
Fast Multipole Representation of Diffusion Curves and Points

Timothy Sun∗ Papoj Thamjaroenporn∗ Changxi Zheng

Columbia University

(a) (b)(b)

(e)(e) (f)(f)

(c)(c)

(d)(d)

Figure 1: Starry Night: Starting with two diffusion curve images (a) and (b), the moon in (b) is cloned into (a), producing (c). Diffusion
points are added to simulate stars (d) and an aurora (e). For the reflection on the lake (f), the hue is shifted towards green. Finally, (e) and (f)
are composited with a mask to produce the final image on the right. Note that the reflection is darker away from the horizon. All these editing
operations were performed on the fast multipole representation.

Abstract

We propose a new algorithm for random-access evaluation of diffu-
sion curve images (DCIs) using the fast multipole method. Unlike
all previous methods, our algorithm achieves real-time performance
for rasterization and texture-mapping DCIs of up to millions of
curves. After precomputation, computing the color at a single pixel
takes nearly constant time. We also incorporate Gaussian radial
basis functions into our fast multipole representation using the fast
Gauss transform. The fast multipole representation is not only a
data structure for fast color evaluation, but also a framework for
vector graphics analogues of bitmap editing operations. We exhibit
this capability by devising new tools for fast diffusion curve Poisson
cloning and composition with masks.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation, Graphics Utilities—Display Algorithms

Keywords: diffusion curves, vector graphics, fast multipole
method, fast Gauss transform, image editing

Links: D L P D F W E B V I D E O

∗joint first authors

1 Introduction

Diffusion curves [Orzan et al. 2008] are powerful vector graphics
primitives for creating smoothly shaded images. Roughly, user-
defined colors along a set of control curves are diffused across the en-
tire image plane. This model is compact and resolution-independent
like traditional vector graphics models, and its increasing popular-
ity has motivated recent work on improving its runtime evaluation
performance [Pang et al. 2012; Jeschke et al. 2009; Ilbery et al.
2013], extending its expressiveness [Bezerra et al. 2010; Finch et al.
2011], shading volumetric objects [Takayama et al. 2010], and tex-
turing [Sun et al. 2012].

One trend for rasterizing diffusion curve images makes use of bound-
ary element methods (BEMs), which start by precomputing color
derivatives along the control curves. Current BEM-based algo-
rithms [Sun et al. 2012; Ilbery et al. 2013] accelerate color eval-
uation by introducing adaptive schemes or evaluating several points
at once, but none are able to render images in real time.

In this paper, we propose a different BEM method, the fast multipole
representation (FMR), for rendering DCIs. The FMR stores a lattice
on the image plane, and for any point located in a cell, its color is de-
scribed by a precomputed asymptotic expansion at the cell’s center
and a boundary integral of a few nearby curves. This representation
produces a continuous color distribution nearly identical to the orig-
inal DCI. In contrast to previous methods, our color evaluation per
pixel has nearly constant complexity after precomputation except in
rare cases where many curves meet at a point.

Furthermore, using the fast Gauss transform [Greengard and Strain
1991], the FMR can also represent Gaussian radial basis functions,
which we call diffusion points in this context. We use diffusion
points for adding simple effects (Figure 1) to DCIs that are ineffi-
cient to achieve with just diffusion curves. Unlike DCIs, evaluating
an image composed of diffusion points requires no boundary inte-
gral, and thus each pixel can be rendered in constant time.

http://doi.acm.org/10.1145/2601097.2601187
http://portal.acm.org/ft_gateway.cfm?id=2601187&type=pdf
http://www.cs.columbia.edu/cg/fmr
http://www.cs.columbia.edu/cg/fmr

In addition, via computations on the FMR, we build new editing op-
erations for DCIs. We introduce DCI analogues of Poisson cloning
and composition with masks that run at interactive rates by directly
manipulating fast multipole expansion coefficients and avoiding any
recomputation of the boundary element solve.

2 Related Work

Diffusion curves Diffusion curves were introduced by Orzan et
al. [2008] as a new vector graphics format that allowed for intu-
itive design of complex color gradients. Diffusion curve images are
the result of diffusing the colors defined along control curves until
the color field reaches an equilibrium, and this resting state can be
described by a Laplace equation. Since directly solving a Laplace
equation on a large grid is expensive, the standard approach for
rasterizing such images is to use a multigrid method (e.g. [Jeschke
et al. 2009]). In these methods, capturing sharp features typically
requires a high-resolution discretization, motivating methods which
do not require discretizing the image plane.

Random access evaluation Especially for texture-mapping, it
is useful to quickly evaluate the color value at a random point in
the image plane rather than an entire grid of points. One such
method [Pang et al. 2012] triangulates the image plane and carefully
interpolates the color values to the rest of the domain. However,
they cannot guarantee higher-order color continuity across adjacent
triangles. Boye et al. [2012] improve on that approach by interpo-
lating higher-order terms across triangles, but it is unclear whether
or not they can render images in real time. Bowers et al. [2011]
reinterpreted color evaluation as a global illumination problem and
applied a stochastic ray-tracing method to compute the color, but
one would need to incorporate reflections to accurately evaluate the
color value in a complicated region.

BEM-based methods One family of methods starts with the
boundary element method. By rephrasing the Laplace equation
as a boundary integral along the curves, color gradients along each
control curve are computed by solving a dense linear system. After
this point, Sun et al. [2012] evaluate color values by computing a
boundary integral while Ilbery et al. [2013] rasterize an image using
a so-called “line-by-line” approach. We also start with a BEM solve,
but unlike all previous methods, our color evaluation algorithm is
real-time, even without any adaptive discretization or sampling.

Fast multipole method The fast multipole method of Greengard
and Rokhlin [1987] was originally developed for quickly stepping
n-body simulations but has since been applied to other partial differ-
ential equations such as the Laplace equation. Applications of the
fast multipole method in computer graphics include radiosity com-
putation [Hanrahan et al. 1991], smoke simulation [Brochu et al.
2012] and physics-based sound rendering [Zheng and James 2010;
Zheng and James 2011].

Image Editing There is a wealth of tools for editing pixel images
such as Poisson cloning [Pérez et al. 2003] and composition with
masks [Porter and Duff 1984], but in contrast, there are few such
tools for vector graphics, especially DCIs. Bezerra et al. [2010] in-
troduced a set of editing operations for DCIs. They argued that con-
trolling the diffusion process (as opposed to editing control curves)
not only simplifies designing complex images, but also allows for
more expressive and varied visual effects. However, their algorithm
only operates on a grid of pixel values. In contrast, our proposed
editing tools directly operate on the resolution-independent FMR of
DCIs.

3 Fast Multipole Representation

Notation Throughout this paper, a scalar field is always denoted
by a lowercase letter. Since the RGB channels of a color value are
solved independently, we use the letter u to denote one of the three
channels when there is no confusion. A 2D coordinate is denoted by
a bold letter such as x with two components x1 and x2. A complex
number is always denoted by z, possibly with subscripts.

α = (α1, α2), αi ∈ Z+ denotes a 2D multi-index which is used to
describe an asymptotic series in two variables. Its length |α| is the
sum of its components α1 + α2, and its factorial is α! = α1!α2!. A
2D monomial xα is defined as xα = xα1

1 xα2
2 .

Background on the Boundary Integral Formulation As formu-
lated in [Jeschke et al. 2009; Sun et al. 2012], the color u at x is a
harmonic function; that is, it satisfies the Laplace equation

u(x) = {Cl(x), Cr(x)} ∀x ∈ B
∆u(x) = 0 otherwise

(1)

where the boundary B is the set of control curves, and Cl and Cr
are the colors along the “left” and “right” sides of the control curves.
We follow Sun et al. [2012] and Ilbery et al. [2013] by expressing (1)
as a boundary integral using its Green’s function [Liu and Nishimura
2006]:

u(x) = −
∫
B

[
E(y)G(x;y)− C(y)

∂G(x;y)

∂n(y)

]
ds(y), (2)

where n(y) is the normal vector at a point y ∈ B, and

G(x;y) =
1

2π
ln ‖x− y‖ and

∂G(x;y)

∂n(y)
=

(x− y)Tn

2π‖x− y‖2 (3)

are the Laplace Green’s function and its normal derivative, respec-
tively. The functions C(y) and E(y) are the differences between
the boundary values on each side of the control curves. That is,

C(y) = Cl(y)− Cr(y) and E(y) =
∂u

∂nl
(y) +

∂u

∂nr
(y), (4)

where nl and nr are the normals on the left and right side of a
curve (i.e., nl = −nr). Boundary element methods (BEM) obtain
gradient values E by solving a discretized version of (2). For a
description of a BEM for diffusion curves, see Appendix A.

Remark. The BEM solve only considers color and gradient differ-
ences along control curves, as indicated by (4). For this reason, Sun
et al. [2012] need a user-specified control curve enclosing the entire
image which incidentally encodes absolute values, even though the
BEM solve treats that curve no differently. Since the boundary inte-
gral evaluated at a point outside of a closed boundary is 0 (Appendix
B), the color evaluated on the outer boundary is equal to the relative
difference defined on that curve, so we can consider that outer curve
as storing absolute instead of relative values (see Figure 2).

Our solution for setting the outer boundary values was to auto-
matically assign color and gradient values along a rectangular
outer curve (see Figure 2) using a low-resolution finite element
solver [Jeschke et al. 2009]. By specifying an outer boundary this
way, the BEM solve will generate images comparable to those of
the finite element-based approaches without any additional user-
specified artificial boundary values.

To avoid having to integrate over all the control curves in (2), Sun
et al. [2012] first check if the evaluation point is within some closed
region, and only integrate over curves inside the closed region. Fur-
thermore, instead of integrating over an entire curve, they adaptively

(a) (b) (c)

Figure 2: The outer boundary (the green curve in (a)) controls
absolute colors, while the interior curves (the white curves in(a))
specifies color differences across the curves. By shifting the color
only on the boundary, the color in the interior shifts correspondingly
(b)-(c). (DCI from [Orzan et al. 2008])

sample the integral. Our algorithm also avoids having to consider
all control curves by only integrating nearby curves and capturing
all remaining curves in an asymptotic expansion, as detailed in the
following sections.

3.1 Fast Evaluation Algorithm in Brief

Our reformulation of (2) starts by defining a lattice on the image
plane (Figure 4). The color value at any position x located in a cell
C is decomposed into far-field and near-field terms:

u(x) =
∑
|α|<N

cα(x− xc)
α

−
∫
D

[
E(y)G(x;y)− C(y)

∂G(x;y)

∂n(y)

]
ds(y),

(5)

where xc is the center of cell C, cα are precomputed expansion
coefficients, and D is the set of curve segments contained in the
3 × 3 neighborhood centered at C (e.g., the purple and white cells
in Figure 4). If our order of expansion is N , then the number of
coefficients cα is N(N + 1)/2.

Remark. Sun et al. [2012] added antialiasing by integrating (2) over
a rectangular region. Since our method is based on the same bound-
ary integral, we can also achieve this effect by integrating (5). The
first term can be integrated because it is a polynomial, and the sec-
ond term can be integrated using their rectangle integral. However,
since a pixel can span several grid cells, each corresponding to a
different integration of (5), the performance will drop when we ras-
terize a zoomed-out image. We also note that it is unclear how Sun
et al. combine their antialiasing technique with curve culling when
the rectangular region intersects multiple closed regions. Instead,
because we can quickly evaluate the color value at a single point,
our current example figures use supersampling for antialiasing (we
use 9 samples per pixel in practice), and we leave a more efficient
antialiasing scheme as future exploration.

3.2 Preliminary Formulas

We start by preparing a few computational building blocks for the
fast multipole method, leaving the mathematical derivations in Ap-
pendix C. In many of our formulas, we use several other points as
centers for series expansions, which are summarized in Figure 3.

The derivation of our formulas is carried out in complex notation
for mathematical convenience. We will first derive a power series
expansion that is equivalent to the first term of (5). Namely,

Re

(
−

N∑
t=0

Lt(zL)
(z − zL)t

t!

)
, (6)

Diffusion
Curve

Figure 3: We need expansion cen-
ters near the boundary curve (zc
and zc′) for the multipole expan-
sion (used in (17)), and expansion
centers near the evaluation point
(zL and zL′) for the local expan-
sion (used in (20)).

where the Lt terms are called local coefficients for the cell center
zL of C. We refer to this series as the local expansion centered at zL.
Once we have established this local expansion, the cα coefficients
in (5) can be computed using the formula

cα = −
Re(iα2L|α|(zL))

α!

(
|α|
α1

)
. (7)

The Laurent series of the Green’s function Now we rewrite the
boundary integral (2) as an expansion. First, the Green’s function
in (3) is expressed as

G(z; z0) =
1

2π
ln(z − z0) z ∈ C, (8)

where z = x1 + ix2 and z0 = y1 + iy2 are just complex representa-
tions of the 2D coordinates x and y, respectively. This is an analytic
function with real part equal to the standard Laplace Green’s func-
tion. The major advantage of the complex notation is that given any
point zc that satisfies |zc − z0| � |z − zc| (see Figure 3), we can
rewrite the new Green’s function as

G(z; z0) =
1

2π

[
ln(z − zc) + ln(1− z0 − zc

z − zc
)

]
, (9)

and expand the second term using its Laurent series. This yields a
power series of G(z; z0) expanded at zc:

G(z; z0) =
1

2π

∞∑
k=0

Sk(z − zc)Rk(z0 − zc), (10)

where Sk and Rk are the singular and regular functions respec-
tively:

Sk(z) =

(k − 1)!

zk
for k ≥ 1

− ln(z) for k = 0,

Rk(z) = −z
k

k!
, for k ≥ 0.

(11)

We write the first term of (2) using complex notation as

g(z) =

∫
B
E(z0)G(z; z0)ds(z0), (12)

where E : C→ R now takes in a complex number instead of a 2D
coordinate. Substituting the Laurent series in this integral yields an
asymptotic expansion

g(z) =
1

2π

∞∑
k=0

Sk(z − zc)Mk(zc), (13)

where the coefficients Mk(zc) are defined as

Mk(zc) =

∫
B
E(z0)Rk(z0 − zc)ds(z0). (14)

Following the same derivation for the second integral of (2), we get
another expansion of the form

f(z) =
1

2π

∞∑
k=1

Sk(z − zc)Nk(zc), (15)

where the coefficients Nk(zc) are defined as

Nk(zc) =

∫
B
C(z0)n(z0)Rk−1(z0 − zc)ds(z0). (16)

Here n(z0) is the normal at z0 represented as a complex number.

Equations (13) and (15) are the multipole expansions of the Laplace
Green’s function and its normal derivative. If the points z0 on the
integrated curves all satisfy the condition |zc−z0| � |z−zc| for any
expansion center zc, the boundary integral (2) has the converging
expansion

u(z) =
1

2π

∞∑
k=1

Ak(zc)Sk(z − zc), (17)

where Ak(zc) = Nk(zc) + Mk(zc), the moments of the integral,
depend only on the expansion center zc.

Moment-to-Moment (M2M) Translation The expansion center
zc in (17) is arbitrary as long as the condition |zc − z0| � |z − zc|
is satisfied. When we select a different expansion center zc′ (also
satisfying |zc′−z0| � |z−zc′ |), we want to find momentsAk(zc′)
for the expansion (17), i.e.,

u(z) =
1

2π

∞∑
k=1

Ak(zc′)Sk(z − zc′). (18)

These moments can be efficiently computed from the known mo-
ments Ak(zc) using the so-called M2M formula,

Ak(zc′) = −
k∑
j=0

Aj(zc)Rk−j(zc − zc′). (19)

Moment-to-Local (M2L) Expansion Armed with the M2M for-
mula, it would seem like the multipole expansion in (17) can be
directly used for computing the color distribution, but because the
Laurent series only converges when the expansion center zc is close
to the control curves and far from the evaluation point, we would
have to evaluate many multipole expansions to cover all the curves.
Instead, we use a single local expansion (6) to capture all of the
far-field contribution because it converges when expanded far away
from control curves.

Fortunately, we can convert moments into local coefficients effi-
ciently. Given moments Ak(zc) of an expansion centered at zc, we
can also rewrite it as an asymptotic expansion with respect to an-
other point zL that is farther from zc than the evaluation point z, i.e.,
|z − zL| � |zL − zc| (see Figure 3). The series expansion can be
expressed as:

u(z) =

∞∑
t=0

Lt(zL; zc)Rt(z − zL), (20)

where the coefficients Lt(zL; zc) are computed using the M2L for-
mula

Lt(zL; zc) =
(−1)t+1

2π

∞∑
k=0

Sk+t(zL − zc)Ak(zc). (21)

(a)

(b)

M2M

L2L

M2L

Figure 4: Part of a hierarchical lattice with depictions of moment
and local translation formulas. The color evaluation is performed
on the finest level, while the hierarchical structure is used to accel-
erate the precomputation of expansion coefficients on the finest level
of grids.

Local-to-Local (L2L) Translation Our final subroutine is for
translating the local expansion (20) from an expansion center zL
to another one zL′ . Given a known set of coefficients Lt(zL; zc)
and a new point zL′ also satisfying |z − zc| � |zL′ − zc|, we can
compute the local coefficients for zL′ using the L2L formula

Lt(zL′ ; zc) = −
∞∑
k=0

Lk+t(zL; zc)Rk(zL′ − zL). (22)

3.3 Hierarchical Precomputation of Local Coefficients

We now describe an efficient algorithm based on the fast multipole
method [Greengard and Rokhlin 1987] for precomputing local co-
efficients Lt for all the cells hierarchically. When we associate
moments and local coefficients with a cell, we are always referring
to those coefficients from expansions centered at the cell’s center.
For a local expansion, we refer to the cell by CL and its center by
zL, and for a multipole expansion, Cc and zc, respectively.

The convergence conditions have a simple interpretation when we
expand at cell centers. For the multipole expansion of a cell Cc, we
integrate over only the curves inside of that cell. Then, the expan-
sion converges when the evaluation point is outside of the 3 × 3
neighborhood of cells around CL. On the other hand, the local ex-
pansion with coefficients Lt(zL; zc) converges when the evaluation
point is inside CL and zc is outside of the 3×3 neighborhood around
CL. The local coefficients Lt(zL) associated with a cell CL should
capture the contributions of all curves outside of the 3× 3 neighbor-
hood around CL. Thus we can compute them by summing over all
coefficients:

Lt(zL) =
∑

Cc∈Lfar(CL)

Lt(zL; zc), (23)

where Lfar(CL), the far cells of CL, are the cells outside of its 3× 3
neighborhood.

We first create a flat lattice with square cells on the image plane. The
lattice cells cut the diffusion curves into small segments so that ev-
ery segment is wholly contained in a cell. The most straightforward
way of computing Lt(zL) is to compute the moments for each cell
Cc using (14) and (16). For each cell CL, one can apply M2L trans-
lation (21) to every other cell Cc outside of its 3× 3 neighborhood
to obtain its local coefficients. Computing the moments requires in-
tegrating each curve segment once and the M2L translation iterates

Algorithm 1 Fast multipole method for DCIs

Require: Color and gradient values C, E from BEM, depth L.
procedure F M M D C I(C, E, L)

Initialize a hierarchy with L levels.
for all cells C in level L do

Compute moments expanded at C’s center (14), (16).
end for
for l = L− 1, . . . , 0 do

for all cells in level l do
Translate children’s moments with M2M (19).

end for
end for
for l = 2, . . . , L do

for all cells in level l do
Translate moments with M2L (19).
Translate parent’s local coefficients with L2L (22).

end for
end for

end procedure

over almost all the cells when computing the coefficients of a single
cell. The complexity of this naive approach is O(n2 + s) where
n is the number of cells in the lattice and s is the number of curve
segments.

Hierarchical Lattice A much faster algorithm uses a hierarchical
lattice structure (see Figure 4) and is summarized in Algorithm 1.
For simplicity, we assume the dimension of the flat lattice is a power
of 2. We build a hierarchy of lattices L0,L1, . . . ,Lh, where the top
lattice L0 has one cell and Lh is the initial flat lattice. Each cell
in lattice Lh′ (where h′ < h) has four child cells in Lh′+1. In
general, like in the case of a rectangular image, the lattice L0 is not
always one cell. The hierarchical lattice facilitates a “divide-and-
conquer” approach for computing the local expansion by a two-pass
propagation of the expansion coefficients.

Upward Propagation As in the naive algorithm, we first compute
the moments of each cell in the finest level (i.e., the flat lattice Lh).
For each cell Cc in Lh−1 (the dark green cell in Figure 4(a)), we
apply M2M translation (19) to shift the moments of the child cells
(the dark green cells in Figure 4(b)) in Lh from their centers to the
center of Cc. Summing the translated moments yields the moments
of Cc, and we continue propagating upwards until we reach lattice
L2. We can compute moments for L1 and L0, but they will not be
used.

Downward Propagation The local expansion at each cell is cal-
culated by propagating downwards. The downward propagation
phase starts from L2 of our hierarchy, since only from that level
downwards does a cell have a set of far cells (we only computed mo-
ments up to L2 for the same reason). At each level h′, we separate
the far cells of each cell CL into two sets:

1. the cells not adjacent to CL but their parents at level h′− 1 are
adjacent to the parent of CL (the pink cells in Figure 4(b)), and

2. the rest of far cells (the green cells in Figure 4(b)).

We iterate over each cell in the first group of cells (the pink cells)
and apply M2L translation (21) to translate each cell’s moments to
a local expansion for CL. For the remaining far cells of CL, their
contribution has already been approximated by the local expansion
coefficients of the parent of CL (the purple cell in Figure 4(b)) during
downward propagation on the previous level. That is, the parents
of the remaining cells were far cells in level h′ − 1 (compare the
green cells of Figure 4(a) and (b)). Therefore, we can translate

Figure 5: We simulate a variety of strange attractors [Kemp 1998],
which are 3D chaotic systems. We then assign more than 1 million
diffusion points to track the system’s geometric structure and proce-
durally generate these graphics. This is also the way we generate
the aurora in Figure 1. Equations and parameters of the attractors
are from [Abraham 2010].

Figure 6: Fireworks: Using the FMR, our algorithm renders vec-
tor graphics consisting of both complex diffusion curves (the back-
ground) and numerous diffusion points (the firework particles) fast
enough to make real-time animations where the user can zoom in
and out freely (see the supplemental video).

the local coefficients of CL’s parent to the center of CL using L2L
translation (22). By linearity of integration, we add the expansion
coefficients from both parts to form the final local coefficients Lt
of CL. This propagation proceeds until we reach the finest level
Lh. Both propagation steps require O(n logn) time, so the entire
computation has O(n logn + s) complexity. Table 1 shows the
timing of the propagation steps for different hierarchy depths.

Numerical Integral and Series Truncation Throughout the hier-
archical computation, we perform various integrals and series eval-
uations. These integrals are computed using a piecewise-constant
discretization, as we did for the BEM solve (see Appendix A). We
evaluate each series by truncating them with a finite number of or-
ders. Since each color channel is quantized in the range [0, 255], a
small number of orders are sufficient for producing results nearly
identical to directly evaluating (2). Unless otherwise stated, each
image was rendered using an expansion order of N = 4.

4 Diffusion Points

We now extend the FMR to represent any smooth color field using
Gaussian radial basis functions (RBFs). Let u(x) be some 2D
scalar field represented by Gaussian RBFs, i.e.,

u(x) =
M∑
i=0

Aie
−‖x−xi‖2/r2i , (24)

where the number of basis functions M can be large. We can also
represent Gaussian RBFs in the FMR, in which the color value u(x)
in a cell C is similarly approximated by a power series expansion

u(x) =
∑
|α|<N

bα(x− xc)
α, (25)

where N is small fixed value, and bα is a set of expansion coeffi-
cients for cell C. For our examples, we used N = 5. In contrast

Algorithm 2 Fast Gauss transform for diffusion points

Require: Gaussian functions φ1, . . . , φM , error tolerance ε.
procedure FA S T G A U S S({φi}, ε)

Initialize a hierarchy with cell size mini hi.
for i = 1, . . . ,M do

Set di ← 2
⌈
(ri/l)

√
ln(Ai/ε)

⌉
+ 1.

for all cells C in di × di neighborhood around xi do
Add φi to bα coefficients of C using FGT (26).

end for
end for

end procedure

to (5) for the Laplace Green’s function, there is no boundary integral
because Gaussians have no singularities. Consequently, evaluating
a color value using (25) always has constant complexity. To dis-
tinguish them from diffusion curves, we call a Gaussian RBF a
diffusion point described by its position xi, kernel size ri, and color
value Ai. In general, Gaussians are impractical to simulate using
diffusion curves because they are smooth everywhere, while diffu-
sion curves typically have color or derivative discontinuities across
control curves.

Diffusion points allow us to represent smooth nonharmonic color
fields which can be rasterized in time strictly linear in the number
of pixels after precomputation, regardless of the number of points.
Since diffusion curves and points share a similar color evaluation
formula, we can incoporate both primitives by merging the coef-
ficients in (25) with the expansion coefficients in (5) without any
storage and performance overhead (see Figure 6).

4.1 Fast Gauss Transform

We achieve (25) by expanding a Gaussian function using the fast
Gauss transform [Greengard and Strain 1991],

e−‖x−xi‖2/r2i =
∑
|α|<∞

1

α!r
|α|
i

hα

(
xi − xc
ri

)
(x− xc)

α. (26)

The derivation of this formula and the associated error bound we
use can be found in Appendix D. Note that this summation has the
same form as (25), except that |α| runs to infinity, so we truncate
the series up to |α| = N . The coefficient hα(y) is a 2D Hermite
expansion coefficient defined as

hα(y) = hα1(y1)hα2(y2), (27)

where hn(a) is an “Hermite function” computable by the recurrence
relation

h0(a) = e−a
2

, h1(a) = 2ae−a
2

,

hn+1(a) = 2ahn(a)− 2nhn−1(a).
(28)

4.2 Precomputation of Expansion Coefficients

We can derive analogous multipole and local expansions similar to
the procedure in §3 for a Gaussian basis function, but fortunately,
there is a simpler algorithm (Algorithm 2) for computing the expan-
sion coefficients using the observation that Gaussians only affect a
local region, i.e., they decay exponentially as we get farther from its
center.

Assume that the image plane is the unit square [0, 1] × [0, 1]. In
our precomputation process, we first create a lattice with cells of
side length l = mini ri. For each cell, we wish to compute, within

#Curves FMR Upward/Downward Pass (ms)
L 5 L 6 L 7 L 8 L 9

2048 2.6/3.2 3.6/10 7.6/21 22/86 92/318
8192 4.5/7.6 8.5/23 27/87 96/310

32768 12/24 35/85 106/315
131072 59/81 126/318
524288 187/324

Table 1: The cost of propagating moments and local coefficients
depends on the number of cells and the number of curves.

#Curves 1024× 1024 Rasterization (ms)
L 5 L 6 L 7 L 8 L 9 L 10

2048 51 68.3 39.4 31.1 23.9 19.8
8192 57 68.1 38.2 29.8 23.1

32768 171 68.8 39.8 32.2
131072 176 72.0 39.2
524288 180 72.5

Table 2: The total rasterization time depends on the ratio between
curves and cells, and along diagonals (i.e. where the ratio is the
same), the performance is roughly constant.

an error tolerance of ε, the local expansion coefficients bα in (25),
where the expansion center xc is the center of the cell. In all our
examples, we used ε = 10−5. For each Gaussian basis function
φi contained in cell Ci, we consider the (2ni + 1) × (2ni + 1)
neighborhood around Ci, where

ni =
⌈
(ri/l)

√
ln(Ai/ε)

⌉
. (29)

For each cell C′ in the neighborhood, we add the contribution of
φi to the local expansion of C′ using the fast Gauss transform (26).
Since the contribution of a diffusion point is additive and only af-
fects a small region, a diffusion point image can be updated in real
time, allowing the user to interactively edit such an image.

5 Performance Evaluation

Complexity We consider the cost of rasterizing a single DCI from
our fast multipole representation compared to the costs of other
methods. Because we truncate the local expansion, its evaluation
has constant cost per pixel. Let n and s be the number of lattice
cells and curve segments, respectively. The average number of seg-
ments in a 3× 3 neighborhood of cells is 9s/n. Assuming that the
curve segments and pixels are uniformly distributed in the image
plane, the average complexity of computing the boundary integral
contribution is O(s/n). Thus the total cost per pixel is O(s/n+ 1),
which is nearly constant, as the number of segments s is often much
smaller than the number of lattice cells n. Refining the lattice only
improves the performance—n increases quadratically while s only
grows linearly.

Speed We measured the performance on an Intel Quad-Core
Xeon E5 (3.10 GHz) processor with 64GB RAM. In order to test
how our algorithm scales on large examples, we generated DCIs
representing different iterations of the Hilbert space-filling curve
(Figure 9(a)), where the number of curve segments ranges from
2048 to 524288, depending on the space-filling iterations. Every
time we increase the iteration number by 1, the number of curves
quadruples. To create a suitable FMR, we cut these segments fur-
ther: the largest example has 1922732 segments. We also note that
our Hilbert curves are drawn as one large closed loop, and therefore
we cannot effectively cull curves as suggested in [Sun et al. 2012].
Table 1 contains timings of the FMR construction for different curve
complexities and grid sizes. The only dependence on the number of

(a) (b) (c) (d) (e)

Figure 7: Rasterization with varying orders of expansion: We generated the same image using the original boundary integral evaluation
(a) and FMR rasterization on a 64 × 64 grid with varying orders of expansion (b)-(e). When we use N = 1, 2 (b)-(c), cell boundaries are
visible. For higher orders, the cell boundaries disappear, and for N = 4 (e), the result is indistinguishable from the true solution.

(a) (b) (c) (d) (e)

Figure 8: Precomputation with varying orders of expansion: By using too small of an order of expansion (N = 1, 2, 3 for (b)-(d)) during
precomputation, the resulting local coefficients visibly differ from the true solution up to N th order. For N = 4 (e) we get an accurate
computation comparable to the true solution (a).

(a) (b) (c) (d)

Figure 9: Hilbert’s Bunny: Our method can handle DCIs with a
large number of curves. (a) shows the 5th iteration of the Hilbert
curve. On the GPU (b)-(d), we can obtain real-time framerates even
for DCIs with over a million curves. The textures we used here are
not antialiased.

curves is computing the moments on the finest level. Thus, upward
propgation takes longer for more complicated DCIs, but downward
propagation has roughly constant performance for the same grid
size.

In accordance with our complexity analysis, Table 2 shows that the
rasterization time depends on the density of the curve segments in
the grid as opposed to the absolute number of segments. Here the
number of local coefficients in the FMRs is fixed at N = 4. All
the timings are done for non-antialiased 1024 × 1024 images. In
the case of diffusion points, Figure 10 conveys the constant com-
plexity of evaluating a pixel. As a result, we are able to rasterize
these images quickly—even with a CPU implementation, we can
achieve interactive framerates for DCIs with millions of diffusion
curves and points. Sun et al. [2012] rendered DCIs of up to about
38000 curves at interactive framerates using adaptive sampling and
curve culling heuristics. We accomplished real-time framerates on
the GPU (Figure 9) for all of our Hilbert curve DCIs. Our imple-
mentation was written in OpenGL GLSL and executed on an Nvidia
Quadro K600 graphics card with 1GB memory.

Accuracy If we ignore truncation, our color evaluation for-
mula (5) converges exactly to the original boundary integral (2)

(a) (b) (c)

1E-8

Figure 10: A Galaxy of Points: The average computation time
per pixel was roughly constant, even as we increased the number of
diffusion points from 104 (a) to 106 (c).

over all the curves. That is, changing the rasterization resolution of
the grid only affects speed but not accuracy. We found that an order
of expansion N = 4 is sufficient for all of our examples, as the
resulting images are identical to the naive boundary integral eval-
uation: no color channel in any pixel differs by more than 1 unit.
Using too few coefficients, however, causes discontinuities across
cell boundaries, as seen in Figure 7.

Because we truncate the number of moments and local coefficients
in upward and downward propagation, the M2L and L2L formulas
introduce error that accumulates for each level in the hierarchy (note
that the M2M formula involves only a finite summation, introducing
no truncation error). Once again, we found that N = 4 was suffi-
cient for all our examples (see Figure 8). Since the time required for
upward and downward propagation is already on the order of tenths
of a second, one can conservatively compute many more coefficients
during propagation than necessary for rasterization.

Space Consumption For color evaluation purposes, it is enough
to store just the control curve segments and the local coefficients of

Figure 11: DCI Cloning: Given source and target DCIs (1st and 2nd columns), copying the control curves directly and recomputing the
BEM solve leaves obvious artifacts (3rd column). Our algorithm makes the cloning seamless (4th and 5th columns). Cloning the top (DCI
from [Orzan et al. 2008]) and bottom rows took 301ms and 242ms, respectively. The grid size for each image is 512 × 512, and the total
number of curves in the final face and fishtank is 21301 and 18870, respectively. In each example, the target’s colors “bleed” into the copied
source patch, a property also found in pixel-based Poisson cloning.

the finest lattice. The total size is dominated by the local coefficients,
since control curves are usually sparse in the image plane. For ex-
ample, for a 256 × 256 grid with an order of expansion N = 4,
storing the local coefficients with single floating-point precision
takes about 7.5MB, while a 512× 512 grid will require four times
as much space. The sparsity of the control curves also suggests adap-
tive space partitioning, and we leave that as a future optimization of
our implementation.

6 Editing FMRs
The fast multipole representation can be constructed whenever we
know both the color and gradient values along the control curves,
even if they are not harmonic. That is, the computational bottleneck
of the dense linear solve in precomputation can be avoided if these
values are known. We propose some simple editing operations that
involve either known or manually set gradient values. Since the
fast multipole representation can be computed quickly (as shown
in Table 1), these editing operations run interactively. The exam-
ples presented here were generated using DCIs created by Orzan et
al. [2008] and those we created ourselves, the latter of which will
be released to the public domain.

6.1 Diffusion Curve Cloning

One of the most useful local editing tools for bitmap images is
Poisson cloning [Pérez et al. 2003; Agarwala et al. 2004; Farbman
et al. 2009]. When cloning a region of a source image into a target
image, this method automatically adjusts the local color distribution
to create a seamless transition across the boundary of the region. For
bitmap images, most of these algorithms solve a Poisson equation
discretized at image pixels. In our version of Poisson cloning for
DCIs, we do not require any linear solve.

When we merge two DCIs together, simply copying or replacing
parts of the control curves in a target DCI is insufficient, as seen
in the third column of Figure 11. These artifacts are due to the
global effects of the colors on the control curves—the curves from
the source image will influence the color distribution on the tar-
get image. Consequently, one has to carefully adjust the control
colors. For a complex source DCI, this process is laborious and
time-consuming.

Let Γs be the boundary of a selection region in a source image Ds.

Γs
Γt

Ds Dt

xs xt

Figure 12: Cutting out a source DCI (left) and pasting it into the
target (right).

We first copy Γs and all the control curves (along with their color
and gradient values) inside of Γs to the target image Dt (see Fig-
ure 12). The user can optionally rotate or scale the copied curves.
We set the color value of xt ∈ Γt to be the difference between the
color in Dt and the color at the corresponding point xs in Ds, just
like in Poisson cloning. The gradient value is set to 0 so the transi-
tion across the boundary is smooth. Now that all the control curves
have color and gradient values, the fast multipole representation can
be constructed using upward and downward propagation.

6.2 Composition with Masks

For multi-layer DCI composition, we address two problems: how to
represent a vector graphic mask, and how to render the composite
image efficiently. In this subsection, we assume that the two DCIs
to be composited have FMRs where the cells align. If not, one of
the FMRs can be quickly recomputed using upward and downward
propagation so that both lattices have the same resolution.

Mask Representation If we desire a gradual transition between
the two images, we represent the mask using uniformly-spaced diffu-
sion points. Given a user-specified mask region, we place a diffusion
point on each cell center contained in the region, as in Figure 14.
The user can vary the smoothness by adjusting the kernel size of the
diffusion points.

Figure 14: For each cell center in
the user specified region, we place
a diffusion point (shown on the
left), yielding the resulting mask
on the right.

Figure 13: DCI Composition: Given two source DCIs and a diffusion point mask (1st-3rd columns), we can smoothly interpolate between
the two images according to the mask (4th and 5th columns). Our method also handles multi-layer composition (bottom row).

Composition Now we have three FMRs with the same lattice
resolution, two for the original DCIs and one for the mask. The
composition combines the three FMRs together into one single rep-
resentation. Let V1(x) and V2(x) denote the color values of the two
source DCIs at the position x, and M(x) denote the mask value
clamped to [0, 1]. The color value at x in the resulting FMR is

Vo(x) = M(x)V1(x) + (1−M(x))V2(x). (30)

We create the resulting FMR by merging the expansion coefficients
and copying the local curve segments in each cell. The color values
V1(x) and V2(x) can be written as

Vi(x) =
∑
|α|<N

ci,α(x− xc)
α +Ai(y), i = 1, 2, (31)

whereAi is the local integral term in (5) while the mask valueM(x)
is expressed using (25). Substituting both expressions into (30)
yields

Vo(x) =
∑
|α′|<N

ρα′(x− xc)
α′

+M(x)A1 + (1−M(x))A2(y),

(32)

where ρα′ are the merged expansion coefficients (see details in Ap-
pendix E). It turns out that ρα′ is determined by coefficients whose
order is smaller than that of α′, so by merging, we do not lose any
accuracy. These coefficients and curve segments form the FMR of
the composited image. For masks with sharp transitions, we can use
diffusion curves, where the only difference is that formulas involv-
ing the mask M(x) will have an integration term.

At first, it seems that (32) achieves little speedup over the naive
approach of evaluating color individually because the mask value
M(x) and the local line integrals A1 and A2 still have to be eval-
uated. As noted in §3.1, most cells’ neighborhoods do not have
any curve segments, so the last two terms of (32) vanish. There-
fore, for most of the color evaluation, we only need to evaluate the
constant-complexity first term of (32).

7 Conclusion

We have proposed the fast multipole representation, a new vector
graphics representation for diffusion curves and points. This repre-
sentation allows random-access color evaluation in nearly constant
time as well as new tools for interactive DCI editing operations.

Figure 15: Spatial Coherence: For an FMR rasterization (left),
the multipole and local expansions are spatially coherent (middle
and right). (DCI from [Orzan et al. 2008])

We believe that the FMR approach leads to many interesting future
possibilities for the improvement of color evaluation and antialias-
ing efficiency as well as the enrichment of vector graphics editing
tools. For instance, fast multipole methods have also been devel-
oped for biharmonic functions [Gumerov and Duraiswami 2006],
and it is possible to extend our work to biharmonic DCIs. One limi-
tation of the current algorithm is its storage size: a single FMR on a
1024 × 1024 grid can be as large as 100MB. One future direction
is to develop a compression scheme for FMRs (perhaps on top of
adaptive space partitioning). Because the expansion coefficients are
distributed in a spatially coherent manner (Figure 15), one possibil-
ity is to adapt high dynamic range image compression methods [Li
et al. 2005; Munkberg et al. 2006] to FMRs.

Figure 16: Preliminary texture synthesis results on DCIs: We use
a small DCI (left) as input to synthesize a large DC texture (middle
and right).

Lastly, one of the main objectives of Sun et al. [2012] is represent-
ing textures as DCIs. Given a small texture, a natural problem is
synthesizing a larger DCI texture. The lattice structure of the FMR
essentially divides the image plane in a way similar to pixels, and
the hierarchy of lattices might be adapted to hierarchical texture
synthesis methods, such as those based on image pyramids. Fig-
ure 16 shows some results we obtained from a naive adaptation
of [Lefebvre and Hoppe 2005].

A A BEM Solver for DCIs

Recall the boundary integral representation of a DCI (2)

u(x) = −
∫
B

[
E(y)G(x;y)− C(y)

∂G(x;y)

∂n(y)

]
ds(y),

where the Green’s function is

G(x;y) =
1

2π
ln ‖x−y‖, ∂G(x;y)

∂n(y)
=

1

2π‖x− y‖2 (x−y)Tn

Since the input DCI has colors defined on each control curve, we
have Dirichlet boundary conditions. That is, we know the color
value C(y) for all points y ∈ B, so we need to solve for the normal
gradients E(y). More explicitly, after an application of the chain
rule, we have the constraints of the form

2πC(x) =

∫
B

[
C(y)

rxy

∂rxy

∂n
− ln(rxy)E(y)

]
ds(y),

where x ∈ B and rxy = ‖x − y‖. We discretize B into linear
segments b1, b2, . . . bM with constant shape function C(yi) where
yi denotes the midpoint of bi. For each pair yi and bj , consider the
orthogonal projection pij of yi onto bj . The perpendicular distance
||yi − pij || is denoted nij . Let sij and tij be the signed distance
of the beginning and end of bj , respectively, from pij , where the
positive direction is along bj . For any point y on bj , let ys denote
its signed distance from pij . Then we have the identities

r2
yiy = y2

s + n2
ij , and

1

ryiy

∂ryiy
∂n

=
nij
r2
yiy

=
nij

y2
s + n2

ij

.

These relationships allow us to express the integrals of the Green’s
function and its normal derivative in terms of an integral over signed
distance. Our constraints thus become

πC(yi) =

M∑
j=1

∫ tij

sij

(
C(yj)nij
q2 + n2

ij

− 1

2
ln(q2 + n2

ij)E(yj)

)
dq

=

M∑
j=1

C(yj)aij − E(yj)bij ,

where

aij =

∫ tij

sij

nij
q2 + n2

ij

dq, bij =
1

2

∫ tij

sij

ln(q2 + n2
ij)dq.

We can now obtain the normal gradientsE(yi) by solving the linear
system Be = (A− πI)c, where A and B have entries aij and bij ,
and c and e are vectors with entries C(yi) and E(yi).

B Integrating Over A Closed Curve

Let Ω ⊆ R2 be a simply-connected region in the plane. Since the
color u is harmonic, i.e. ∆u = 0, by Green’s second identity, the
boundary integral (2) can be expressed as

u(x) =

∫
∂Ω

[
u(y)

∂G(x;y)

∂n(y)
− ∂u

∂n
(y)G(x;y)

]
ds(y)

=

∫
Ω

u(y)∆G(x;y)ds(y)

=

∫
Ω

u(y)δ(x− y)ds(y),

where δ is the Dirac delta function. If x is outside of Ω, then
δ(x− y) is always 0, so the color vanishes.

C FMM Translation Formulas

In this appendix, we derive the translation formulas stated in Sec-
tion 3.2. The following derivations are sketched out in [Liu and
Nishimura 2006]—here we merely flesh out the details.

C.1 Moment-to-Moment

We consider the translation of the moment Mk at an expansion
center zc to a new center zc′ . Recall that this moment is defined as

Mk(zc) =

∫
B
E(z0)Rk(z0 − zc)ds

where z0 are points along B and Rk(z) = − z
k

k!
. To compute this

moment at the new center zc′ , we rewrite the Rk term as

Mk(zc′) =

∫
B
E(z0)Rk(z0 − zc′)ds

=

∫
B
E(z0)Rk(z0 − zc + zc − zc′)ds

= −
∫
B
E(z0)

(z0 − zc + zc − zc′)k

k!
ds.

Applying the binomial theorem to the numerator
((z0 − zc) + (zc − zc′))k yields

Mk(zc′) = −
∫
B
E(z0)

(
k∑

m=0

(z0 − zc)m

m!

(zc − zc′)k−m

(k −m)!

)
ds

=

k∑
m=0

(
−
∫
B
E(z0)

(z0 − zc)m

m!
ds
)

(zc − zc′)k−m

(k −m)!

= −
k∑

m=0

Mm(zc)Rk−m(zc − zc′),

which is the formula in (19). Since replacing E(z0) with
n(z0)C(z0) and Rk with Rk−1 in the definition of Mk yields the
other moment Nk, the same proof (replacing m with n− 1) yields
the translation formula

Nk(zc′) = −
k∑
n=1

Nn(zc)Rk−n(zc − zc′)

for Nk. Using the fact that N0 vanishes by definition, this transla-
tion formula is of the same form as (19) by letting the summation
run from n = 0 . . . k, so we can combine these formulas into a
unified expression for Ak:

Ak(zc′) = −
k∑

m=0

Am(zc)Rk−m(zc − zc′).

C.2 Moment-to-Local

The Taylor expansion of u(z) at some point zL is

f(z) =

∞∑
t=0

u(t)(zL)
(zL − z)t

t!
=

∞∑
t=0

u(t)(zL)Rt(z − zL)

where u(t) denotes the t-th derivative of u. In fact, we define the
local coefficient Lt to be u(t). From (17), the color value at a point
can be expressed as

u(z) =
1

2π

∞∑
k=0

Ak(zc)Sk(z − zc),

so differentiating this expression t times yields

Lt(zL) ≡ u(t)(zL) =
(−1)t

2π

∞∑
k=0

Sk+t(zL − zc)Ak(zc),

using the observation that S′k = −Sk+1.

C.3 Local-to-Local

In the previous section, we defined the local coefficients at zL to be
coefficients in a Taylor expansion:

u(z) =

∞∑
t=0

Lt(zL)Rt(z − zL).

As we did in the M2M formula, we wish to calculate
the coefficients at another point zL′ by rewriting the Rt
term with the binomial theorem. We require the identity∑∞
b=0

∑b
a=0 F (a, b) =

∑∞
a=0

∑∞
b=a F (a, b), both sides of which

can be interpreted as a summation of F (a, b) for all a ≤ b. Starting
with the local expansion at zL, we obtain

u(z) =
∞∑
l=0

Ll(zL)Rl(z − zL′ + zL′ − zL)

=

∞∑
l=0

Ll(zL)

l∑
t=0

−
(

(z − zL′)t

t!

(zL′ − zL)l−t

(l − t)!

)

=

∞∑
t=0

(
∞∑
l=t

Ll(zL)
(zL′ − zL)l−t

(l − t)!

)(
− (z − zL′)t

t!

)

=

∞∑
t=0

(
∞∑
l=t

−Ll(zL)Rl−t(zL′ − zL)

)
Rt(z − zL′).

Since the color value u(z) is also equal to the local expansion at zL′ ,
the term inside the parentheses corresponds to the local coefficients
expanded at zL′ . That is,

Lt(zL′) =

∞∑
l=t

−Ll(zL)Rl−t(zL′ − zL)

= −
∞∑
k=0

Lk+t(zL)Rk(zL′ − zL),

which completes the derivation of (22).

D Fast Gauss Transform

The Hermite polynomial Hn(y) is defined as

Hn(y) = (−1)ney
2 dn

dyn
e−y

2

. (33)

The basis of the fast Gauss transform is that a Gaussian function is
the generating function for the Hermite polynomials

e2yx−x2 =
∞∑
n=0

xn

n!
Hn(y). (34)

We need a scaled version of this formula that corresponds to a Gaus-
sian function with standard deviation h. First, we multiply both
sides by e−y

2

, yielding

e−(y−x)2 =

∞∑
n=0

xn

n!
hn(y), (35)

where hn(y) = e−y
2

Hn(y) are the Hermite functions. Let x0 be a
point near x. Applying a similar trick as in Appendix C, we get the
following expansion at x0:

e−(y−x)2/h2

= e−[(y−x0)−(x−x0)]2/h2

= e−[(y−x0)/h−(x−x0)/h]2

=

∞∑
n=0

1

n!

(x− x0

h

)n
hn
(y − x0

h

)
.

Conveniently, multi-index notation and the fact that the 2D Gaussian
can be expressed as the product of two 1D Gaussians allow us to
write the 2D expansion in a similar form:

e−‖x−xi‖2/h2

=
∑
|α|<∞

1

α!h
|α|
i

hα

(
xi − xc
hi

)
(x− xc)

α,

which is (26).

Consider a Gaussian function φi(x,xi) = Aie
−‖x−xi‖2/h2

i

and a flat lattice where each cell has sides of length
√

2rhi,
where r ≤ 1/

√
2. If we only add the contribution of φ to a

(2n+ 1)× (2n+ 1) neighborhood of cells centered at c, where
c is the cell containing xi, the error due to ignoring all other cells is
bounded by Aie−2r2n2

[Greengard and Strain 1991]. Thus, if we
use an error tolerance ε, we need

n ≥
√

ln 1/ε

2r2
,

and substituting in our chosen side length l =
√

2rhi gives the
bound in (29). Note that we chose l = mini hi, so the requirement
that r ≤ 1/

√
2 is satisfied.

E Local Coefficients for Composition

Substituting (31) into (30) yields

Vo(x) = M(x)

 ∑
|α|<N

c1,α(x− xc)
α +A1(y)

+(1−M(x))

 ∑
|α|<N

c2,α(x− xc)
α +A2(y)

 .

We merge the local expansion terms∑
|α|<N

(M(x)c1,α + (1−M(x))c2,α) (x− xc)
α. (36)

Because M(x) is represented using diffusion points, (25) tells us it
has an expansion of the form

M(x) =
∑
|α|<N

bα(x− xc)
α. (37)

Thus, we have the following expansion of M(x)c1,α + (1 −
M(x))c2,α in (36):

M(x)c1,α + (1−M(x))c2,α =
∑
|γ|<N

wγ(x− xc)
γ ,

where γ is also a 2D multi-index. When γ = (0, 0),

wγ = c1,αbγ + c2,α − c2,αbγ ,

and when γ 6= (0, 0),

wγ = c1,αbγ − c2,αbγ .

Substituting this in (36) yields the expansion∑
|α|<N

∑
|γ|<N

wγ(x− xc)
γ+α.

Finally, we expand the double summation to obtain the ρα′ coeffi-
cients in (32).

Acknowledgments

We thank the anonymous reviewers for their feedback. We also
thank Orzan et al. for making their DCIs publicly accessible,
Dingzeyu Li and Henrique Maia for help with revising an earlier
draft, and Yun Fei and Angela Wei for assistance in video and figure
editing. This research was supported in part by Columbia Junior
Faculty Startup Fund as well as donations from Intel. Any opinions,
findings and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the views
of funding agencies or others.

References

A B R A H A M , R ., 2010. Strange attractors,
http://www.chaoscope.org.

A G A R WA L A , A . , D O N T C H E VA , M . , A G R AWA L A , M . ,
D R U C K E R , S . , C O L B U R N , A . , C U R L E S S , B . ,
S A L E S I N , D . , A N D C O H E N , M . 2004. Interactive digi-
tal photomontage. ACM Trans. Graph. (SIGGRAPH 2004) 23, 3
(Aug.), 294–302.

B E Z E R R A , H . , E I S E M A N N , E . , D E C A R L O , D . , A N D
T H O L L O T , J . 2010. Diffusion constraints for vector graph-
ics. In Proceedings of the 8th International Symposium on Non-
Photorealistic Animation and Rendering, ACM, 35–42.

B O W E R S , J . C . , L E A H E Y, J . , A N D WA N G , R . 2011. A
ray tracing approach to diffusion curves. In Computer Graphics
Forum, vol. 30, Wiley Online Library, 1345–1352.

B O Y É , S . , B A R L A , P. , A N D G U E N N E B A U D , G . 2012.
A vectorial solver for free-form vector gradients. ACM Trans.
Graph. 31, 6 (Nov.), 173:1–173:9.

B R O C H U , T. , K E E L E R , T. , A N D B R I D S O N , R . 2012.
Linear-time smoke animation with vortex sheet meshes. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, SCA ’12, 87–95.

FA R B M A N , Z . , H O F F E R , G . , L I P M A N , Y. , C O H E N - O R ,
D . , A N D L I S C H I N S K I , D . 2009. Coordinates for instant
image cloning. ACM Trans. Graph. (SIGGRAPH 2009) 28, 3
(July), 67:1–67:9.

F I N C H , M . , S N Y D E R , J . , A N D H O P P E , H . 2011. Freeform
vector graphics with controlled thin-plate splines. ACM Trans.
Graph. (SIGGRAPH Asia 2011) 30, 6 (Dec.), 166:1–166:10.

G R E E N G A R D , L . , A N D R O K H L I N , V. 1987. A fast algorithm
for particle simulations. J. Comput. Phys. 73, 2 (Dec.), 325–348.

G R E E N G A R D , L . , A N D S T R A I N , J . 1991. The fast gauss
transform. SIAM J. Sci. Stat. Comput. 12, 1 (Jan.), 79–94.

G U M E R O V, N . A . , A N D D U R A I S WA M I , R . 2006. Fast mul-
tipole method for the biharmonic equation in three dimensions.
Journal of Computational Physics 215, 1, 363 – 383.

H A N R A H A N , P. , S A L Z M A N , D . , A N D AU P P E R L E , L .
1991. A rapid hierarchical radiosity algorithm. SIGGRAPH Com-
put. Graph. 25, 4 (July), 197–206.

I L B E RY, P. , K E N D A L L , L . , C O N C O L AT O , C . , A N D M C -
C O S K E R , M . 2013. Biharmonic diffusion curve images from
boundary elements. ACM Trans. Graph. (SIGGRAPH Asia 2013)
32, 6 (Nov.), 219:1–219:12.

J E S C H K E , S . , C L I N E , D . , A N D W O N K A , P. 2009. A gpu
laplacian solver for diffusion curves and poisson image editing.
ACM Trans. Graph. (SIGGRAPH Asia 2009) 28, 5 (Dec.), 116:1–
116:8.

K E M P, M . 1998. Attractive attractors. Nature 394, 627 (Aug.).

L E F E B V R E , S . , A N D H O P P E , H . 2005. Parallel controllable
texture synthesis. ACM Trans. Graph. 24, 3 (July), 777–786.

L I , Y. , S H A R A N , L . , A N D A D E L S O N , E . H . 2005. Com-
pressing and companding high dynamic range images with sub-
band architectures. ACM Trans. Graph. (SIGGRAPH 2005) 24,
3 (July), 836–844.

L I U , Y. , A N D N I S H I M U R A , N . 2006. The fast multipole
boundary element method for potential problems: a tutorial. En-
gineering Analysis with Boundary Elements 30, 5, 371–381.

M U N K B E R G , J . , C L A R B E R G , P. , H A S S E L G R E N , J . ,
A N D A K E N I N E - M Ö L L E R , T. 2006. High dynamic range
texture compression for graphics hardware. ACM Trans. Graph.
25, 3 (July), 698–706.

O R Z A N , A . , B O U S S E A U , A . , W I N N E M Ö L L E R , H . ,
B A R L A , P. , T H O L L O T , J . , A N D S A L E S I N , D . 2008.
Diffusion curves: A vector representation for smooth-shaded im-
ages. ACM Trans. on Graphics (SIGGRAPH 2008) 27, 3 (Aug.),
92:1–92:8.

PA N G , W. - M . , Q I N , J . , C O H E N , M . , H E N G , P. - A . , A N D
C H O I , K . - S . 2012. Fast rendering of diffusion curves with
triangles. IEEE Computer Graphics and Applications 32, 4, 68–
78.

P É R E Z , P. , G A N G N E T , M . , A N D B L A K E , A . 2003. Poisson
image editing. ACM Trans. Graph. (SIGGRAPH 2003) 22, 3
(July), 313–318.

P O R T E R , T. , A N D D U F F , T. 1984. Compositing digital images.
In ACM Siggraph Computer Graphics, vol. 18, ACM, 253–259.

S U N , X . , X I E , G . , D O N G , Y. , L I N , S . , X U , W. , WA N G ,
W. , T O N G , X . , A N D G U O , B . 2012. Diffusion curve
textures for resolution independent texture mapping. ACM Trans.
Graph. (SIGGRAPH 2012) 31, 4 (July).

TA K AYA M A , K . , S O R K I N E , O . , N E A L E N , A . , A N D
I G A R A S H I , T. 2010. Volumetric modeling with diffusion
surfaces. ACM Transactions on Graphics (proceedings of ACM
SIGGRAPH) 29, 6, 180:1–180:8.

Z H E N G , C . , A N D JA M E S , D . L . 2010. Rigid-body fracture
sound with precomputed soundbanks. ACM Transactions on
Graphics 29, 4 (July), 69:1–69:13.

Z H E N G , C . , A N D JA M E S , D . L . 2011. Toward high-quality
modal contact sound. ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH 2011) 30, 4 (Aug.).

