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Abstract: The scattering matrix, which quantifies the optical reflection and transmission of
a photonic structure, is pivotal for understanding the performance of the structure. In many
photonic design tasks, it is also desired to know how the structure’s optical performance changes
with respect to design parameters, that is, the scattering matrix’s derivatives (or gradient). Here
we address this need. We present a new algorithm for computing scattering matrix derivatives
accurately and robustly. In particular, we focus on the computation in semi-analytical methods
(such as rigorous coupled-wave analysis). To compute the scattering matrix of a structure, these
methods must solve an eigen-decomposition problem. However, when it comes to computing
scattering matrix derivatives, differentiating the eigen-decomposition poses significant numerical
difficulties. We show that the differentiation of the eigen-decomposition problem can be
completely sidestepped, and thereby propose a robust algorithm. To demonstrate its efficacy, we
use our algorithm to optimize metasurface structures and reach various optical design goals.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The scattering matrix is a fundamental concept in many fields. It relates the input state and the
output state of a physical system undergoing a scattering process. Particularly revealing in optics,
the scattering matrix has been widely used for analyzing photonic structures such as waveguides
[1] and metasurface units [2]. Once the scattering matrix of a photonic structure is known, the
structure’s optical performance (e.g., mode conversion efficiency and phase shift) can be directly
obtained.

Because of its vital importance, many numerical methods have been developed to compute the
scattering matrix of a photonic structure. Among them, a popular class is the semi-analytical
methods, such as the method of lines [3] and rigorous coupled-wave analysis (RCWA) [4].
These methods exploit the fact that many photonic structures in practice (such as waveguides
and metasurface units) have a piecewise constant cross-sectional shape along the transmission
direction (denoted as z-direction). Thus, to solve Maxwell’s equations, they only need to
discretize the 2D cross-sectional region, reducing Maxwell’s equations into a set of continuous
differential equations along z-direction, whose solution can be expressed through an eigenvalue
analysis. Thanks to the semi-discretization, these methods often enable faster computation than
full discretization methods (such as finite-element- and finite-volume-based methods). Indeed,
methods like RCWA have been widely used in designing various photonic structures, such as
metasurfaces [5], metagratings [6], holograms [7], polarimeters [8], solar cells [9], radiative
cooling structures [10], color structures [11], photonic crystals [12], and waveguides [1].

In this work, we extend the semi-analytical methods to obtain the higher-order information of
scattering matrices, namely the scattering matrix’s derivatives (or gradient). Provided a photonic
structure specified by certain design parameters, we aim to compute not only its scattering matrix
but its derivatives with respect to the design parameters.

The scattering matrix derivatives depict the changes of the structure’s optical behaviors as
its design parameters vary. This higher-order information, if robustly and efficiently computed,
finds many applications in photonic design. Perhaps most notable is the optimization of photonic
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structures. The derivatives provide guidance on how we can adjust the parameters (e.g., through
the gradient descent algorithm [13]) to improve the structure’s optical performance [14] or to
find a design robust to fabrication error [15–17].

Unfortunately, the computation of scattering matrix derivatives is nontrivial. The difficulty is
rooted in the fact that the permissible optical modes in a photonic structure are eigenfunctions
of a linear (Hermitian) operator determined by Maxwell’s equations [18]. Thus, to compute
the scattering matrix, semi-analytical methods must solve an eigen-decomposition problem:
its eigenvalues describe the propagation constants (or effective indices) of the modes and its
eigenvectors indicate propagating modal patterns. Differentiating the scattering matrix, by chain
rule, requires the derivatives of eigenvalues and eigenvectors. It is the need of eigenvector
derivatives that renders the scattering matrix differentiation ill-posed: when there exist repeated
eigenvalues, the corresponding eigenvectors are not uniquely defined. As the parameter changes,
the numerical results of the eigenvectors may change discontinuously, and their derivatives
become undefined (see more discussion in Section 3).

Not merely does this issue exist as a corner case; many photonic structures in practice
have geometric and material symmetries, from which repeated eigenvalues and thus ill-defined
eigenvector derivatives emerge (see Fig. 2). Consequently, one must carefully choose eigenvectors
such that they vary smoothly with respect to the design parameters. This choice, albeit attainable,
demands complex and expensive computational effort [19].

In this paper, we question the necessity of eigenvector derivatives for differentiating scattering
matrices. We show that while eigen-decompositions are needed for computing a photonic
structure’s scattering matrix, eigenvector derivatives can be fully sidestepped for differentiating
the scattering matrix. Based on our new derivation, we present a fast and robust algorithm that,
without resorting to eigenvector derivatives, computes the scattering matrix derivatives with
respect to any design parameters.

Our method is designed for scattering matrices in general, independent from any specific basis
representation; nor is it bound to any particular geometric parameterization. To demonstrate
the use of our method, we apply the scattering matrix derivatives for optimizing the design of
metasurface units. We can choose different design parameterizations and use gradient-based
optimization to reach various light transmission goals. We also propose a general parameterization
of the meta-unit’s cross-sectional shape that can be optimized using our method.

A C++ implementation of our scattering matrix differentiation in RCWA has been made
publicly available (see Code 1 [20]).

2. Background: scattering matrix

We start by briefly reviewing the classic notion of scattering matrix in computational photonics,
to pave the way toward its differentiation.

To numerically analyze a photonic structure (such as a waveguide), the structure is often
discretized along the wave propagation direction (i.e., z-direction) into a series of layers each with
a uniform cross-sectional material distribution (Fig. 1(b)). Consider optical waves of a specific
frequency. Their propagation in each layer is characterized by a scattering matrix S, which
relates waves incident on the layer from left and right sides (Fig. 1(a)) to the waves scattered out
in either direction.

Concretely, let aL and aR denote vectors describing incident waves on the layer from left and
right sides, respectively. Here aL and aR stack coefficients that represent the waves under a
chosen basis, whose construction will be outlined shortly. Under the same basis, we use bL and
bR to denote the scattered waves in left and right directions. With these notations, the incident



Research Article Vol. 28, No. 25 / 7 December 2020 / Optics Express 37775

Fig. 1. (a) In a photonic structure, light may be incident from both sides and get scattered out.
The relationship of incident and scattered light is characterized by the scattering matrix. (b)
A complex structure can be decomposed into individual layers. Each layer is characterized
by its scattering matrix, and these scattering matrices are then combined (using the Redheffer
star product [21]) to form the scattering matrix of the entire structure.

and scattered waves are related through⎡⎢⎢⎢⎢⎣
bL

bR

⎤⎥⎥⎥⎥⎦ = S
⎡⎢⎢⎢⎢⎣
aL

aR

⎤⎥⎥⎥⎥⎦ , where S =
⎡⎢⎢⎢⎢⎣

RL TRL

TLR RR

⎤⎥⎥⎥⎥⎦ . (1)

Here S is decomposed into four submatrices: RL and RR indicate how the incident wave from
left or right direction is reflected by the layer, while TRL and TLR describe how the incident wave
(from either direction) transmits through the layer.

The computation of scattering matrix starts with a semi-discretization of the frequency-
domain Maxwell’s equations of a photonic layer, namely,

−jk0
∂

∂z
e = Ph and − jk0

∂

∂z
h = Qe, (2)

where k0 is the free-space wave number, and the vectors e and h describe the electric and magnetic
fields of the photonic structure under a chosen basis—for example, RCWA uses the 2D Fourier
basis on the cross-section of the wave propagation direction. The matrices P and Q encode the
cross-sectional distributions of material permeability and permittivity.

The semi-discretization (2) is a common form in many numerical analysis methods for photonic
structures (such as the method of line [3] and RCWA [4]). The difference across those methods
only lies in the specific ways of constructing P and Q (e.g., see Supplement 1 for the numerical
recipe of constructing P and Q in RCWA and a discussion of its relation to the method of line).

Once P and Q are determined, the scattering matrix S can be constructed. A key step of this
construction is to solve an eigenvalue problem, (PQ)W = WΓ, to obtain eigenvectors W and
the diagonal eigenvalue matrix Γ. As we will discuss in Section 3, it is this eigenproblem that
renders the differentiation of the scattering matrix ill-posed. To understand the challenges and
how we overcome them, we first present the recipe of computing S from W and Γ, as follows.

Let Ω (PQ)
1
2 . Then, its eigenvalue matrix is Λ = Γ

1
2 . As derived in [22], the formulas of

computing the scattering matrix S defined in (1) are

RL = RR =
(︂
A − XBA−1XB

)︂−1 (︂
XBA−1XA − B

)︂
, (3a)

TLR = TRL =
(︂
A − XBA−1XB

)︂−1
X
(︂
A − BA−1B

)︂
, (3b)

where the matrices X, A, and B have the following forms:

X = ejΛ L
k0 , (4a)

A =W−1W0 + V−1V0, and B =W−1W0 − V−1V0. (4b)
Here we use L to denote the layer thickness (Fig. 1), and the matrix V is related to W through

V = QWΛ−1. W and V together form a basis of electric and magnetic components for the optical
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waves in the layer. Similarly, W0 and V0 form a basis for free space propagation, independent
from the photonic structure. They are constant values for computing the derivatives of S. The
vectors, aL, aR bL, and bR, in (1) are coefficients under this free-space basis to describe incident
and scattered waves.

Once the scattering matrices of individual layers are computed, they are combined using the
Redheffer star product [21] into the total scattering matrix, one that indicates the optical response
of the entire photonic structure.

Remark. The formulas in Eqs. (3) and (4) assume that the current photonic layer is sandwiched
by two free-space layers. This assumption is by no means a limitation. In an arbitrary photonic
structure, the layers can be treated as if they are interleaved with free-space layers—each of which
has a zero thickness.

3. Differentiable scattering matrix

The geometry or material distribution of photonic structure is specified by its structural (design)
parameters (e.g., see Fig. 2). These parameters determine the structure’s permittivity and
permeability distributions described by P and Q in (2). Thus, one can compute their derivatives,
P′ and Q′, with respect to an arbitrary parameter. Given P′ and Q′, we now address the question
of how to compute the scattering matrix derivative S′ with respect to the same parameter.

Fig. 2. Repetition from symmetry. Consider a meta-atom structure (b) whose cross-
sectional shape (a) is parameterized by α, which controls the size of the cross-shaped hollow
region. The shape symmetry causes the structure’s propagating modes to have repeated
effective indices (c), as also indicated by the repeated eigenvalues when one solves (2). As
α varies, mode 0 and mode 1 always have the same effective index, meaning that their
first-order and higher-order derivatives of the corresponding eigenvalues with respect to α are
always the same, and thus their eigenvector derivatives are not mathematically well-defined.
The same issue occurs in other modes when α becomes small and more propagating modes
appear (e.g., see mode 5 and mode 6 when α is within ∼ [0.3, 0.5]).

3.1. Challenges in scattering matrix differentiation

The construction of scattering matrix S needs to solve an eigenvalue problem (PQ)W = WΓ,
as the eigenvalues Γ and eigenvectors W appear in Eqs. (3) and (4) for computing S. Thus, for
the differentiation of S, it seems also needed to compute the derivatives of the eigenvalues Γ
and eigenvectors W. Computing the eigenvalue derivatives are relatively straightforward, as has
arisen in many fields [23–25]. When all the eigenvalues are distinct, computing the derivatives
of their eigenvectors are also well-posed [25].

However, significant challenges arise when there exist repeated eigenvalues. Repeated
eigenvalues are not uncommon in photonic design: many photonic devices have certain structural
symmetries, from which eigenvalue repetition naturally emerges (see Fig. 2). For those repeated



Research Article Vol. 28, No. 25 / 7 December 2020 / Optics Express 37777

eigenvalues, their eigenvectors (up to a scale) are not uniquely determined; any set of linearly
independent vectors that span the same subspace are valid eigenvectors. Because of the ambiguity,
as the structural parameter changes, those eigenvectors may change discontinuously (see an
examples in Supplement 1), and thus their derivatives may not be well-defined.

As a result, one must carefully choose eigenvectors in the subspace of repeated eigenvalues
such that the eigenvectors change continuously with respect to the structural parameter. This
choice, however, is computationally expensive [19,24]. As derived in [19], to ensure well-defined
eigenvector derivatives, one must compute higher-order derivatives of both the eigenvalues and
the matrix PQ: if the repeated eigenvalues have repeated derivatives up to the n-th order (see
Fig. 2), then derivatives up to the (n + 1)-th order of the eigenvalues and the matrix PQ must be
computed to determine first-order eigenvector derivatives.

3.2. Differentiation without resort to eigenvector derivatives

We now present a new algorithm for computing the scattering matrix derivative S′. Even in the
presence of repeated eigenvalues and their derivatives, our method requires only the first-order
derivatives of the matrices P and Q, completely sidestepping the differentiation of eigenvalues
and eigenvectors. In comparison to the way that takes eigenvalue derivatives (as described above),
our method is more robust and efficient.

First, we rewrite the commonly used expressions of scattering matrix components, shown in
(3), in new forms,

RL = RR =
(︂
I − D2

1

)︂−1
(D1D2 − D3) , (5a)

TLR = TRL =
(︂
I − D2

1

)︂−1
(D2 − D1D3) , (5b)

where D1, D2, and D3 denote the following matrix multiplications, respectively:

D1 := A−1XB = (W0 + TV0)
−1 WXW−1 (W0 − TV0) , (6a)

D2 := A−1XA = (W0 + TV0)
−1 WXW−1 (W0 + TV0) , (6b)

D3 := A−1B = (W0 + TV0)
−1 (W0 − TV0) . (6c)

The derivation of these new expressions (5) and (6) are provided in Supplement 1. In Eqs. (6),
the equalities are reached by applying (4) and using T that denotes TΩQ−1.

The expressions in (5) present a new route for computing scattering matrix derivative. They
indicate that the scattering matrix S is determined by the three matrices, D1, D2, and D3. As a
result, to compute its derivative S′ using the chain rule, we need to compute the derivatives of
D1, D2, and D3 with respect to the structural parameter.

In Eqs. (6), both W0 and V0 (introduced in (4)) are constant matrices. Thus, the derivatives of
D1, D2, and D3 only depend on the derivatives of two other matrices in Eqs. (6), namely T and
WXW−1. We now describe how to compute the derivatives of the two matrices, respectively.

Derivative of T. The matrix TΩQ−1 is related to Q and Ω (PQ)1/2 but not the eigenvalues
and eigenvectors. Its derivative can be expressed as

T′ = Ω′Q−1 +Ω
(︂
Q−1

)︂ ′
= Ω′Q−1 −ΩQ−1Q′Q−1, (7)

where Q depends on the material permittivity distributions of the photonic structure, and therefore
its derivative Q′ with respect to a design parameter can be directly computed (see examples in
Section 4). The way of computing Ω′ can be derived by taking the derivatives on both sides of
the relation Ω2 = PQ, which yields

Ω′Ω +ΩΩ′ = P′Q + PQ′. (8)

Given P′ and Q′, the right-hand side of this equation can be directly computed. To compute
Ω′, we rewrite the left-hand side by denoting Ω′ as Ω′ =WYW−1 for some unknown Y, where
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W is the eigenvector matrix of PQ. Using the fact that Ω = (PQ)1/2 = WΛW−1, we obtain a
simplified form of (8):

YΛ + ΛY =W−1(P′Q + PQ′)W. (9)

From (9), Y can be easily solved by noticing that Λ is a diagonal matrix, and therefore (9)
can be written element-wise as (λi + λj)Yij = Cij, where λi is the i-th eigenvalue in Λ, and
C denote the matrix on the right-hand side of (9). In other words, the elements of Y can be
obtained by solving n2 1D linear equations in parallel. Once Y is obtained,Ω′ is computed using
Ω′ =WYW−1.

We note that while this process of computing Ω′ requires the eigenvectors W and eigenvalues
Λ, they are also needed for computing the scattering matrix in the first place. Our solving process
does not require the derivatives of eigenvectors. Therefore, it introduces no additional effort in
terms of eigen-decomposition.

Derivative of WXW−1. In the first glance, the derivative of WXW−1 depends on the
eigenvectors W. However, from the definition of X in (4a), we notice that WXW−1 = ejΩL/k0 ,
which suggests an alternative approach: take the derivative of the matrix exponential ejΩL/k0 with
respect to Ω.

A common approach of computing the matrix exponential ejΩL/k0 is through the eigen-
decomposition of Ω followed by the exponential of the resulting eigenvalues. If we take this
approach, the derivative computation must involve the derivatives of eigenvectors, which might
not be well-defined. Another approach, used by Feynman [26] and others [27–29], expresses the
derivative of a matrix exponential using an integral that in itself involves matrix exponentials.
Yet, numerically evaluating the matrix exponentials and the integral are expensive.

Instead, our proposed method for computing the derivative is based on the following proposition
originally proved in [30].

Proposition 1 Consider an n × n matrix Ω and its derivative Ω′ with respect to an arbitrary
parameter. If

G =
⎡⎢⎢⎢⎢⎣
Ω Ω′

0 Ω

⎤⎥⎥⎥⎥⎦ , thenejGL/k0 =

⎡⎢⎢⎢⎢⎣
ejΩL/k0

(︁
ejΩL/k0

)︁ ′
0 ejΩL/k0

⎤⎥⎥⎥⎥⎦ , (10)

where the top-right n× n block matrix in ejGL/k0 is the derivative of the matrix exponential ejΩL/k0 .
In our problem, Ω′ is computed as described above (by solving (9)), and the common way of

computing ejGL/k0 is by taking the eigen-decomposition of G, which is again what we wish to
avoid. We therefore take a different approach, the scaling and squaring method [31], to compute
ejGL/k0—without the need of eigen-decomposition.

The scaling and squaring method exploits the relation eA =
(︁
eA/σ

)︁σ for any n × n matrix A.
In practice, σ is chosen to be σ = 2s for some non-negative integer s. The idea is to have the
norm of A/σ sufficiently small such that eA/σ can be well approximated by a Padé approximant
near the origin. The Padé approximant is a rational polynomial of A. Its evaluation requires
only matrix multiplications and inverse, but no eigen-decomposition. The scaling and squaring
method is robust and accurate, and has been used in many numerical tools (such as MATLAB’s
expm function).

When applying this method, we further exploit the specific structure of G (i.e., its bottom-left
block matrix vanishes, and its two diagonal block matrices are identical) to tailor the method
for improving computational performance. Supplement 1 presents our detailed derivations and
computational steps.

4. Results

This section presents our numerical results. First, we validate our algorithm for computing
scattering matrix derivatives. Next, to demonstrate the use of scattering matrix derivatives in

https://doi.org/10.6084/m9.figshare.13283540
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photonics, we optimize the geometry of photonic metasurface units (also called meta-atoms). All
the numerical studies are performed on a workstation with an Intel Xeon E5-1620 CPU running
at 3.60GHz.

Meta-atoms are the building blocks of a metasurface, often designed based on physical
intuitions and manually crafted libraries [33–35]. More recently, inverse design methods of
meta-atom structures have also been explored—e.g., through finite-difference-based gradient
descent [36], adjoint-based level-set method [37], and topological optimization [38,39].

Due to fabrication constraints, meta-atoms often have constant cross-sectional shapes along
one direction (i.e., z-direction, as shown in Fig. 3(a)). Thus, the semi-analytical methods (such
as RCWA) are particularly efficient for simulating meta-atoms, thanks to their ability of not
discretizing along z-direction [4]. Our method, for the first time, enables the semi-analytical
methods to also compute scattering matrix derivatives with respect to design parameters. Here,
in the framework of RCWA, we demonstrate automatic discovery of meta-atom structures that
reach various amplitude and phase goals.

Fig. 3. Accuracy comparison. (a) We use our method and FDTD (Lumerical [32]) to
analyze a 3D meta-atom. The width of the pillar and its square hole are 0.6µm and 0.2µm,
respectively, and it has a height of 1.4 µm. We use the periodic boundary condition, with the
period of 0.66µm. (b) We scan the (x-polarized) wavelength and plot the effective indices of
the fundamental mode evaluated by FDFD and our method. (c) For each wavelength (color
mapped here), we compute the far-field amplitudes and phases changes, and compare our
results to FDTD.

4.1. Validation

To validate our algorithm, we consider a dielectric meta-atom used in metasurface holography
[34,35]. Its structure is shown in Fig. 3(a). We use Eqs. (5) to compute the scattering matrix, for
which the matrices P and Q (introduced in (2)) are constructed using RCWA. First, we validate
the accuracy of Eqs. (5) for scattering matrix computation. To this end, we compare the scattering
matrices resulted from Eqs. (5) to those resulted from the 3D finite-difference time-domain
(FDTD) method in Lumerical [32].

We scan the light wavelength from 1.2µm to 1.6µm. For each wavelength, we compute,
using our scattering matrix and FDFD respectively, the effective index of the fundamental mode
propagating in the meta-atom. The results from our method agree with FDFD results (see
Fig. 3(b)). Furthermore, we consider the far-field light transmission through the meta-atom, and
compute the phase shift and amplitude change for each wavelength. Again, the results from our
method and FDTD match closely, as shown in Fig. 3(c).

These numerical studies confirm that our scattering matrix computation is as accurate as the
FDTD method in Lumerical. In terms of computational cost, our method takes 0.15 seconds
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for each monochromatic simulation, and 3.6 seconds for the entire 1.2µm-1.6µm wavelength
range, whereas the FDTD simulation takes 179 seconds.

Next, we validate our derivative computation. We consider again the meta-atom structure
shown in Fig. 3(a), and choose the parameter α to be the size of the hollow square. Using
our method, we compute the derivative of the structure’s scattering matrix with respect to
α. Meanwhile, since there is no analytic expression of the scattering matrix derivative, we
approximate it using finite difference (FD) estimation, that is,

∂S
∂α

≈
S(α + ∆α) − S(α − ∆α)

2∆α
. (11)

We estimate ∂S
∂α using a sweeping range of ∆α values, and compare them to the derivative

resulted from our method.
The results are illustrated in Fig. 4. The accuracy of FD approximation largely depends on the

choice of ∆α. Only when ∆α is chosen within a certain range, FD approximation is accurate
enough to agree with our derivative results. This agreement confirms the correctness of our
method. But for different elements in the scattering matrix, the valid ∆α range varies (indicated
in light green in Fig. 4), suggesting that FD approximation is impractical: it is hard, if not
impossible, to choose a proper ∆α to produce accurate derivative estimations for all elements in
the scattering matrix. In contrast, our method is robust for computing the derivatives.

Fig. 4. Scattering matrix derivatives. We choose two matrix elements in the scattering
matrix, and plot their FD derivatives estimated with different FD sizes (∆α in x-axis) in (a)
and (b), respectively. In each plot, the red and blue solid curves correspond to the real and
imaginary parts of the estimated derivative. Meanwhile, the derivatives computed by our
method are indicated by the red (real) and blue (imaginary) horizontal dash lines. These
plots show that FD estimation is highly sensitive to ∆α. Light green regions indicate valid
∆α ranges for both matrix elements. The valid ∆α varies element by element. Thus, in
practice, it is hard to choose a proper ∆α for the entire scattering matrix, whereas our method
is always robust.

Computational cost. In addition to the robustness, our method is also faster than the FD
method. In the FD method, computing a matrix derivative requires the computation of two
scattering matrices S(α + ∆α) and S(α − ∆α). In contrast, our method, in addition to computing
S(α), only requires a few matrix multiplications and inverses (recall Section 3.3.2). In our test,
we use 25×25 harmonics in the RCWA method. It takes 0.18 seconds to compute the scattering
matrix, and takes 0.25 seconds to compute the scattering matrix and its derivative. This cost is
1.4× the cost of computing the scattering matrix itself, faster than the FD method (which is 2×
more expensive than computing the scattering matrix, as it evaluates the scattering matrix twice).
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4.2. Use case: optimization of meta-atom structure

Controlling phase and amplitude of monochromatic light. First, we optimize meta-atom
structures to reach specific transmitted amplitudes and phases for a monochromatic light (at
1.55µm wavelength, x-polarized). The cross-sectional shape is shown in Fig. 5(a), determined by
two parameters. The objective function for the inverse design is defined as

L = |TLR(m, m) − tm |2, (12)

where TLR is the transmission submatrix in the scattering matrix (recall (1)), m is the mode
index for the incident and outgoing light in free space, thus TLR(m, m) denotes the m-th diagonal
element of the matrix. Also, tm is a complex constant specifying the target amplitude and phase
of the transmission. Here we consider the fundamental mode (the way to choose corresponding m
is given in Supplement 1), which describes the far-field light transmission along the z-direction.

Fig. 5. Optimization of (12). (a) We optimize the cross-sectional shape specified by two
design parameters α and β in order to reach a target transmission amplitude and phase. We
examine different targets evenly sampled on a circle on the complex plane (indicated by
the square dots in (b)). The optimized amplitudes and phases (indicated by triangular dots)
reach closely to the targets. As a reference, we also show the amplitudes and phases (in
circular dots) of the designs that globally minimize (12), that is, ones obtained through a slow,
exhaustive search of all parameter combinations. While no gradient-based optimization
algorithm can guarantee the global minimum of (12), our results approach the targets closely,
comparable to what the global minimums can achieve. The resulting cross-sectional shape
for each sampled target are shown in (c).

To verify the robustness of our method and the enabled optimization, we evenly sample
different targets tm on a circle on the complex plane (see Fig. 5(b)), that is, targets all having the
amplitude 0.9 but different phases. For each target, we find meta-atom’s shape parameters by
minimizing (12) through a gradient-descent algorithm [13], for which the gradients of (12) with
respect to the design parameters are computed using our method. As shown in Fig. 5(b), we are
able to automatically discover structures that reach these targets closely.

Controlling phases for both x− and y−polarized light. Next, we optimize meta-atom
structures to obtain target responses for x- and y-polarized light, simultaneously. This type of

https://doi.org/10.6084/m9.figshare.13283540
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meta-atoms has been used to construct metasurface holograms [40]. In our example, the light
wavelength is 1.3µm; the meta-atoms have a fixed height of 2.0µm and a period of 2.5µm along
x- and y-direction. The cross-sectional shape of the meta-atoms are specified by two parameters
shown in Fig. 6(a). We determine the parameters by minimizing the following objective function:

L = −
TLR(mx, mx)

|TLR(mx, mx)|
t∗x −

TLR(my, my)|︁|︁TLR(my, my)
|︁|︁ t∗y , (13)

where the subscript x (and y) indicates light polarization; tx (and ty) are the target phase changes
from x-polarized (and y-polarized) incident light to the outgoing light with the same polarization
(i.e., tx = exp(iϕx) for some ϕx). The first term in (13) measures, for the x-polarized light, the
cosine difference (through dot product on complex plane) between the m-th mode’s phase change
and the target phase change, and similarly for the second term. The optimized structures for
different x- and y-polarized phase targets are shown in Fig. 6. In all cases, the residual between
the target and the resulting phase change is within 7% of one period (2π), and in most cases
within 1%.

Fig. 6. Optimization of (13). (a) We optimize the meta-atom structure described by
two parameters. The goal is to achieve certain phase changes for x- and y-polarized
light simultaneously. (b) We sample six target phase changes for x- and y-polarized light,
respectively. Their combination forms 36 different optimization targets. For each target, our
optimization produces a cross-sectional shape design. (c) For x-polarized incident light,
we show the residual (in terms of phase angle difference) between each pair of inversely
designed phase change and the target. And similar visualization for y-polarized light is
shown in (d).

In this study, we assume that all meta-atoms have the same height due to the restriction in most
current fabrication processes. Advanced fabrication techniques allow the meta-atom’s height to
vary. To demonstrate the use of our method with those fabrication techniques, we further improve
the designs in Fig. 6 by including meta-atom’s height as another optimization parameter. The
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study are described in Supplement 1, and the resulting designs and their improved performance
are reported in Fig. S1 therein.

Controlling amplitudes for multiple wavelengths. We also demonstrate inverse design of
meta-atoms for another type of optical response: obtain two target amplitude responses at two
separate wavelengths, simultaneously. This type of responses have proven useful for making
colored metasurface holograms [34,35]. Here we consider two archetypes used in [34], each
described by two parameters (see Fig. 7(a)). The two wavelengths under consideration are 1.2µm
(labeled as blue) and 1.6µm (red), and the objective function is defined as

L =
[︂|︁|︁TLR,1(m, m)

|︁|︁2 − A2
1

]︂2
+
[︂|︁|︁TLR,2(m, m)

|︁|︁2 − A2
2

]︂2
. (14)

Here the subscript “1” and “2” indicate the blue (1.2µm) and red (1.6µm) wavelength,
respectively. The first term accounts for the blue wavelength: TLR,1 is the transmission
submatrix of the scattering matrix and A1 is the desired amplitude. Similar is the second term.
More terms can be added in (14) to incorporate more than two wavelengths.

Fig. 7. Optimization of (14). (a) We optimize meta-atom structures described by two
archetypes, each with two parameters. The goal is to obtain desired amplitude responses
at two separate wavelengths (i.e., 1.2µm (blue) and 1.6µm (red)), simultaneously. We
sample five amplitudes from 0.2 to 1 for each wavelength, forming 25 different optimization
targets. Each target leads to a different cross-sectional design shown in (b). For red light,
the discrepancies between achieved amplitudes and the targets are shown in (c), and the
same visualization for blue light is shown in (d).

For each archetype, we find its parameter values via a gradient-descent algorithm that minimizes
(14), and choose between the two archetypes one that produces a smaller objective value. The
optimized structures and their performances are shown in Fig. 7. For almost all the optimized

https://doi.org/10.6084/m9.figshare.13283540
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Fig. 8. Inverse design of star-convex meta-atoms. (a) The star-convex polygon is used to
represent the cross-section of a meta-atom, defined by many control variables (p1. . . p8 in
this case). As an example, we inverse design the shape for reaching target amplitudes and
phases in two scattering directions (i.e., corresponding to diffraction orders (−1,0) and (1,0)
in (b)) simultaneously. (c-d) We perform two numerical studies to reach two sets of (t1, t2)
goals shown in the plots. In each experiment, our optimization finds the design parameters
within hundreds of iterations, resulting in nontrivial shapes that are hard to be manually
designed.

meta-atoms (each with a different amplitude target), the resulting amplitudes match closely to
their targets.

General cross-sectional shape design. Lastly, we introduce a new way to inverse design
the meta-atom’s cross-sectional shape under a general representation. We use the star-convex
polygon [41] to represent the cross-sectional shape. Such a shape can be discretized by sampling
N points on its boundary so that the polar angles of these points are evenly distributed over [0, 2π].
In other words, the (k + 1)-th point has the coordinate pk [cos (2kπ/N),− sin (2kπ/N)], where pk
is a non-negative value (see Fig. 8(a)), and the shape is specified by N parameters p1, . . . , pN . A
large N offers many degrees of freedom to represent a complex shape, but meanwhile renders
exhaustive search through the entire parameter space too expensive—one must rely on numerical
optimization methods to determine the parameter values.

This shape representation is particularly suitable for RCWA-based analysis, as it allows for
a closed-form 2D Fourier transform of the shape (and thus the permittivity distribution) [42].
In RCWA framework, 2D Fourier transform of the cross-sectional permittivity distribution is
needed for computing the matrices, P and Q, as well as their derivatives with respect to the pk
parameters. Supplement 1 provides the details of this process.

As examples, we optimize octagons (N = 8) to obtain desired optical responses in different
scattering directions. First, we specify the target scattering directions. Notice that to predict
optical behavior of a single meta-atom in simulation, periodic boundary condition is often used.
Under this condition, the meta-atom is effectively a 2D grating structure, for which we can use
diffraction orders to specify different scattering directions: the output light with diffraction order
(p, q) is along the direction

k⃗ =
(︃
2πp
Lx

,
2πq
Ly

, 1
)︃

, (15)

where Lx and Ly are periods along x- and y-axis, respectively (Lx = Ly = 1µm in our examples).

https://doi.org/10.6084/m9.figshare.13283540
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We consider x-polarized light with the wavelength of 1.55. The goal here is to obtain
specified far-field phases and amplitudes at two scattering directions—ones that correspond to
the diffraction orders, (−1, 0) and (1, 0), as shown in Fig. 8(b). We further restrict pk to be in the
range [0.15, 0.45], and determine pk values by minimizing

L = |TLR(m, n1) − t1 |2 + |TLR(m, n2) − t2 |2, (16)

where n1 and n2 are mode indices for the diffraction orders (−1, 0) and (1, 0), respectively; and t1
and t2 specify the target phases and amplitudes (as complex values) in the two outgoing directions.
We perform two numerical studies for two sets of t1 and t2 goals. The optimization convergence
curves and resulting shapes are shown in Fig. 8.

5. Conclusion

We have presented an algorithm for computing the derivatives of the scattering matrices of a
photonic structure with respect to its structural parameters. Our method is built on the framework
of semi-analytical methods for analyzing photonic structures. A key step in semi-analytical
methods for computing scattering matrices is the eigen-decomposition. However, to compute
scattering matrix derivatives, directly differentiating the eigenvalue analysis poses significant
difficulties. We show a new route to compute scattering matrix derivatives without the need of
differentiating the eigen-decomposition process.

The scattering matrix derivatives describe how a photonic structure’s performance will change
as its structural parameters vary. While we demonstrated their use in optimization of meta-atom
units, they can be found useful in many other applications. Therefore, our method may serve as a
useful analysis tool in a wide range of photonic design tasks.
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