
Dynamic Furniture Modeling Through Assembly Instructions
Tianjia Shao∗ Dongping Li∗ Yuliang Rong∗ Changxi Zheng† Kun Zhou∗

 ∗ State Key Lab of CAD&CG, Zhejiang University † Columbia University

2 5 21

25 27 32

13

30

Figure 1: Starting from a multi-step furniture assembly instruction (with selected steps shown on the left), we reconstruct both the 3D shapes
of furniture components and their dynamic assembly process (with selected snapshots in the middle). The recovered 3D shapes can further be
edited for physical fabrication (right). All the diagrams here were redrawn by our artists from an Ikea assembly instruction.

Abstract

We present a technique for parsing widely used furniture assembly
instructions, and reconstructing the 3D models of furniture com-
ponents and their dynamic assembly process. Our technique takes
as input a multi-step assembly instruction in a vector graphic for-
mat and starts to group the vector graphic primitives into semantic
elements representing individual furniture parts, mechanical connec-
tors (e.g., screws, bolts and hinges), arrows, visual highlights, and
numbers. To reconstruct the dynamic assembly process depicted
over multiple steps, our system identifies previously built 3D furni-
ture components when parsing a new step, and uses them to address
the challenge of occlusions while generating new 3D components
incrementally. With a wide range of examples covering a variety of
furniture types, we demonstrate the use of our system to animate
the 3D furniture assembly process and, beyond that, the semantic-
aware furniture editing as well as the fabrication of personalized
furnitures.

Keywords: Assembly instructions, furniture modeling, supervised
learning, personalized fabrication

Concepts: •Computing methodologies → Shape modeling;
Parametric curve and surface models;

∗tianjiashao@gmail.com, kunzhou@acm.org
†cxz@cs.columbia.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SA ’16 Technical Papers, December 05-08, 2016, Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2982416

1 Introduction

Furniture comes with assembly instructions, a series of schematic di-
agrams intended to visually assist the customer’s furniture assembly
process. Often composed of multiple pages, assembly instructions
depict a step-by-step, dynamic process of assembling individual fur-
niture pieces into a complete and functional body (see Figure 2).
Today, they have become an integral part of furniture products, with
a wide access from the website of almost every brand in the fur-
niture industry, such as IKEA, West Elm, Nitori, Room&Board, to
name a few.

Along with the increasing functionality and also complexity of mod-
ern furnitures is the increasingly lengthy instructions. Oftentimes,
they present numerous furniture pieces, subtly different screws and
other mechanics, and detailed insets, with changing view angles and
projection scales across steps. Indeed, when assembling a furniture,
a user has to constantly refer instruction steps back and forth and
can easily lose track. Arguably, an assembly instruction could only
embody discrete assembly “snapshots”, but could not teach it, nor
even describe a continuous and fluent assembly process fully.

We propose a method to convert a multi-step furniture assembly in-
struction into a 3D, continuous flow of assembly process. With a
few user interactions, our technique parses the assembly instruction,
constructs 3D models of furniture parts and mechanic connectors,
and more notably understands the dynamic process of furniture as-
sembly.

Understanding the 3D furniture models and their dynamic assembly
opens the door to new applications. We demonstrate three of them:
First, we present the user a 3D animated assembly processing, which
allows for arbitrary playback from a user-controlled view angle. An
animated instruction can complement the static assembly diagrams
and enrich the visual expressiveness of an assembly instruction. Sec-
ond, we infer the semantics of furniture components from the dy-
namic assembly process, and allow the user to edit furniture models
in a semantic-aware way. Lastly, we show that the reconstructed 3D
furniture models can be directly fabricated through woodwork or
3D digital fabrication, allowing for user customizations.

http://dx.doi.org/10.1145/2980179.2982416

We formulate our problem not simply as one of 3D reconstruction,
but one of dynamic 3D reconstruction. Provided a multi-step as-
sembly instructions in vector graphic format (e.g., PDF files), we
segment the vector graphics semantically and reconstruct 3D shapes
of individual furniture components and mechanical connectors (e.g.,
screws and bolts). Further, we align these 3D shapes with compat-
ible scales and orientations and infer the way of assembling them
together. Throughout, significant challenges arise. Our algorithm
needs to robustly handle rapid changes of view angles across steps,
occlusions among furniture components, and incremental introduc-
tion of new furniture parts, and to establish cross-step correspon-
dence of furniture parts as well as address the illustrative impreci-
sions of the assembly diagrams.

Techniques and contributions. We propose a supervised learn-
ing algorithm to group vector graphic primitives of an assembly
diagram into semantic components. To reconstruct 3D shapes of in-
dividual furniture components, we formulate an optimization prob-
lem that estimates the vanishing points of vector graphic paths and
leverages face extrusion. We then develop an algorithm to correctly
align reconstructed 3D shapes for assembly. To this end, our al-
gorithm analyzes the desired spatial relationships among furniture
components and mechanical connectors and formulate another op-
timization problem to transform the 3D shapes. Next, we recover
dynamic assembly actions by analyzing the placement of mechani-
cal connectors and arrows in the assembly diagram. Last, we extend
our algorithm to handle cross-step correspondence, to recognize
previously assembled furniture parts from a new view angle.

Unlike pixel-image-based 3D reconstruction [Chen et al. 2013], our
algorithm is tailored for processing vector graphic images, the stan-
dard format of almost all furniture assembly instructions. We eval-
uate our technique using real-life assembly instructions obtained
from a number of furniture sites, including IKEA and Nitori. Our
tests involve common furniture types, such as beds, chairs, benches
and cabinets. Among all the tests, our algorithm succeeded with a
high recognition accuracy (see §9), with a few failure cases that can
be easily revised with simple user strokes.

2 Related Work

Parsing diagrams and sketches. There have been many work
focusing on automatically parsing different types of diagrams and
sketches such as engineering drawings [Haralick and Queeney 1982;
Tombre 1998] and cartographic road maps [Mena 2003]. More
recently, Berthouzoz et al. [2013] introduced an approach to parse
sewing patterns to reconstruct the 3D model of a garment. Our goal
is similar in spirit, but we focus on a different type of diagrams, the
furniture assembly instructions. Unlike sewing patterns describing
2D developable surfaces, furniture assembly instructions depict 3D
shapes. This difference leads to fundamentally different techniques.
We need to address diagram segmentation, object recognition, and
3D shape reconstruction.

Numerous work have semantically segmented 2D hand-drawn
sketches and diagrams. We refer to the comprehensive survey [LaVi-
ola et al. 2006] for an overview of this rich field. Early work that
identifies low-level shapes like lines and arcs [Gennari et al. 2005]
relies on ad hoc rules and domain-specific knowledge to group them
semantically. Recent work also addresses freehand sketches via
database retrieval: Huang et al. [2014] segmented and recognized
free-hand sketches by searching for similar 3D components in a
database; Sun et al. [2012] used a large set of clip art images as a
knowledge base for segmentation. These methods are often limited
by the scope of the database. We also use a database, but only for rec-
ognizing screws, bolts, and nuts — the mechanical connectors that
are standardized, mass-produced, and reused. To recognize furni-

ture main bodies, which have much more varieties than mechanical
connectors, we do not rely on database. Instead, we formulate a
graph labeling problem based on the connections of vector graphic
elements.

High recognition accuracy has been achieved for such specific
applications as mathematical equations [Jr. and Zeleznik 2004]
and chemical drawings of molecular structures [Ouyang and Davis
2011]. Eitz et al. [2012a] studied “How do humans sketch objects?”,
which is the first large-scale analysis of human sketches. In paral-
lel, many methods focus on real-time shape retrieval using shape
features [Funkhouser et al. 2003; Eitz et al. 2012b; Xu et al. 2013]
and shape matching [Shao et al. 2011]. Unlike free-drawn sketches,
furniture assembly diagrams are regular. Thus, our system com-
bines sketch recognition for furniture components and shape re-
trieval for mechanical connectors, resulting in a high recognition
accuracy (§9.1).

Sketch based 3D modeling. In addition to sketch recognition,
we also reconstruct 3D shapes of furnitures. In general, sketch-
based 3D modeling methods aim to generate 3D lines and curves
from 2D sketches and in turn reconstruct shapes. Among the early
work, Zeleznik et al. [2006] used sketches to model 3D man-made
shapes; Igarashi et al. [1999] modeled 3D shapes using stroke in-
flation; and Karpenko and Hughes [2006] exploited cusps and T-
junctions in sketches for 3D modeling; Chen et al. [2008] gener-
ated 3D polyhedrons from a single-view sketching interface, ex-
ploiting simple heuristics and optimization to estimate 3D positions
of 2D points of sketches. Another approach, ILoveSketch [Bae et al.
2008], allows to use sketches to create curved shapes by exploiting
shape symmetry and two-view epipolar geometry. Later, Gingold et
al. [2009] developed an interface for sketch-based 3D modeling by
placing 3D primitives and annotations, while Schmidt et al. [2009]
presented an analytic drawing method to lift 2D curved sketches to
3D curves using geometry constraints derived from 3D scaffolding.
In recent work [Xu et al. 2014; De Paoli and Singh 2015], 3D curves
and models have been correctly reconstructed without the need of
3D scaffolds.

The most related work to ours are the component-based modeling
methods [Zheng et al. 2012; Shtof et al. 2013; Shao et al. 2013; Chen
et al. 2013; Cao et al. 2014]. These methods start from interactively
fitting 3D primitives (e.g., generalized cylinders) to 2D drawings
and contours of individual parts of an object; then they optimize
the 3D models subjecting to geo-semantic constraints. Our work
focuses on furniture components, which are primarily vertical cuts
from boards and thus can be approximated as extruded shapes [Cao
et al. 2014]. Further, we incorporate mechanical connectors and
infer the indicated semantic relations to correctly align furniture
assembly.

Furniture design and fabrication. Computer graphics has wit-
nessed increasing interests on furniture design and fabrication. In
a pioneering work, Agrawala et al. [2003] described a method to
automatically generate assembly instructions for a variety of gen-
eral objects, including furnitures. Our method addresses an inverse
problem, inferring 3D models and dynamic assembly process from
2D instructions. Related to fabrication, Lau et al. [2011] generated
fabricatable furniture parts and connectors using a grammar-based
method. Saul et al. [2011] presented an interactive system for sketch-
ing chair models that can be fabricated. To guide a structurally
sounding furniture design Umetani et al. [2012] analyzed physical
stability and torque limits during a design process. Later, Schulz et
al. [2014] used an interactive system to design 3D models by exam-
ples. Koo et al. [2014] and Rong et al. [2016] focused on creating
works-like prototypes from functional specifications. Recently, Li
et al. [2015] developed an algorithm to design foldable furnitures to
save space. All these previous methods analyze and optimize input

Arrow

Model number

Step number

Mechanical connectorFurniture component

Highlight

Figure 2: Selected instruction steps of a bedside table. Typical furniture assembly instructions consist of a sequence of steps with furniture
components incrementally depicted. Furniture components, mechanical connectors, arrows, numbers and highlights are the key visual
semantic elements in the steps. Changes of furniture configuration (Step 6-7) and view angle (Step 8-9) and a switch of different furniture
parts (Step 9-10) are all common in an instruction.

3D shapes while aiming for 3D fabrication, our work focuses on
generating 3D shapes from 2D diagrams, thus enabling furniture
customization and fabrication from 2D assembly instructions (§10).

Analyzing instructions. Many psychology studies have ana-
lyzed various types of instructions, including the use of blobs, ar-
rows [Tversky et al. 2000], animations [Tversky et al. 2002], and
the design principles of assembly instructions [Heiser et al. 2004].
Generating interactive and dynamic content based on the analysis
of instructions and drawings has been explored in other specific do-
mains, such as exploded view diagrams [Li et al. 2004], augmented
realities [Mohr et al. 2015; Gupta et al. 2012], interactive instruction
tools [Zauner et al. 2003], illustration of mechanisms [Mitra et al.
2010], and 2D line drawings [Fu et al. 2011]. We focus specifically
on the analysis of furniture assembly instructions. The reconstructed
dynamic assembly process is useful not only as an animated instruc-
tion but also for other applications such as semantic furniture editing
and personalized furniture fabrication.

3 Furniture Assembly Instructions

Numerous furniture assembly instructions are publicly available
from a number of online sites, such as IKEA and Nitori 1 , as down-
loadable vector graphic files in PDF format. While the instruc-
tions of different sites differ slightly in terms of visualization styles,
they all use similar diagrammatic elements and follow the same vi-
sual flow. We examine these instructions and summarize here their
graphic characteristics that we will exploit in our method.

Visual elements of assembly instructions. Typically, assem-
bly instructions start in the first page with a list of standardized
small components such as screws, bolts, hinges and other mechani-
cal connectors (Figure 2). To help the user identify those connectors,
associated with the graphic depiction are their model numbers. In
subsequent steps, a series of diagrams depict how individual parts
of the furniture are assembled incrementally toward a complete fur-
niture body. In these diagrams, we identify five types of commonly
used visual elements:

1Numerous furniture assembly instructions are downloadable from web-
sites such as http://www.ikea.com and http://www.nitori-net.jp.

1. Furniture components depict shapes of a furniture’s major
parts that the user needs to work on at each step of an instruc-
tion. For instance, a simple table comprises a top, four legs,
and some stretchers. In our method, we need to reconstruct
3D shapes of these components as well as the dynamic action
to assemble them together.

2. Mechanical connectors (e.g., screws and hinges) are used
to hold furniture components together. These connectors are
drawn near their expected locations on the furniture. Often-
times, there are also holes on the furniture to indicate their
placement and dotted lines to specify their orientations and
insertion directions. In our system, connectors provide impor-
tant clues for correctly aligning furniture components.

3. Arrows indicate how one furniture component is attached to
another component. They are the key to inferring the dynamic
assembling process.

4. Highlights are insets of the steps, showing detailed shapes
and model numbers of connectors. Together with the list of
mechanical connectors in the first page, the highlights instruct
the user exactly which mechanical connector should be used
at a specific step and location.

5. Numbers in the instructions mainly appear as step numbers
to indicate the order of assembly steps and as model numbers
to indicate the type of mechanical connectors.

All these visual elements are depicted using vector graphic primi-
tives, such as straight lines, polylines, polygons and Bézier curves.
A visual element often consists of many different primitives, some
of which may be redundant (e.g., overlapping with each other) or
disconnected. As a result, a key challenge of our work is to infer
the semantics of these low-level primitives and recognize high-level
visual elements (§5).

Incremental instructions across steps. Visual elements are or-
ganized into a sequence of assembly steps. Over the steps, the furni-
ture gets assembled progressively: every step of diagram introduces
some new furniture components and mechanical connectors, which
are either assembled as a new part of the furniture or attached to a
previously built furniture part (e.g., see step 10 and 11 in Figure 2).
More notably, to present key assembly steps clearly, the diagrams

Instruction Step #1

 #2

Parsing Matching with next 3D fitting

(Section 5) (Section 6) (Section 7)

Figure 3: System overview. Our system consists of three major stages: 2D parsing, 3D shape fitting, and establishing cross-step correspon-
dence, as illustrated with two furniture examples here. Please refer to Section 4 for an outline of each stage.

vary the perspective view angles across different steps (e.g., see step
8 and 9 in Figure 2). Thus, provided a new step of instruction, our
method must recognize previously built furniture parts and newly
introduced components from a possibly new view angle.

Imprecisions of assembly diagrams. We have observed that
the view angles of each furniture component differ even in a single
step, probably because of the imprecisions of drawing introduced
by the illustrators. After all, most assembly instructions accessible
online are not computer-generated (unlike [Agrawala et al. 2003]).
This imprecisions exist widely in almost every instruction, introduc-
ing a significant challenge for reconstructing 3D furniture models
reliably. To overcome this challenge, we seek to infer furniture
constraints and cast the 3D reconstruction into a constrained global
optimization problem (§6).

4 Overview

Our system takes as input an assembly instruction consisting of mul-
tiple steps of assembly diagrams. The pipeline proceeds in three
major stages. It starts by grouping vector graphic primitives and
classifying each group as one of the five types of visual elements
introduced in §3. We formulate the grouping stage as a Markov
Random Field problem, while addressing the recognition using a
supervised learning algorithm (§5). Next, our method fits 3D mod-
els for individual furniture components and retrieves mechanical
connectors from a database. We optimize their positions, orienta-
tions, and geometric sizes by taking into account assembly and geo-
semantic constraints (§6). To handle incremental instructions across
multiple steps, we identify the furniture parts that are depicted in a
new step but built in a previous step. We reuse the previously recon-
structed 3D models to help overcome the challenges of occlusions
when reconstructing new 3D components (§7). The dynamic assem-
bly process is inferred by analyzing the placement of mechanical
connectors and arrows, and cross-step correspondence. Figure 3
illustrates these stages.

User interaction. Our machine learning algorithm, while having
a high accuracy, may fail to group or recognize some visual elements
occasionally. Throughout our pipeline, we allow the user to interac-
tively correct path grouping, component recognition, and cross-step
correspondence (§8). As shown in the video and reported in §9, the
user interaction needed in practice is light and straightforward.

5 Parsing Instructions

We now present our algorithm of parsing visual semantic elements
in assembly diagrams. With an instruction step loaded from a PDF
file, the input to this algorithm is a set of vector graphic primitives,
including lines, polygons and Bézier curves. We refer them all as
paths. Our goal is to group the paths into one of the five types of
visual elements summarized in §3.

At first thought, it is tempting to apply semantic segmentation tech-
niques such as K-means clustering, nearest-neighbor assignment
and semantic texton forests [Shotton et al. 2008], as all have proven
successful for pixel images. However, unlike pixels which carry lo-
cal information (i.e., color) for labeling, a vector graphic primitive
can occupy a large region with a complex shape. It is insufficient to
group paths purely based on local information. Instead, our parsing
takes two stages, segmentation (§5.1) and recognition (§5.2): we
first separate all the paths into groups, and then recognize which
one of the visual element types each group represents. Both stages
exploit machine learning algorithms.

Preprocessing. Before segmenting the paths, we preprocess
them. We merge overlapping path segments and remove tiny seg-
ments (with a length less than 1pt). We also complete the paths that
are weakly occluded by other vector graphic primitives (e.g. high-
lights occluded by numbers and furniture parts occluded by narrow
bars): We first detect the paths whose endpoints are not connected
with other paths. Then, in a local region (20pt×20pt) around such
an endpoint, we look for another disconnected endpoint of another

Figure 4: Preprocessing of input vector graphic paths: we connect
paths that are weakly occluded.

grouped
ungrouped

uk uj

uiui

ui

uk
uj

Figure 5: A graph is built from vector graphics primitives. The
paths (the blue, yellow and red curves) corresponding to ui, uj and
uk connect at the same point, but the graph edges (ui, uj), (ui, uk),
(uj , uk) should be grouped differently, as they represent edges of
different furniture parts.

path. If both paths are almost collinear locally near the endpoints2,
we join the two endpoints and merge the paths (Figure 4).

5.1 Segmenting Vector Graphic Primitives

Rationale. We propose a supervised learning algorithm to seg-
ment vector graphic paths into semantic groups, motivated by the
following observations: (i) The visual elements differ semantically—
for instance, furniture components and connectors depict geometric
shapes while arrows indicate a dynamic process. These differences
preclude the use of shape retrieval from a database [Huang et al.
2014] or procedural rules for grouping primitives [Gennari et al.
2005]. (ii) Unlike other types of vector graphic diagrams (e.g.,
sewing patterns [Berthouzoz et al. 2013]), furniture assembly in-
structions have no text labels to help segmentation. (iii) But the
2D drawing of assembly instructions are regular (in comparison to
free-drawn sketches), suggesting that a small training set for the
supervised learning can suffice.

Graph representation of primitives. We group the vector paths
by formulating a graph labeling problem. First, we represent all the
paths of an assembly diagram using a graph G := (V, E), where
each node in V represents a path, two nodes are connected if the
corresponding paths are connected in the diagram (Figure 5). If two
paths are not connected at any of their endpoints (e.g., only inter-
secting at a point on the paths), we do not add an edge between their
nodes. Our goal here is to label each edge in E as either “grouped”
or “ungrouped”, indicating how the paths should be clustered into
visual elements.

If the lengths of two connected paths are very short (i.e., less than
5pt), the edge between their corresponding nodes is directly labeled
as “grouped”. This is because connected short paths are exclusively
used to represent screws, so these paths ought to be grouped. Addi-
tionally, if at a point there are only two paths connected, the corre-
sponding edge is directly labeled as “grouped”.

Features. We train a binary classifier to label each edge in E by
extracting feature vectors of graph edges. To decide if two paths
should be grouped, we consider two types of features: local fea-
tures capture the local path distribution at their connection point
pij , while context features capture how the paths are connected
with other non-local paths. All these features need to be translation-
and rotation-invariant.

Consider two paths ui and uj connected at an endpoint pij . We
note that often there exist other paths that also connect with ui and
uj at pij (see inset of Figure 5). A straightforward attempt of ex-
tracting local features is to rasterize a small region centered at pij

2In practice, we check if the angle between the tangential directions at
both endpoints are less then 15◦

fi(pij)
fi(pik) fi(xi) fi(xj) fi(xk)

(a) (b) (c) (d)

Figure 6: HO features at different locations in a diagram. Features
are computed in the local frame of ui. (a) The graph edges (ui, uj)
and (ui, uk) have the same local features at pij (here pik is the
same point as pij). (b-d) The context features at xi, xj and xk,
which are the far ends of paths connecting to pij , help distinguish
(ui, uj) from (ui, uk).

and use the pixel image descriptors (e.g., SIFT [Lowe 1999] and
GALIF [Eitz et al. 2012b] features). However, these descriptors,
designed for pixel images, can not fully exploit curve orientation in-
dicated by vector graphic paths. Instead, we propose a feature called
Histogram of orientations (HO) to capture the local distribution of
paths incident to a point. To ensure the translational and rotational
invariance, this feature is associated with each individual path ui
and is computed in its local frame of reference on the 2D plane. A
complete feature vector to classify an edge eij consists of a group
of HO features.

Suppose that there are N paths incident to the point pij ; each has
a tangential direction tk, k = 1..N at pij (see an example in Fig-
ure 6). Two of these tangential directions are those of paths ui and
uj , respectively. Without loss of generality, we assume t1 is the tan-
gential direction of ui. We first estimate the probability distribution
of a path incident to pij with an angle θ relative to the direction t1
using a Gaussian Mixture,

pi(θ) =
1

A

N∑
k=2

exp

(
− (θ − φ(tk, t1))2

2σ2
θ

)
, (1)

where φ(tk, t1) indicates the angle between two directions tk and
t1, measured clockwise in the local frame of ui, σθ controls the
impact range of each incident path (σθ = 15◦ in our examples),
and A is a constant to normalize the probability distribution pi(θ).
Next, we simply quantize this probability distribution to obtain an
HO feature of ui at pij : we evenly split all 2D directions [0◦, 360◦]
into 24 bins and compute their weights by integrating pi(θ) over
the corresponding range of each bin, resulting in an HO feature, a
vector of length 24. We denote it as fi(pij). Figure 6 visualizes
four HO features with color-coded circular histograms, where the
red color indicates a large value and blue color indicates zero.

Next, we compute context features, ones that describe the path con-
nection in non-local regions. Consider two paths ui and uj connect-
ing at pij while respectively having two other endpoints xi and xj
distant from pij (Figure 6). We define the context feature of the
edge eij as {fi(xi),fi(xj),fj(xi),fj(xj)}, a vector of length
96, where the former two HO features describe path connections of
ui and uj at their remote endpoints, measured in the local frame of
ui; and the latter two HO features describe that in the local frame
of uj .

The context feature is of importance for resolving local ambiguity at
pij . For instance, as shown in Figure 6, two connection points pij
and pik can have very similar local features while having different
semantics. But accouting for the path connections at their remote
ends can help distinguish these cases.

Lastly, we assemble the feature vector for the edge eij by concate-

Furniture component
Mechanical connector

Number Arrow
Highlight

Figure 7: (left) segmentation results with color-coded groups;
(right) recognition results with color-coded visual semantic types.

nating both local and context features:

fij = {fi(pij),fj(pij),fi(xi),fi(xj),fj(xi),fj(xj)}. (2)

Segmentation. We use the computed features to train a random
regression forest [Fanelli et al. 2011]. Comparing to a standard
random decision tree, the random regression forest is known to have
the advantages of being efficient in both training and testing of large-
scale data and being able to avoid over fitting.

During the test stage, provided an edge eij with a feature vector fij ,
the random regression forest outputs the likelihood P (eij = c) of
the edge eij being labeled as c (c = 0 for “grouped” and c = 1
for “ungrouped”). To determine the binary labels from continuous
likelihood values, we formulate a Markov Random Field problem,
minimizing the following energy function over all possible binary
labels:

argmin
{eij=0/1}

∑
eij∈E
c=0,1

E(eij = c) + λ
∑

eij ,ejk∈E
c,d=0,1

E(eij = c, ejk = d). (3)

Here E(eij = c) = − logP (eij = c) is the unary term measuring
the cost of an edge being labeled as c, and E(eij = c, ejk = d) is
the binary term penalizing when edges eij and ejk are connected at
uj but assigned with different labels. We define this term as

E(eij = c, ejk = d) =

exp

(
− (li−lq)2

2σ2
l

− (θi−θq)2

2σ2
θ

)
, if c 6= d.

0, otherwise.
(4)

where li is the path length of i and θi is unit orientation. σl is 10pt
and σθ is 15◦ in our implementation. The binary term favors the
same label for two edges eij and ejk if the paths ui and uk have
similar lengths and incident directions at the connection point. We
solve this Markov Random Field problem using the standard graph
cut algorithm [Boykov et al. 2001].

Grouping. After labeling all the edges, we remove the edges that
are labeled as “ungrouped”, and detect the connected components
of the graph, naturally forming the paths into individual groups.
Figure 7 illustrates one example of grouped paths.

5.2 Recognizing Visual Elements

We now recognize each group of primitives as one of the five types
of visual elements, including furniture components, mechanical con-
nectors, arrows, highlights, and numbers. For this classification
problem, we again use the random regression forest method [Fanelli
et al. 2011], but with features aiming to capture vector graphic pat-
terns of an entire group.

Features. Inspired by the recent work on sketch-based shape re-
trieval [Eitz et al. 2012b], we use their GALIF features in our learn-
ing algorithm. Referring to that paper for more details, we outline
the algorithm here and highlight our modifications in order to ap-
ply it to our problem. Given a group of vector graphic primitives,

we rasterize it into a 128px×128px image. The GALIF feature de-
scribes a local patch (32px×32px) of this image. The selection of
patches depends on the stage of the learning algorithm, whether it
is for training or recognition (more details later). Here we present
the algorithm operating on a single patch.

We start by applying a set of Gabor filters (6 in our case) to the
patch, resulting in 6 filtered patches. The filter orientations are
uniformly sampled over all 2D directions over [0◦, 360◦] to capture
the local sketch directions. Next, we split each filtered patch into
4×4 cells; each cell has a resolution of 8px×8px. We then average
the color values in each cell, producing 6×4×4 scalars for a single
patch. A GALIF feature is a vector stacking all these scalars. In
addition, since a vector graphic image is scalable, we consider the
relative size of the group by computing area of the bounding box
of the primitive group relative to the page size. This number is put
together with the GALIF feature to form the feature vector (with a
length of 97) of a patch.

Training. We use the random regression forest for recognizing
visual elements, again leveraging its ability of avoiding over fitting.
During training, we rasterizing every group into a 128px×128px
image, and then randomly sample 50 patches to compute their fea-
tures for constructing the training set. Since the assembly instruc-
tions consist of only sparse paths, with no color filling inbetween,
we avoid using patches in empty regions and only sample patches
along vector graphic paths.

Recognition. To classify a given group of paths, we uniformly
sample 100 patches from its 128px×128px rasterization. We use
the decision trees in the trained random regression forest to classify
every patch and aggregate the results. To classify a patch R using a
single tree j, output from this decision tree is the likelihood function
Pj(c|R) of the patch R being labeled as a visual type c, where c
is one of the five visual element types. The aggregated likelihood
function P (c|O) of a primitive group O being classified as type c
is an average of the likelihood functions over all sampled patches
from all decision trees,

P (c|O) =
1

K ×N

N∑
i=1

K∑
j=1

pj(c|Ri),

where N is the number of sampled patches, Ri iterates through all
patches, and K is the number of decision trees in the regression
forest. Finally, the group is classified as a visual element type c with
the largest likelihood.

Remark. After the recognition, we post-process two types of visual
elements as special cases after they are recognized. (i) If a visual
element is recognized as numbers, we further use Microsoft’s OCR
Library to identify the numerical values. Numbers in the diagram
may be positioned along a tilted line. To improve OCR accuracy,
we first level the numbers by finding the line across the centers of
the numbers and aligning that line with x-axis. In our examples, this
step helps to yield 100% OCR accuracy. (ii) Highlights are meant
to show details (e.g. how to assemble the screws with screwdrivers,
detailed shapes, connector numbers). Since the shapes can be recon-
structed from the large scale diagram and we do not aim to illustrate
how to assemble the screws, we safely discard all the highlights
once they are recognized (but keep the numbers inside).

6 Dynamic 3D Reconstruction

After detecting visual elements in an assembly diagram, we now re-
construct 3D shapes. Among the five types of visual elements, only
two represent 3D objects: the furniture components and mechanical
connectors. We therefore focus on these two types in this section.

base face

extrusion edges

e0

e1

(a) (b) (c) (d)
Figure 8: Extrusion. Given a 2D diagram of a furniture part (a),
we detect the extrusion edges and the base face (blue). Although us-
ing the vanishing point directly estimated using the extrusion edges,
the fitted 3D shape matches well to the drawing (b), it fails to sat-
isfy important geometric constraints such as the right angles at the
corners of the board (c). In contrast, our optimized vanishing point
helps to capture these shape regularities.

Reconstruction of 3D mechanical connectors is straightforward, as
almost all mechanical connectors are standardized and reused by
many different furnitures. In assembly diagrams, the specific model
of a mechanical connector is specified by text label, with both the
connector and its label placed in a highlight (Figure 2). In light of
this, we prepare 3D models of commonly used mechanical connec-
tors and store them in a database. In practice, the database consists
of 147 commonly used and manually modeled connectors, includ-
ing different types of screws, bolts, studs, and hinges. During recon-
struction, we detect the text in a highlight and use it to retrieve the
3D model of the labeled connector.

Much more challenging is the 3D construction of furniture compo-
nents, as we need to not only reconstruct the 3D shapes of individual
components but also infer their sizes and 3D positions and orienta-
tions so that they can be properly assembled. To this effect, we iden-
tify constraints indicated by mechanical connectors and arrows and
optimize for the components’ 3D shapes. Throughout, we also need
to overcome imprecisions of the assembly diagrams—for example,
the perspective projections of the components are often inaccurate,
and even the view points are inconsistent.

Algorithm outline. Our algorithm has three stages: (i) we start
from reconstructing 3D shapes of individual furniture components
(§6.1); (ii) to assemble them together, we then optimize the positions
and orientations of all components (§6.2); (iii) lastly, we reconstruct
the dynamic assembly actions, extracting the directions and orien-
tations of furniture components and mechanical connectors at each
assembly step (§6.3). This algorithm operates on a single step of an
assembly instruction. We will extend it to handle cross-step recon-
struction in the next section.

6.1 Fitting Individual Parts

First, we reconstruct the 3D shapes of furniture components. Similar
to the previous method [Cao et al. 2014], we hypothesize that the
individual components are shapes extruded from 2D faces, called
base faces. An extrusion direction is perpendicular to the base face,
and its length is often short, resulting in thin board shapes (Figure 8).
However, unlike their method, we aim to automatically detect base
faces and extrusion directions, without user guidance. Briefly, we
will first estimate camera settings used to project 3D shapes onto
the 2D image plane, and then recover their base faces and extrusion
directions in 3D.

Parallel edges and vanishing points. Our algorithm is built on
two concepts, parallel edges in 3D and their vanishing points in
2D. An extruded 3D shape has two large, parallel faces, resulting
in many pairs of parallel edges. After perspectively projected on a
2D plane, each pair of parallel edges, while remaining almost par-
allel, produces a vanishing point. Thus, we check all pairs of line
segments of a furniture component. If two segments are nearly par-
allel (i.e., the cross product of their directions is below a threshold),
we treat their 3D counterparts as parallel edges. Similar schemes

of detecting parallel edges have also been used in image-based 3D
reconstruction works (e.g., [Zheng et al. 2012]).

6.1.1 Camera Fitting

We use the well-established 3D vision theory to estimate camera
parameters and refer to the textbook [Harltey and Zisserman 2006]
for more details. A camera projection is described by its intrinsic
matrix K and extrinsic matrix [R|t]. The former matrix captures the
camera’s focal length and image size, while the latter describes the
camera’s 3D orientation and location. Since we will estimate the
relative positions of furniture components in the next stage (§6.2),
here we can safely assume that the camera is axis aligned (i.e., R =
I3×3) at the origin (i.e., t = 0). Additionally, since the image size
only determines the 3D shape’s geometric size which is unimportant
at this stage, we simply use a fixed camera image size. As a result,
only the camera’s focal length f needs to be estimated.

Using the 3D version theory (Result 8.22 on page 215 of [Harltey
and Zisserman 2006]), one can estimate the focal length f from
the positions of two vanishing points whose corresponding parallel
lines in 3D are perpendicular to each other. In our problem, the
extrusion direction is normal to the base face, and thus edges along
the extrusion direction are perpendicular to edges of the base face
(e.g., the red and blue lines in Figure 8). We detect all pairs of paral-
lel segments in a 2D furniture component, and choose the shortest
segment pairs as the component’s extrusion edges, whose direction
is the detected extrusion direction projected on 2D (Figure 8). The
other parallel segments are edges on the base face, and thus per-
pendicular to the extrusion edges in 3D. Thereby, we obtain two
vanishing points and use them to estimate the focal length f .

To handle the imprecisions of perspective projections, we use many
pairs of vanishing points of a furniture component to compute f
values and average them. Further, we assume that all furniture com-
ponents in the same step are projected using the same camera set-
tings (except insets inside highlights which are already ignored after
parsing). So we estimate the camera parameters from individual
furniture components and average them.

6.1.2 3D Shape Fitting

We now use the estimated intrinsic matrix K to reconstruct the base
face and extrusion direction in 3D, and recover the 3D shape of
a furniture component. Suppose a pair of parallel edges pointing
along a 3D direction n has a 2D vanishing point pv . When the
camera is axis-aligned at the origin, n and pv are linearly related,

n = K−1[pTv 0]T . (5)

This relationship suggests a simple approach of estimating the 3D
extrusion direction ne using the vanishing point of detected extru-
sion edges. Unfortunately, because the extrusion edges are often
very short, the resulting vanishing point is especially susceptible
to projective imprecision, producing unnatural shape fitting (Fig-
ure 8). Instead, we estimate the vanishing point of extrusion edges
by formulating an optimization problem.

Vanishing point optimization. Consider a vanishing point pv
and the computed 3D extrusion direction ne using Eq. (5). Since
the base face in 3D is perpendicular to ne, its 3D plane satisfying
ne · x = 0 (up to a 3D translation, which is unimportant at this
stage). Any line on the base face of 2D can be back-projected onto
this 3D plane to compute their 3D directions. Our optimization
strategy is to choose a vanishing point that preserves parallelism
and orthogonality relations of the lines on the base face, after back-
projecting them on the base face’s 3D plane. To this end, we formu-

late an optimization problem,

min
pv

[wpfp(pv,Sp) + wofo(pv,So) + wefe(pv,Se)] . (6)

In this formulation, fp(pv,Sp) enforces parallelism relations of
every pair of detected parallel lines on the base face, defined as

fp(pv,Sp) =
1

|Sp|
∑

{s,t}∈Sp

‖s× t‖2,

where Sp is the set of detected parallel line pairs on the base face;
each pair, after back-projection, has the 3D directions s and t. Sim-
ilarly, the orthogonality term fo(pv,So) is

fo(pv,So) =
1

|So|
∑

{s,t}∈So

‖s · t‖2,

where So is the set of orthogonal 3D line segments detected on
the 2D diagram. To construct So, we first detect all Y-junctions
connecting one segment (i.e., an extrusion edge) pointing along the
detected extrusion direction and other two segments on the base
face. We consider the latter two segments orthogonal to each other
if the angle inbetween is in the range of [60◦, 120◦]. Lastly, the
term fe(pv,Se) penalizes the deviation of the vanishing point from
the detected extrusion direction, defined as

fe(pv,Se) =
1

|Se|
∑

(e0,e1)∈Se

∥∥∥∥ pv − e0

‖pv − e0‖2
− e1 − e0

‖e1 − e0‖2

∥∥∥∥2
2

,

(7)
where Se is the set of extrusion edges, and e0 and e1 are 2D end-
points of an extrusion edge (Figure 8-a).

We solve the optimization problem (6) using Matlab’s fmincon func-
tion. The resultant vanishing point pv determines the extrusion
direction ne, which in turn defines the 3D plane of the base face
(i.e., nTe x = 0). Next, we estimate the extrusion length h that
translates the 3D plane to form another face of the 3D shape.

Extrusion length. We estimate h by formulating another opti-
mization problem. As denoted in Eq. (7), suppose e0 and e1 are
endpoints of an extrusion edge. Without loss of generality, we as-
sume that e0 is on the base face, and e1 is on the extruded base face
(Figure 8-a). We first back-project e0 on the 3D plane of ne ·x = 0
and obtain a 3D point v0. Then its connected point e1 in 3D is
v0 + hne. This allows us to optimize h by solving

min
h

1

|Se|
∑

(e0,e1)∈Se

‖P(v0 + hne)− e1‖22 ,

where P is the camera projection matrix that projects a 3D point
onto the 2D image plane, as estimated in §6.1.1.

Remark. It is possible that a furniture component has only one ex-
trusion edge. This happens when that furniture component joins
other furniture parts (e.g., see the middle bar connecting two legs
in Figure 9-c). In this case, the problem (6) is ill-posed, as a sin-
gle segment is insufficient to uniquely determine a vanishing point.
Instead of solving (6), we first reconstruct the 3D shapes of con-
nected furniture parts (e.g., the two legs in Figure 9-c). We then
obtain the 3D extrusion direction ne of the middle component by
back-projecting its 2D extrusion edge onto its touching face of the
3D shape of the connected furniture part. Thereby, we sidestep the
problem (6).

(a) (b) (c)
Figure 9: (a) Connector constraint from a unidirectional screw;
(b) connector constraint from a bidirectional screw; (c) component
constraint, where two legs are connected with a bar.

6.2 Handling Constraints

Now we assemble reconstructed 3D furniture components by prop-
erly translating, rotating and scaling them. This stage accounts for
two levels of constraints. At a higher level, we ensure that the com-
ponents are aligned correctly with compatible sizes and orientations
by analyzing the placement of furniture components and mechani-
cal connectors in 2D assembly diagram. At a lower level, we notice
that furnitures often have regular shapes, which satisfy some geo-
semantic relations—for example, some faces are coplanar, and legs
have the same length. We further refine the 3D shapes by incorpo-
rating these constraints.

In this stage, the optimized variables are 3D rigid transformation
together with nonuniform scales for all furniture components. We
denote the 3D transformation of a component i using a matrix Ti,
parameterized by 9 degrees of freedom (DoFs) including a trans-
lation ti (3 DoFs), a rotation Ri (3 DoFs), and nonuniform scales
si (3 DoFs). We jointly optimize all Ti using two sequential opti-
mizations, starting with the one of ensuring assembly constraints,
followed by the one with geo-semantic constraints.

6.2.1 Shape Transformation with Assembly Constraints

In an assembly diagram, there are two types of illustrations indicat-
ing assembly constraints.

Connector constraint. A mechanical connector connects two
furniture components (Figure 9). In a diagram, its connection direc-
tion is indicated by a line, and its connection points are indicated by
two points on both components respectively. We trace the line until
we find 2D connection points located on two furniture faces. Since
we have extracted the 3D shapes of both components i and j, we
back-project the connection points to their located 3D faces (called
touching faces) to obtain their 3D positions, denoted as hi and hj ,
respectively. With these positions, we define a cost function term as

Ea =
1

|H|
∑

{i,j}∈H

(∥∥∥∥ Tjhj − Tihi

‖Tjhj − Tihi‖2
− Tini

∥∥∥∥2
2

+ ‖Tini − Tjnj‖22

)
,

where H denote the set of mechanic connectors that impose con-
straints; ni and nj are the 3D normal directions of the touching
faces, determined after the 3D shape fitting stage (§6.1). Here the
first term requires that the direction from hi to hj remains consis-
tent with the touching face’s normal direction after 3D transforma-
tion, while the second term requires the consistency between the
two transformed normals (Figure 9-a). Sometimes, one of the two
connection points can be occluded by a furniture component (Fig-
ure 9-b). To address this case, we first try to locate a connection
point that is on the opposite but visible face and along the same
connection direction. If such a point exists, we translate it to the oc-
cluded face to serve as the connection point. Otherwise, we simply
use the middle point along the extrusion direction on the occluded
face as the connection point.

Component constraint. Another type of constraints emerges
when two furniture components are connected by another furniture
component c (Figure 9-c). A typical example is the H-stretcher of a

hi

hj

(a) (b) (c)

Figure 10: (a) The initial 3D fitted shapes have incorrect positions,
orientations and sizes; (b) the optimization using assembly con-
straints move the parts to correct positions; (c) these 3D shapes
are further refined under geo-semantic constraints to improve shape
alignment while retaining the match with the 2D drawing.

bench in Figure 9. Oftentimes, in an assembly diagram, this type of
connection is directly shown by putting three components closely
together, without any depiction of mechanical connectors. We de-
tect this configuration by checking if the component c has extrusion
edges that are on the faces of the connected components, i and j.
Putting all this kind of configurations in a set C, we define a cost
function term,

Ec =
1

|C|
∑

{i,j,c}∈C
[Tcec · (Tici − Tccc)]

2+[Tcec · (Tjcj − Tccc)]
2 ,

where ci, cj and cc are the (bounding-box) centers of component i,
j, and c, respectively, and ec is the extrusion direction of c. This con-
straint requires the plane formed by the transformed center points
of i, j and c perpendicular to c’s extrusion direction.

Regularization. In addition, we add a regularization term in the
cost function. Consider a single furniture component i, whose vec-
tor graphic paths have a set of 2D endpoints, pij , j = 1..Ni. We
compute their 3D positions vij , j = 1..Ni via back-projecting pij
to their corresponding 3D faces computed in the shape fitting stage
(§6.1). To ensure the 3D shapes holding together as indicated in the
diagram, we require that vij after applying transformation Ti have
a 2D projection at pij . Formally, we have

El =
β

N

∑
i∈B

Ni∑
j=1

∥∥P (Tiv
i
j)− pij

∥∥2
2
. (8)

Here P (·) is the camera’s projection operator from 3D to 2D, known
from the camera fitting stage (§6.1.1); B denote the set of furniture
components; N is the total number of 2D endpoints of all furniture
components; and β is the regularization weight (β = 0.001 for all
our examples).

The cost function sums up the three terms. We minimize it over
the transformations Ti of all furniture components. After trans-
formed by Ti, the furniture components can be properly assembled,
as shown in Figure 10-b.

6.2.2 Shape Regularization with Geo-semantic Constraints

Only after the 3D shapes are assembled together, we are able to
infer geo-semantic relations between parts. Inspired by [Chen et al.
2013], we construct a cost function to optimize the satisfaction of
three types of geo-semantic constraints that account for parallel
edges, coplanar faces, and similar geometric sizes. Minimizing this
cost function produces a new set of Ti that improve the regularity
of the reconstructed 3D shapes, an important property of furnitures
as man-made objects (Figure 10).

Parallel edges. Consider a pair of 3D parts, Bi and Bj , after
applying the transformations computed in §6.2.1. We add a cost

function term if an edge ai on Bi is nearly parallel to another edge
aj on Bj (i.e., the angle inbetween is less than 15◦), namely

Ep =
1

|P|
∑
{i,j}∈P

‖(Tjaj)× (Tiai)‖22 ,

where P is the set of component pairs that have parallel edges.

Coplanar faces. When Bi has a face close to another face on
Bj and the angle between both faces are less than 15◦. We use ci
and ni to denote the face’s center point and normal direction in 3D,
respectively. and define a coplanarity term,

Ef =
1

|F|
∑
{i,j}∈F

(∥∥∥∥ Tjcj − Tici

‖Tjcj − Tici‖2
· Tini

∥∥∥∥2
2

+ ‖Tini − Tjnj‖22

)
.

Similar geometric sizes. Additionally, we compute the oriented
bounding box of each Bi. Let li be one side length of Bi, and lj
is for Bj , we add the following size similarity term if the length
difference between li and lj is less than 5%:

Es =
1

|S|
∑
{i,j}∈S

‖Tj(lj)− Ti(li)‖2.

We combine the three terms into an objective function and solve
for a new set of Ti initialized with the transformations from §6.2.1.
The resultant Ti are close to the initialization, so the assembly con-
straints are retained. But they regularize the 3D shape reconstruc-
tion, as shown in Figure 10.

6.3 Dynamic Assembly Process

With the static shapes of furniture components reconstructed, we
now recover the dynamic assembly process described in a single in-
struction step. To this end, two visual element types are informative
and essential to our algorithm.

Connectors. A mechanical connector indicates how two compo-
nents are joined together. Through optimizing shape transforma-
tions Ti in §6.2.1, we have already aligned 3D shapes to their con-
nectors and known which two faces need to touch each other. In this
stage, we simply translate the 3D components along the connector’s
join direction until the two faces touch.

We also recover the process of mount mechanical connectors onto
the furniture. Recall that in §6.2.1 we have detected the connection
points. Let hi and hj denote two connection points on two touching
faces (Figure 10). We align the connector with the line segment
hihj and insert it along the line’s direction. We also scale the
connector’s 3D model until its 2D projection on the image plane
matches that in the assembly diagram.

Arrows. In other cases, an arrow is used to indicate an assembly
action (Figure 2). To detect the arrow’s pointing direction, we start
with a predefined arrow shapeA0 and use 2D shape matching [Shao
et al. 2011] to compute an affine transformation T0 that matches
A0 with the arrow shape in the diagram. We then use T0 to trans-
form A0’s initial direction and obtain the arrow’s pointing direction.
Next, searching in a local region around the arrow, we find the fur-
niture components that are in proximity to the arrow’s head and tail.
The furniture component near its head is the assembled component,
while one near its tail is the target component. Lastly, we move
the assembled component along the arrow’s point direction until it
touches the target component.

There are also 3D arrows depicted using curved paths (e.g., see
step 7 in Figure 2). We distinguish 3D arrows from 2D arrows
by checking whether they consist of curved paths or only straight
paths. These arrows are used to indicate the change of orientation

of a furniture component or the rotation of screws. Since the orien-
tation changes will be identified through the cross-step correspon-
dence later in §7, and since the screws are always inserted along the
pointed direction, there is no need to rely on 3D arrows to recover
assembly actions. Thus, we ignore them.

7 Cross-Step Correspondence

With the algorithm operating on a single instruction step presented,
we move on to process multiple instruction steps. An assembly
instruction is organized in an incremental fashion across multiple
steps: a later step depicts assembly of new furniture components
added to previously assembled parts. Algorithmically, the key task
is to recognize previously assembled furniture components in a new
instruction step.

Challenges. We aim to address three challenges in this stage: (i)
The view angle can change drastically across steps, so existing fur-
niture components may have very different 2D projections on a new
step. (ii) More notable is the problem of occlusion: as furniture
components and mechanical connectors are progressively assem-
bled, more components become occluded, rendering individual 3D
fitting unreliable. (iii) The projective imprecision remains a prob-
lem. Even with a precisely known view angle, the projection of
previously assembled parts may not fully match their depiction on
a new step.

Formally, given a new step of assembly diagram and a group of
previously assembled furniture parts G = {G0, G1, ..., Gm} in 3D,
we detect if any of the parts in G appears in the new diagram. If
so, we need to transform the assembled furniture parts to align with
their projection in the new diagram. For this purpose, our algorithm
takes the following two stages.

Estimating view angle. Using the parsing algorithm in §5, we de-
tect furniture components in the current assembly diagram. We then
group them into connected components based on their proximity in
the diagram. Suppose there are n connected furniture components,
named as C = {C0, C1, ..., Cn}. Next, we select 72 view angles
by uniformly sampling the surface of a unit sphere. For each view
angle, we project furniture parts in G onto the image plane, and the
2D projections are G̃ = {G̃1, ..., G̃m}. In practice, we implement
the sampling and projection in OpenGL to leverage the fast and par-
allel performance of Graphic hardware. We again use the 2D shape
matching algorithm [Shao et al. 2011] to check if a part in G̃ matches
a component in C. We choose this algorithm because of its ability
to handle partial matching, a feature essential when Ci is occluded
by other parts or connected with new components introduced in the
current step. The sampled view angles might not precisely align
with the true view angle. Therefore, after establishing a matching
between a furniture part G̃i and a component Cj , we improve the
view angle using the standard 3D-to-2D iterative closest point (ICP)
algorithm [Besl and McKay 1992].

When G̃i partially matches Cj , we identify the fully matched fur-
niture component in Cj as the previously assembled part Gi, and
therefore do not build a new 3D model for that furniture component.
In addition, we establish a set of correspondence relations between
the 3D endpoints of edges in Gi and their corresponding 2D points
in Cj . We denote this set of 3D points as Vij = {vij,1...vij,k} and
their corresponding 2D points as Pij = {pij,1...pij,k}. We will
use this correspondence and notation in the next stage.

Transforming existing shapes. To reuse Gi in the dynamic 3D
reconstruction process (as presented in §6) of the current diagram,
we need to transformGi to align with the new furniture components.

(a) (b) (c)
Figure 11: User interactions. (a) The user uses strokes (in red) to
add (or remove) paths into (or from) a selected group. Given an
incorrect 3D-2D alignment shown in (b), the user drags the 3D part
to the approximately correct location (c). It is then automatically
snapped to align with the 2D drawing (see video).

Similar to Eq. (8), we estimate Ti by minimizing the cost function,

Et =
1

|N |
∑

(i,j)∈N

∑
k

‖P(Tjvij,k)− pij,k‖22 ,

where N denote all pairs of matchings between G̃ and C. Here
we safely ignore the connector and component constraints used in
§6.2.1, as they have been enforced when we construct the 3D furni-
ture parts Gi earlier. After solving this optimization problem, we
transform the assembled furniture shapes with the computed Ti.
The rest of the furniture components are newly introduced in the
current instruction step. We therefore follow the algorithm in §6 to
construct their 3D shapes and dynamic assembly process.

8 User Interaction

Occasionally, the pipeline presented above can not handle diagrams
fully correctly. This is because, like many machine learning algo-
rithms, our parsing algorithm, while having a high accuracy (see Ta-
ble 4 and the supplemental document), can fail in certain cases. We
therefore provide a user interface to allow interactive corrections.

In our pipeline, three stages may require user correction. (i) In the
path grouping stage (§5.1), the user can click and select individual
paths, and add them into or remove them from a group (Figure 11-a).
(ii) In the recognition stage (§5.2), the user can click and select a
path group, right-click to pop up a menu, and assign the group a
correct visual element type. (iii) When we build cross-step corre-
spondence (§7), an existing 3D model may be incorrectly aligned
with a 2D drawing. We allow the user to drag the 3D model to an
approximately correct position (Figure 11-b). Then the 3D shape
is snapped to align with the drawing automatically using our 3D-
to-2D ICP algorithm. The supplemental video illustrates these user
interaction stages. As summarized in Table 4 and the supplemen-
tal document (for all our examples), our system requires a small
amount of user interactions; most instruction steps are automatically
processed.

9 Evaluation

Experiment Setup. We extensively evaluated our method using
a wide variety of assembly instructions downloaded from two sites,
Ikea and Nitori. In total, we have tested our method on 70 furniture
assembly instructions. These examples are chosen by checking al-
most all furniture categories available on the websites, and we test
our method over the assembly instructions, in which the furnitures
are extruded shapes, since our method is not designed for other
types of furnitures such as those made by rods, clothes, and link-
ages. In the end, our examples span a wide range of furniture types,
covering outdoor furniture, baby and children products, bathroom

Example Shelf TV Cabinet Stool Bedside table Desk Underbed Chair Footstool Filing box Storage box Bench Coffee table
#Steps 3 11 8 15 32 9 7 5 8 18 13 8
#Parts 8 11 15 11 23 23 13 5 6 7 11 6

Table 1: Statistics. The complexity of instructions of 12 representative assembly instructions. Other examples are reported in the supplemental
document.

storage, decoration, kitchen cabinets and appliances, and so on. To
avoid copyright issues, these examples presented in the paper were
redrawn by our artists.

For the sake of saving space, we include 12 representative examples
here, and refer to the supplemental document (and the secondary
supplemental video) for all the examples. For the 12 examples, we
summarize the complexity of the instructions in Table 1 and the
evaluation results in Table 4, including the accuracy of individual
stages and the user interaction cost. The statistics of the full set of 70
examples is reported in the supplemental document. Among the 70
examples, the authors modeled only 10 of them, and the remaining
60 examples were modeled by four students in the Master Program
of the Computer Science Department. These students could quickly
adopt our user interfaces after about 10 minutes of training.

In order to evaluate the accuracy of all the examples, we painstak-
ingly labeled the paths, correct the segmentation, and indicate the
type of each visual elements for all of them. The manually labeled
data is only used as a ground truth to evaluate the accuracy of dif-
ferent stages of our algorithm. The accuracy in Table 4 is measured
by the ratio of correct operations (as indicated by comparing to the
ground truth data) to the total operations. We report the number of
user interactions needed for segmentation and recognition in a for-
mat of “a/b” in Table 4, in which “a” indicates the number of visual
elements that require user corrections, and “b” indicates the total
number of visual elements detected in that instructions. The same
format is used for reporting the number of interactions of the cross-
step correspondence stage, for which “a” indicates the number of
cross-step correspondence pairs that need user corrections, and “b”
is the total number of cross-step correspondence pairs. Finally, to
evaluate the quality of the optimizations, the column of “vanishing
error” reports the residual of Eq. 6, while the column of “assembly
error” reports the residual of Ea + Ec + El used in §6.2.

9.1 Validation of Semantic Segmentation

We start by evaluating our semantic segmentation algorithm. To cre-
ate ground truth for the validation, we manually labeled 172 pages
from assembly instructions, separated from those used in our exam-
ples, and group the graphic primitives into semantic components.
In total, our testing data contain 611 furniture parts, 796 mechani-
cal connectors, 271 arrows, 1652 numbers, 367 highlights and 201
other components (e.g., screwdriver and 2D primitives in highlights).
Every assembly step also produces a graph (recall Section 5.1), for
which we also manually label the connections of graph edges, and
select 420 “grouped” edges and 420 “ungrouped” edges for the eval-
uation of segmentation. In a different experiment, these labeled data
are used to train our algorithm and generate the 70 examples. There
is no overlap between the labeled data and the examples.

Labeling accuracy of graph edges. We use cross-validation
to evaluate the labeling accuracy of graph edges of our algorithm
(§5.1). Specifically, we randomly split the labeled data into 10 vali-
dation groups. Given a group, we train a random regression forest
using the data from the remaining 9 groups. This process is repeated
for every single group. We use the average accuracy to measure the
performance of our algorithm. In these tests, our algorithm is able
to achieve a 99% training accuracy and a 83% testing accuracy on
average.

Training Accuracy Testing Accuracy
HO (local) 0.955 0.771

SIFT (local) 0.990 0.783
HO (full) 0.991 0.836

SIFT (full) 0.993 0.802

Table 2: Evaluation of segmentation using HO and SIFT feature.

Comparison of features. In Table 2, we compare the use of dif-
ferent features. “HO” indicates the use of our HO features, while
“SIFT” indicates the use of the SIFT features [Lowe 1999], which
have been commonly used in pixel-image segmentation. In addition,
“local” uses only local features, while “full” includes the context
features, as introduced in §5.1. The experiments show that while
SIFT feature leads to higher training accuracy, our algorithm includ-
ing both the local and context features produces the highest testing
accuracy, and thus is indeed suitable for segmenting 2D assembly
diagrams. Moreover, Table 2 also shows that the use of context
features improves the performance.

Remark. We notice that the average accuracy of HO is not signifi-
cantly higher than the use of SIFT. However, HO is more robust if
the testing example has different drawing styles in its vector graph-
ics depiction. This is desired, as we found that instruction diagrams,
depicted with vector graphic paths, may use different line widths and
drawing sizes in many cases. HO features are consistent when the
line width and drawing size vary, but SIFT features would change
in those cases, because SIFT features are computed in a local region
with a fixed resolution (we use 10pt in our experiments for the best
SIFT performance).

Recognition accuracy. We also use cross-validation to evalu-
ate the recognition accuracy on the labeled data. Again, we ran-
domly split these data into 10 validation groups and perform a cross-
validation similar to the aforementioned tests. Table 3 summarizes
the recognition accuracy for each visual element category, showing
that our algorithm can reach over 90% recognition accuracy for all
the 5 categories. Here we measure the recognition accuracy after
the grouping stage (§5.1) with user correction (if needed), because
the recognition stage can proceed only when the grouping is fully
correct.

Part Connector Number Arrow Highlight
Train 0.990 0.993 0.996 0.981 0.976
Test 0.920 0.938 0.988 0.901 0.965

Table 3: Evaluation of recognition using GALIF features.

9.2 Validation of 3D fitting

Vanishing point optimization. As illustrated in Figure 8, our
optimization of vanishing point can effectively regularize the 3D
fitted shapes. This is important as many 2D assembly diagrams have
imprecise perspective projections. The average regularization error
for individual examples are listed in Table 4 and the supplemental
document, and the total average error is 6.0e−4.

Assembly constraints. Reconstructing 3D shapes of detected
furniture components individually can not guarantee that they fit
together. As shown in Figure 10, incorporating the assembly con-
straints (§6.2.1) and geo-semantic constraints (§6.2.2) improve the

(a) (b) (c) (d)

Figure 12: The view angle changes largely between two steps (a-b).
Using 3D shapes reconstructed in a previous step (c), the correspon-
dences between the two steps are built (§7) (d).

(a) (b) (c) (d)

Figure 13: Provided a 2D drawing of a bench with severe occlu-
sions (a), we can only recover unblocked 3D shapes if starting from
scratch (b). With the existing shapes from previous steps (c), a
complete 3D shape of the bench can be recovered (d).

furniture alignment significantly. Again, the average 3D fitting error
of this stage (§6.2) for individual examples are summarized in Ta-
ble 4 and the supplemental document. The total average error is
8.0e−4.

9.3 Validation of Cross-Step Correspondence

We evaluate the accuracy of our cross-step correspondence algo-
rithm using the commonly-adopted metric of Intersection Over
Union (IOU), which measures the 3D-to-2D matching score with
respect to the manually labeled ground truth. Consider a con-
nected furniture component C. The IOU score is defined as
Npos/(NC + Nneg), where NC is the total number of paths of
C, Npos is the number of correctly matched paths of C, and Nneg
is the number of incorrectly matched paths. The average matching
score for each example is given in Table 4 and the supplemental
table, and the total average score is 0.868.

Large viewpoint change. Our method can reliably handle large
change of view angles across two steps, as shown in Figure 12 and
correctly match the assembled 3D furniture parts with the drawing
in a new assembly diagram.

Heavy occlusions. Our method is also robust to handle severe
occlusions by exploiting cross-step correspondence. One example
is illustrated in Figure 13.

Improvement of segmentation accuracy. Figure 14 shows an
example where cross-step correspondence also helps to improve seg-
mentation. This is also confirmed in Table 4 and the supplemental
table: the segmentation accuracy for our final examples is gener-
ally higher than the accuracy evaluated through cross-validation in
§9.1, where no cross-step correspondence is exploited. In addition,
we quantitatively compared the segmentation accuracy with and
without the use of cross-step correspondence in our 12 representa-
tive examples and summarize the results in Figure 15. In almost
all examples, segmentation accuracy is improved with the use of
cross-step correspondence.

10 Applications

We now present three applications of our system. We first apply
our method to generate 3D animated furniture assembly processes.
Next, with 3D reconstructed shapes along with their semantic con-
straints, we semantically edit furniture parts and customize with

Figure 14: Two boards are incorrectly labeled “grouped” (left,
marked in blue). By exploiting the cross-step correspondence (mid-
dle) from previous step, we avoid this confusion and only need to
segment paths that can not be matched with existing 3D shapes. On
the right, the components with black outlines are those transformed
from previous steps.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Shelf

TV cabinet
Stool

Beside table Desk

Underbed
Chair

Footstool

File box

Storage box
Bench

Co�ee table

3D-2D matching
No 3D-2D matching

Figure 15: Comparison of the segmentation accuracy with/without
the use of cross-step correspondence in our examples.

user-specified patterns. Lastly, we physically fabricate the furni-
tures using 3D digital fabrication and woodworking.

Animated furniture assembly process. We generated 3D as-
sembly animations for 9 representative examples, showing in the
supplemental videos (including the main video and the additional
video). Among the examples, the number of assembly steps varies
from 3 steps (i.e., the storage box) to 32 steps (i.e., the desk). The
number of furniture parts is between 5 and 23.

Here we highlight a few examples, which we found is hard to follow
by looking at the 2D assembly instructions only. The desk example
undergoes significant view angle changes, and the furniture part
being assembled switches from the drawer to the desk body. With
our 3D animated assembly processes, the view point is smoothly
interpolated across steps. When the animation is playing back, our
system also displays a completed furniture model, along with the
currently assembled furniture parts. By highlighting the currently
operated part in the completed furniture model, we can also convey
the user a grand picture at every step to keep the user on track. At
any point during the playback, the user can freely pan the camera,
zoom in and out.

We note that the 3D animation can not be simply produced by inter-
polating between steps, for two main reasons: First, the 2D projec-
tion of the same 3D furniture part can vary drastically in different
steps. Second, over a sequence of instruction steps, some exist-
ing parts in an earlier step can disappear in a later step, sometimes
making the interpolation simply impossible.

Physical fabrication. Given the reconstructed complete 3D
shapes, the user is able to fabricate their own furnitures. We demon-
strate with two fabrication methods. The first is using 3D printers
to fabricate furniture parts (see Figure 17 for a few examples). The
second is using traditional woodworking by cutting wooden boards

Figure 16: Our animation allows the user to view the intermediate
assembly process between static steps (left) from the view point of
drawing (middle up). The user can change the view point to see
more details (middle bottom), and zoom in to check how the parts
are assembled with connectors (right).

to furniture parts, and assembling these parts using mechanical con-
nectors purchased at the market. We fabricate both the desk and
the bedside table, and generated a physical and functional furnitures
(Figure 1 and Figure 18).

Semantic-aware furniture editing. The reconstructed dynamic
assembly process not only produces correct 3D furniture parts that
can be assembled but recovers furniture semantics such as relative
movements and junctions between parts when the furniture is func-
tioning. Exploiting these semantics allows semantic-aware furniture
editing, for which we demonstrate two types of editing. The first is
for posing the furnitures. We use motion arrows [Shao et al. 2013]
(pink for rotation and blue for sliding) to indicate the furniture’s
degrees of freedom (see Figure 19-b). The user is able to drag the
arrows to repose the furniture. The second edit is semantic-aware
shape change [Zheng et al. 2012; Chen et al. 2013]: the user initiates
an edit on a selected furniture part, and the algorithm automatically
propagates the edit to other parts that are semantically related to
the selected part to satisfy e.g., coplanar, same-size and symmetric
relations (see Figure 19).

Furniture customization. Once obtaining a complete 3D furni-
ture model, the user can further decorate the furniture with personal-
ized patterns. In our example, we add flower patterns to the surface
of a chair and a footstool (see Figure 17). We demonstrate this
customization by physically fabricating the results.

11 Limitations and Future Work

We have demonstrated the robustness of our method with a wide
range of furniture assembly instructions. While producing promis-
ing results, our method has limitations.

First, our system can not process instructions involving furniture
shapes that are not vertically cut from boards (e.g. sofas, bins and
bags, and linkages) (Figure 20-a), because we consider only ex-
truded shapes whose extrusion edges are detected based on parallel
lines and their lengths. We are interested in extending our method

Figure 17: 3D printed furniture: the right two were customized
with user-selected patterns (see video).

Figure 18: A functional bedside table reconstructed and made with
woodworking.

(a) (b)
Figure 19: Semantic-aware furniture editing. (a) A shelf is se-
mantically edited and then 3D printed. (b) The desk can be reposed
using the semantic arrow handles.

to handle other types of furnitures. For instance, Chen et al. [2013]
describes a method to model cylindrical structures from a single
image, which can be incorporated in our system.

Our pipeline aims to handle a wide range of furniture assembly
instructions from different manufacturers and brands. Yet, the visu-
alization style of the instructions across different brands may vary
in a subtle way. For instance, some have a list of individual furniture
parts at the beginning, and some (like those from Ikea) do not. We
choose not to use the information that is inconsistent across different
instructions. In some instructions from Nitori, the model numbers of
some mechanical connectors are missing, so we can not retrieve the
connector models (Figure 20-c). In our implementation, we choose
to ignore those connectors or rely on the user manually specifying
the model numbers.

So far, our method neglects 3D arrows and highlights in assembly
diagrams, 3D arrows are meant to indicate rotations of certain furni-
ture components. While we currently infer furniture rotations based
on the detected cross-step correspondence among furniture parts, it
would be interesting to further exploit the 3D arrows and possibly
improve the accuracy of the correspondence detection. We are also
interested in further exploiting the highlights, with the hope of re-
constructing the models of connectors whose model numbers are
missing.

We assume that an occluded furniture component in an instruction
step has an unoccluded counterpart in previous steps. However,
we found that in a few cases this assumption breaks (Figure 20-b).
One possible solution is to automate a drawing completion based on
semantic prior knowledge and symmetry detection.

Currently, our pipeline needs user interactions, mainly due to the in-
ability of our learning algorithm based on HO features for segment-
ing and grouping vector graphic primitives fully correctly. Better
features and improved recognition techniques are certainly worth
exploring.

Currently, we collect our training data by manually labeling a small
set of instructions. This is a laborious process. A better approach of
generating training data can benefit from automatically generated
furniture instructions (e.g., using [Agrawala et al. 2003]), by using
the resulting instructions for training.

Lastly, we realize that the method can be abused to counterfeit furni-
ture designs, giving rise to legal challenges. In history, the copyright

(a) (b) (c)

Figure 20: Failure cases. (a) Non-extrusion shapes are not sup-
ported. (b) Our method would fail if an occluded 3D part such as
the chair seat has not appeared in earlier steps. (c) If there is no
model number for a mechanical connector, we have to ignore that
connector or rely on the user specifing its model number.

always became an issue when new techniques emerged (recalling
the digitalization of music and books). Addressing the copyright
issue of furniture design opens a future direction.

Acknowledgements

We thank the anonymous reviewers for their feedback. This work
was supported in part by the NSF of China (No. 61272305 and No.
61402402), the National Program for Special Support of Eminent
Professionals of China, the National Science Foundation (CAREER-
1453101) and generous gifts from Lenovo, Intel and Adobe.

References

AGRAWALA, M., PHAN, D., HEISER, J., HAYMAKER, J.,
KLINGNER, J., HANRAHAN, P., AND TVERSKY, B. 2003. De-
signing effective step-by-step assembly instructions. ACM Trans.
Graph. 22, 3 (July), 828–837.

BAE, S.-H., BALAKRISHNAN, R., AND SINGH, K. 2008. Iloves-
ketch: As-natural-as-possible sketching system for creating 3d
curve models. In Proceedings of UIST, ACM, UIST ’08, 151–
160.

BERTHOUZOZ, F., GARG, A., KAUFMAN, D. M., GRINSPUN, E.,
AND AGRAWALA, M. 2013. Parsing sewing patterns into 3d
garments. ACM Trans. Graph. 32, 4 (July), 85:1–85:12.

BESL, P. J., AND MCKAY, N. D. 1992. A method for registration
of 3-d shapes. IEEE TPAMI 14, 2, 239–256.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approx-
imate energy minimization via graph cuts. IEEE TPAMI 23, 11,
1222–1239.

CAO, Y., JU, T., FU, Z., AND HU, S. 2014. Interactive image-
guided modeling of extruded shapes. Comput. Graph. Forum 33,
7, 101–110.

CHEN, X., KANG, S. B., XU, Y.-Q., DORSEY, J., AND SHUM,
H.-Y. 2008. Sketching reality: Realistic interpretation of archi-
tectural designs. ACM Trans. Graph. 27, 2 (May), 11:1–11:15.

CHEN, T., ZHU, Z., SHAMIR, A., HU, S.-M., AND COHEN-OR,
D. 2013. 3sweep: Extracting editable objects from a single photo.
ACM Trans. Graph. 32, 6 (Nov.), 195:1–195:10.

DE PAOLI, C., AND SINGH, K. 2015. Secondskin: Sketch-based
construction of layered 3d models. ACM Trans. Graph. 34, 4
(July), 126:1–126:10.

EITZ, M., HAYS, J., AND ALEXA, M. 2012. How do humans
sketch objects? ACM Trans. Graph. 31, 4 (July), 44:1–44:10.

EITZ, M., RICHTER, R., BOUBEKEUR, T., HILDEBRAND, K.,
AND ALEXA, M. 2012. Sketch-based shape retrieval. ACM
Trans. Graph. 31, 4 (July), 31:1–31:10.

FANELLI, G., GALL, J., AND GOOL, L. J. V. 2011. Real time
head pose estimation with random regression forests. In CVPR
2011, Colorado Springs, CO, USA, 20-25 June 2011, 617–624.

FU, H., ZHOU, S., LIU, L., AND MITRA, N. J. 2011. Animated
construction of line drawings. ACM Trans. Graph. 30, 6 (Dec.),
133:1–133:10.

FUNKHOUSER, T., MIN, P., KAZHDAN, M., CHEN, J., HALDER-
MAN, A., DOBKIN, D., AND JACOBS, D. 2003. A search engine
for 3d models. ACM Trans. Graph. 22, 1 (Jan.), 83–105.

GENNARI, L., KARA, L. B., STAHOVICH, T. F., AND SHIMADA,
K. 2005. Combining geometry and domain knowledge to inter-
pret hand-drawn diagrams. Computers & Graphics 29, 4, 547–
562.

GINGOLD, Y., IGARASHI, T., AND ZORIN, D. 2009. Structured
annotations for 2d-to-3d modeling. ACM Trans. Graph. 28, 5
(Dec.), 148:1–148:9.

GUPTA, A., FOX, D., CURLESS, B., AND COHEN, M. 2012.
Duplotrack: A real-time system for authoring and guiding duplo
block assembly. In Proceedings of UIST ’12, 389–402.

HARALICK, R. M., AND QUEENEY, D. 1982. Understanding
engineering drawings. Computer Graphics and Image Processing
19, 1, 90.

HARLTEY, A., AND ZISSERMAN, A. 2006. Multiple view geometry
in computer vision (2. ed.). Cambridge University Press.

HEISER, J., PHAN, D., AGRAWALA, M., TVERSKY, B., AND
HANRAHAN, P. 2004. Identification and validation of cognitive
design principles for automated generation of assembly instruc-
tions. In Proceedings of the working conference on Advanced
Visual Interfaces, ACM, 311–319.

HUANG, Z., FU, H., AND LAU, R. W. H. 2014. Data-driven
segmentation and labeling of freehand sketches. ACM Trans.
Graph. 33, 6 (Nov.), 175:1–175:10.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A sketching interface for 3d freeform design. In Proceedings of
ACM SIGGRAPH ’99, 409–416.

JR., J. J. L., AND ZELEZNIK, R. C. 2004. Mathpad2: a system
for the creation and exploration of mathematical sketches. ACM
Trans. Graph. 23, 3, 432–440.

KARPENKO, O. A., AND HUGHES, J. F. 2006. Smoothsketch: 3d
free-form shapes from complex sketches. ACM Trans. Graph. 25,
3 (July), 589–598.

KOO, B., LI, W., YAO, J., AGRAWALA, M., AND MITRA, N. J.
2014. Creating works-like prototypes of mechanical objects.
ACM Trans. Graph. 33, 6 (Nov.), 217:1–217:9.

LAU, M., OHGAWARA, A., MITANI, J., AND IGARASHI, T. 2011.
Converting 3d furniture models to fabricatable parts and connec-
tors. ACM Trans. Graph. 30, 4 (July), 85:1–85:6.

LAVIOLA, J., DAVIS, R., AND IGARASHI, T. 2006. An in-
troduction to sketch-based interfaces. ACM SIGGRAPH Course
Notes.

LI, W., AGRAWALA, M., AND SALESIN, D. 2004. Interactive
image-based exploded view diagrams. In Proceedings of Graph-
ics Interface 2004, GI ’04, 203–212.

Examples Seg.Acc Seg.Inter Rec.Acc Rec.Inter Match.Acc Match.Inter Time(sec.) Vanish. err. Assembly. err.
Shelf 0.923 1 / 60 0.946 1 / 60 0.915 0/2 10.6 2.0e−4 7.0e−4

TV cabinet 1.000 0 / 452 0.986 6 / 452 0.958 1/9 42.0 1.0e−3 5.0e−4

Stool 0.868 3 / 124 0.895 14 / 124 0.937 2/7 111.2 2.4e−3 1.2e−3

Beside table 0.977 1 / 257 0.968 6 / 257 0.843 2/19 75.7 2.9e−3 8.0e−4

Desk 0.985 1 / 625 0.947 28 / 625 0.911 1/36 163.0 1.0e−4 5.0e−4

Underbed 0.980 4 / 216 0.939 19 / 216 0.839 0/17 88.5 1.9e−3 8.0e−4

Chair 0.946 6 / 111 0.855 15 / 111 0.779 2/5 90.0 7.0e−4 1.6e−3

Footstool 0.879 4 / 104 0.990 1 / 104 0.936 0/4 41.7 5.0e−4 1.0e−3

Filing box 0.985 0 / 48 1.000 1 / 48 0.902 2/11 38.8 2.0e−4 7.0e−4

Storage box 0.984 0 / 646 0.982 9 / 646 0.949 4/23 82.5 2.0e−3 9.0e−4

Bench 0.890 1 / 251 0.904 25 / 251 0.881 0/16 102.5 3.0e−4 1.1e−3

Coffee table 0.950 1 / 153 0.938 5 / 153 0.841 1/7 33.7 3.0e−4 5.0e−4

Table 4: Statistics of the representative examples. From left to right, the columns report segmentation accuracy, # user interactions needed
for segmentation, recognition accuracy, # user interactions needed for recognition, cross-step matching accuracy, # user interactions needed
to correct the cross-step correspondence, the total processing time, the residual for vanish point optimization, and the residual fo rassembly
optimization (§6.2).

LI, H., HU, R., ALHASHIM, I., AND ZHANG, H. 2015. Foldabi-
lizing furniture. ACM Trans. Graph. 34, 4 (July), 90:1–90:12.

LOWE, D. G. 1999. Object recognition from local scale-invariant
features. In ICCV, 1150–1157.

MENA, J. B. 2003. State of the art on automatic road extraction for
GIS update: a novel classification. Pattern Recognition Letters
24, 16, 3037–3058.

MITRA, N. J., YANG, Y.-L., YAN, D.-M., LI, W., AND
AGRAWALA, M. 2010. Illustrating how mechanical assemblies
work. ACM Trans. Graph. 29, 4, 58.

MOHR, P., KERBL, B., DONOSER, M., SCHMALSTIEG, D., AND
KALKOFEN, D. 2015. Retargeting technical documentation to
augmented reality. In Proceedings of CHI ’15, ACM, New York,
NY, USA, 3337–3346.

OUYANG, T. Y., AND DAVIS, R. 2011. Chemink: a natural real-
time recognition system for chemical drawings. In Proceedings
of IUI, 2011, 267–276.

RONG, Y., ZHENG, Y., SHAO, T., YANG, Y., AND ZHOU, K. 2016.
An interactive approach for functional prototype recovery from a
single rgbd image. Computational Visual Media 2, 1, 87–96.

SAUL, G., LAU, M., MITANI, J., AND IGARASHI, T. 2011.
SketchChair: An All-in-one Chair Design System for End Users.
In Proceedings of TEI, ACM, TEI ’11.

SCHMIDT, R., KHAN, A., SINGH, K., AND KURTENBACH, G.
2009. Analytic drawing of 3d scaffolds. ACM Trans. Graph. 28,
5 (Dec.), 149:1–149:10.

SCHULZ, A., SHAMIR, A., LEVIN, D. I. W., SITTHI-AMORN, P.,
AND MATUSIK, W. 2014. Design and fabrication by example.
ACM Trans. Graph. 33, 4 (July), 62:1–62:11.

SHAO, T., XU, W., YIN, K., WANG, J., ZHOU, K., AND GUO, B.
2011. Discriminative sketch-based 3d model retrieval via robust
shape matching. Comput. Graph. Forum 30, 7, 2011–2020.

SHAO, T., LI, W., ZHOU, K., XU, W., GUO, B., AND MITRA,
N. J. 2013. Interpreting concept sketches. ACM Trans. Graph.
32, 4 (July), 56:1–56:10.

SHOTTON, J., JOHNSON, M., AND CIPOLLA, R. 2008. Semantic
texton forests for image categorization and segmentation. In
CVPR 2008, Anchorage, Alaska, USA.

SHTOF, A., AGATHOS, A., GINGOLD, Y. I., SHAMIR, A., AND
COHEN-OR, D. 2013. Geosemantic snapping for sketch-based
modeling. Comput. Graph. Forum 32, 2, 245–253.

SUN, Z., WANG, C., ZHANG, L., AND ZHANG, L. 2012. Free
hand-drawn sketch segmentation. In ECCV 2012, 626–639.

TOMBRE, K. 1998. Graphics Recognition Algorithms and Systems:
Second International Workshop, GREC’ 97 Nancy, France, Au-
gust 22–23, 1997 Selected Papers. ch. Analysis of engineering
drawings: State of the art and challenges, 257–264.

TVERSKY, B., ZACKS, J., LEE, P., AND HEISER, J. 2000.
Lines, blobs, crosses and arrows: Diagrammatic communication
with schematic figures. In Theory and application of diagrams.
Springer, 221–230.

TVERSKY, B., Y, J. B. M., AND BETRANCOURT, M. 2002. Anima-
tion: Can it facilitate. International Journal of Human-Computer
Studies 57, 247–262.

UMETANI, N., IGARASHI, T., AND MITRA, N. J. 2012. Guided
exploration of physically valid shapes for furniture design. ACM
Trans. Graph. 31, 4 (July), 86:1–86:11.

XU, K., CHEN, K., FU, H., SUN, W.-L., AND HU, S.-M. 2013.
Sketch2scene: Sketch-based co-retrieval and co-placement of 3d
models. ACM Trans. Graph. 32, 4 (July), 123:1–123:15.

XU, B., CHANG, W., SHEFFER, A., BOUSSEAU, A., MCCRAE,
J., AND SINGH, K. 2014. True2form: 3d curve networks from
2d sketches via selective regularization. ACM Trans. Graph. 33,
4 (July), 131:1–131:13.

ZAUNER, J., HALLER, M., BRANDL, A., AND HARTMANN, W.
2003. Authoring of a mixed reality furniture assembly instructor.
In ACM SIGGRAPH 2003 Sketches & Applications.

ZELEZNIK, R. C., HERNDON, K. P., AND HUGHES, J. F. 2006.
Sketch: An interface for sketching 3d scenes. In ACM SIG-
GRAPH 2006 Courses, ACM, New York, NY, USA, SIGGRAPH
’06.

ZHENG, Y., CHEN, X., CHENG, M.-M., ZHOU, K., HU, S.-M.,
AND MITRA, N. J. 2012. Interactive images: Cuboid proxies for
smart image manipulation. ACM Trans. Graph. 31, 4 (July).

	Introduction
	Related Work
	Furniture Assembly Instructions
	Overview
	Parsing Instructions
	Segmenting Vector Graphic Primitives
	Recognizing Visual Elements

	Dynamic 3D Reconstruction
	Fitting Individual Parts
	Camera Fitting
	3D Shape Fitting

	Handling Constraints
	Shape Transformation with Assembly Constraints
	Shape Regularization with Geo-semantic Constraints

	Dynamic Assembly Process

	Cross-Step Correspondence
	User Interaction
	Evaluation
	Validation of Semantic Segmentation
	Validation of 3D fitting
	Validation of Cross-Step Correspondence

	Applications
	Limitations and Future Work

