodgson, Yiying Tong, and Mathieu Desbrun. 2015.
Model-reduced Variational Fluid Simulation. ACM Trans. Graph. 34, 6, Article 244
(2015).

Xiaopei Liu, Wai-Man Pang, Jing Qin, and Chi-Wing Fu. 2014. Turbulence simulation
by adaptive multi-relaxation lattice Boltzmann modeling. IEEE Trans. Vis. Comp.
Graph. 20, 2 (2014), 289–302.

Yun Liu, Nuri Zeytinoglu, and Jiliang Li. 2018. Gallery of Fluid Motion - High-speed
Schlieren photography of falling objects. Physical Review Fluids (2018).

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and smoke
with an octree data structure. ACM Trans. Graph. 23, 3 (2004), 457–462.

Xin Lv, Qingping Zou, Yong Zhao, and Dominic Reeve. 2010. A novel coupled level set
and volume of fluid method for sharp interface capturing on 3D tetrahedral grids. J.
Comput. Phys. 229, 7 (2010), 2573–2604.

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

http://nbn-resolving.de/urn:nbn:de:bsz:352-254002
http://lbmethod.org/_media/

47:20 • Li, W. et al

Mathworks, Inc. 2017. MATLAB version 9.3 (R2017b). Mathworks, Inc.
Renwei Mei, Li-Shi Luo, and Wei Shyy. 1999. An accurate curved boundary treatment

in the lattice Boltzmann method. J. Comput. Phys. 155, 2 (1999), 307–330.
Michael L Minion and David L Brown. 1997. Performance of under-resolved two-

dimensional incompressible flow simulations, II. J. Comput. Phys. 138, 2 (1997),
734–765.

Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun. 2009.
Energy-preserving Integrators for Fluid Animation. ACM Trans. Graph. (SIGGRAPH)
28, 3 (2009), Art. 38.

Yen Ting Ng, Chohong Min, and Frédéric Gibou. 2009. An efficient fluid-solid coupling
algorithm for single-phase flows. J. Comput. Phys. 228, 23 (2009), 8807–8829.

NVIDIA. 2015. FlameWorks: generating fire, smoke and explosion effects for games.
https://developer.nvidia.com/flameworks.

OTOY, Inc. 2019. OctaneRender. https://home.otoy.com/render/octane-render/.
Sang Il Park and Myoung Jun Kim. 2005. Vortex Fluid for Gaseous Phenomena. In

Symposium on Computer Animation. 261–270.
Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An Implicit

Viscosity Formulation for SPH Fluids. ACM Trans. Graph. (SIGGRAPH) 34, 4, Article
114 (2015).

Charles S Peskin. 1972. Flow patterns around heart valves: a numerical method. J.
Comput. Phys. 10, 2 (1972), 252–271.

Charles S Peskin. 2002. The immersed boundary method. Acta numerica 11 (2002),
479–517.

Tobias Pfaff, Nils Thürey, and Markus Gross. 2012. Lagrangian Vortex Sheets for
Animating Fluids. ACM Trans. Graph. (SIGGRAPH) 31, 4, Article 112 (2012).

Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2015. On thin gaps between rigid bodies
two-way coupled to incompressible flow. J. Comput. Phys. 292 (2015), 1–29.

Ziyin Qu. 2019. BiMocq: Algebraic multigrid implementation on CPU. Found on
Github, at: https://github.com/ziyinq/Bimocq.

Ziyin Qu, Xinxin Zhang, Ming Gao, Chenfanfu Jiang, and Baoquan Chen. 2019. Efficient
and conservative fluids using bidirectional mapping. ACMTrans. Graph. 38, 4, Article
128 (2019).

Karthik Raveendran, Chris Wojtan, and Greg Turk. 2011. Hybrid Smoothed Particle
Hydrodynamics. In Symposium on Computer Animation. 33–42.

Avi Robinson-Mosher, Tamar Shinar, Jon Gretarsson, Jonathan Su, and Ronald Fedkiw.
2008. Two-way coupling of fluids to rigid and deformable solids and shells. In ACM
Trans. Graph., Vol. 27. 46.

Doug Roble, Nafees bin Zafar, and Henrik Falt. 2005. Cartesian grid fluid simulation
with irregular boundary voxels. In ACM SIGGRAPH Sketches. 138.

Hagit Schechter and Robert Bridson. 2012. Ghost SPH for animating water. ACM Trans.
Graph. 31, 4 (2012), 61.

Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008.
An Unconditionally Stable MacCormack Method. J. Sci. Comput. 35, 2-3 (2008),
350–371.

Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A vortex particle method for
smoke, water and explosions. In ACM Trans. Graph., Vol. 24. 910–914.

Jung Hee Seo and Rajat Mittal. 2011. A Sharp-Interface Immersed Boundary Method
with Improved Mass Conservation and Reduced Spurious Pressure Oscillations. J.
Comput. Phys. 230, 19 (2011), 7347–7363.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A Sparse Paged Grid Structure Applied to Adaptive Smoke Simulation. ACM Trans.
Graph. (SIGGRAPH ASIA) 33, 6, Article 205 (2014).

Xiaowen Shan, Xue-Feng Yuan, and Hudong Chen. 2006. Kinetic theory representation
of hydrodynamics: a way beyond the Navier–Stokes equation. Journal of Fluid
Mechanics 550 (2006), 413–441.

Barbara Solenthaler and Renato Pajarola. 2008. Density contrast SPH interfaces. In
Symposium on Computer Animation. 211–218.

B. Solenthaler and R. Pajarola. 2009. Predictive-corrective Incompressible SPH. ACM
Trans. Graph. (SIGGRAPH), Article 40 (2009).

Jos Stam. 1999. Stable fluids. In Proceedings of the Annual Conference on Computer
Graphics and Interactive Techniques. 121–128.

Tsunemi Takahashi, Heihachi Ueki, Atsushi Kunimatsu, and Hiroko Fujii. 2002. The
simulation of fluid-rigid body interaction. In ACM SIGGRAPH Sketches. 266–266.

Yun Teng, David I. W. Levin, and Theodore Kim. 2016. Eulerian Solid-fluid Coupling.
ACM Trans. Graph. 35, 6, Article 200 (2016).

Nils Thürey. 2007. Physically based animation of free surface flows with the lattice
Boltzmann method. Ph. D. Thesis, University of Erlangen (2007).

Nils Thürey, Theodore Kim, and Tobias Pfaff. 2013. Turbulent Fluids. InACM SIGGRAPH
Courses. Art. 6.

Nils Thürey and Ulrich Rüde. 2009. Stable free surface flows with the lattice Boltzmann
method on adaptively coarsened grids. Computing and Visualization in Science 12, 5
(2009), 247–263.

Daniel Weber, Johannes Mueller-Roemer, André Stork, and Dieter Fellner. 2015. A
Cut-Cell Geometric Multigrid Poisson Solver for Fluid Simulation. In Comp. Graph.
Forum, Vol. 34. 481–491.

M Weickert, G Teike, O Schmidt, and M Sommerfeld. 2010. Investigation of the LES
WALE turbulence model within the lattice Boltzmann framework. Computers &
Mathematics with Applications 59, 7 (2010), 2200–2214.

Steffen Weißmann and Ulrich Pinkall. 2010. Filament-based Smoke with Vortex Shed-
ding and Variational Reconnection. ACM Trans. Graph. (SIGGRAPH) 29, 4, Article
115 (July 2010).

J Wu and Chang Shu. 2009. Implicit velocity correction-based immersed boundary-
lattice Boltzmann method and its applications. J. Comput. Phys. 228, 6 (2009),
1963–1979.

JWu and Chang Shu. 2010. An improved immersed boundary-lattice Boltzmannmethod
for simulating three-dimensional incompressible flows. J. Comput. Phys. 229, 13
(2010), 5022–5042.

You Xie, Erik Franz, Mengyu Chu, and Nils Thürey. 2018. tempoGAN: A temporally
coherent, volumetric GAN for super-resolution fluid flow. ACM Trans. Graph.
(SIGGRAPH ASIA) 37, 4 (2018), 95.

Hui Xu and Pierre Sagaut. 2011. Optimal low-dispersion low-dissipation LBM schemes
for computational aeroacoustics. J. Comput. Phys. 230, 13 (2011), 5353–5382.

Cem Yuksel. 2015. Sample elimination for generating Poisson disk sample sets. In
Computer Graphics Forum, Vol. 34. Wiley Online Library, 25–32.

Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. 2018. An Advection-
reflection Solver for Detail-preserving Fluid Simulation. ACM Trans. Graph. 37, 4,
Article 85 (2018).

Xinxin Zhang and Robert Bridson. 2014. A PPPM Fast Summation Method for Fluids
and Beyond. ACM Trans. Graph. (SIGGRAPH ASIA) 33, 6, Article 206 (2014).

Xinxin Zhang, Robert Bridson, and Chen Greif. 2015. Restoring the Missing Vorticity in
Advection-projection Fluid Solvers. ACM Trans. Graph. (SIGGRAPH) 34, 4, Article
52 (2015).

Xinxin Zhang, Minchen Li, and Robert Bridson. 2016. Resolving Fluid Boundary
Layers with Particle Strength Exchange and Weak Adaptivity. ACM Trans. Graph.
(SIGGRAPH) 35, 4, Article 76 (July 2016).

Bo Zhu, Wenlong Lu, Matthew Cong, Byungmoon Kim, and Ronald Fedkiw. 2013. A
New Grid Structure for Domain Extension. ACM Trans. Graph. 32, 4 (2013), Art. 63.

Yongning Zhu and Robert Bridson. 2005. Animating Sand As a Fluid. ACM Trans.
Graph. (2005), 965–972.

ACM Trans. Graph., Vol. 39, No. 4, Article 47. Publication date: July 2020.

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Overview of contributions

	2 Primer of lattice Boltzmann solvers
	2.1 Fluid model
	2.2 Lattice Boltzmann Methods
	2.3 Incorporating immersed boundary
	2.4 Discussion and overview

	3 Low dissipation and low dispersion solver
	3.1 Central-moment space relaxation
	3.2 Empirical relaxation rates
	3.3 Optimal relaxation rates
	3.4 Evaluating the resulting LBM solver
	3.5 Handling high Reynolds number flows

	4 Adaptive simulation for stability
	4.1 Dimension scaling in LBM
	4.2 Adaptive simulation
	4.3 Optional spatial adaptivity

	5 Implementation Details
	6 Results and Discussions
	6.1 Simulation tests
	6.2 Analysis
	6.3 Limitations

	7 Conclusion
	Acknowledgments
	References

