
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 1

Inverse Diffusion Curves using Shape
Optimization

Shuang Zhao, Frédo Durand, and Changxi Zheng

Abstract—The inverse diffusion curve problem focuses on automatic creation of diffusion curve images that resemble user provided
color fields. This problem is challenging since the 1D curves have a nonlinear and global impact on resulting color fields via a partial
differential equation (PDE). We introduce a new approach complementary to previous methods by optimizing curve geometry. In
particular, we propose a novel iterative algorithm based on the theory of shape derivatives. The resulting diffusion curves are clean and
well-shaped, and the final image closely approximates the input. Our method provides a user-controlled parameter to regularize curve
complexity, and generalizes to handle input color fields represented in a variety of formats.

Index Terms—Vector graphics, diffusion curves, inverse problem, shape optimization, Fréchet derivative

F

1 INTRODUCTION

V Ector graphic images remain invaluable for a broad
range of 2D applications because of their resolution

independence, compactness of representation, and powerful
editability. Diffusion curve images [1] further improve the
expressiveness of vector graphics, providing flexible and
easy-to-manipulate smooth gradients, and since then inspi-
red a variety of novel applications [2], [3], [4], [5], [6]. Defi-
ned along the curves, colors are diffused across the image by
a Poisson or Laplace reconstruction, and their smoothness
can be further controlled by the curve’s blurriness through
post-processing. Although efficient rendering of diffusion
curve images has been well explored, its inverse problem of
creating diffusion curves automatically given desired target
images remains challenging.

The inverse diffusion curve problem is difficult because
even though the curves themselves are 1D, their impact
on the final image is nonlinear and global over a 2D dom-
ain through a partial differential equation (PDE), Laplace’s
equation. The geometry of curves largely determines the
reconstruction quality. Previous methods have used local
heuristics to obtain curve geometry. They place curves at
locations indicated by edge detectors applied to the target
image [1] and its Laplacian or bi-Laplacian [7]. While these
heuristics work well around sharp edges such as object
boundaries, they have difficulty handling color variations
in regions that are smooth yet visually rich.

We introduce a new approach to the inverse diffusion
curve problem. Complementary to existing methods, our
approach solves for curve geometry through a global opti-
mization that takes into account the curves’ full impact on
the PDE-based color field. To achieve this, we characterize
how modifications to a diffusion curve can reduce a global
cost function determined by the solution of a PDE with the
curves acting as boundary conditions.

• S. Zhao is with the Department of Computer Science, University of
California, Irvine. E-mail: shz@ics.uci.edu

• F. Durand is with the CSAIL, MIT. E-mail: fredo@mit.edu
• C. Zheng is with the Department of Computer Science, Columbia Univer-

sity. E-mail: cxz@cs.columbia.edu

Our method is grounded on the theory of shape optimiza-
tion [8]. Given a color field, it computes curve geometry by
minimizing a measure of the color reconstruction residual.
Starting from an initial set of curves, it iteratively evolves
their shapes toward an optimal configuration. Mathemati-
cally, the curves are treated as continuous functionals. This
allows them to deform arbitrarily, enabling full exploration
of possible curve configurations. This iterative process is
similar to a surface normal flow: our curve evolution at
every iteration is guided by the Fréchet derivative of the
residual function with respect to the curve’s boundary
velocity, leading to an efficient “gradient descent” of the
residual. This method is mathematically clean and easy to
implement: all computations at each iteration boil down to
solving a Laplace equation and a Poisson equation.

Building on our curve placement algorithm, we intro-
duce a complete pipeline for solving the inverse diffusion
curve problem. Our method generates curves in a clean and
concise way, and the resulting images can accurately capture
complex color variations of input color fields (see Figures 1,
14, 15, and 16 as well as the supplementary images).

We demonstrate that our method promises practical
applications beyond pixel image vectorization. It enables
automatic rendering of vector graphic images from 3D geo-
metries, analogous to the traditional pixel image rendering.
Further, using our algorithm, one can directly transform
other formats of vector graphics, such as gradient meshes,
into diffusion curve images without rasterizing the input.

2 RELATED WORK

Diffusion curves [1] represent a color field by diffusing the
colors defined along control curves over the entire image
plane. The diffusion process is described by Laplace’s equa-
tion solved using a finite volume method. Later, solving
Laplace’s equation was improved using a multigrid met-
hod [2], triangle mesh interpolation [9], Boundary Element
method [4], 2D ray tracing [10], and Fast Multipole met-
hod [6].

Inverse diffusion curve problem: Our work focuses
on the inverse problem of diffusion curves. Previously, Orzan
et al. [1] proposed to place diffusion curves along edges



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 2

(a) Reference (b) Before optimization (c) Early opt. stage (d) Late opt. stage (e) Our final image

Fig. 1: We present a new approach to automatically build diffusion curve images approximating provided color fields (a).
Starting from a set of boundary curves (black strokes) indicating color jump discontinuities (b), our method iteratively adds
curves (dark yellow strokes) and refines their shapes in an optimized manner (c, d). The resulting image (e) accurately
matches the input.

extracted from input images using the Canny detector [11].
Jeschke et al. [12] introduced a technique to improve curve
colorings. Xie et al. [7] further improved this method by
detecting edges in a Laplacian (and/or bi-Laplacian) dom-
ain and constructing curves hierarchically. They solve the
Laplacian and bi-Laplacian weights using least-squares fit-
ting. In all methods, diffusion curves are placed along the
detected edges, and never moved or added in continuous
color regions. These methods then rely on optimizing curve
coloring for better accuracy.

We introduce a fundamentally complementary solution
to the inverse diffusion curve problem. Instead of prede-
termining curve geometry and optimizing their coloring,
we propose doing the opposite by first optimizing the ge-
ometry and then determining the coloring accordingly. We
demonstrate that with a very simple coloring scheme, our
method outperforms prior methods under many situations
(§6.2). Furthermore, our approach accepts input color fields
beyond pixel images.

Extensions of diffusion curves: Several methods have
been proposed to extend the expressiveness of diffusion
curves. Sun et al. [6] enabled fast diffusion curve cloning
and multi-layer composition. Finch et al. [13] introduced a
higher-order notion of smoothness: the colors are defined
using a 4th-order linear elliptic PDE rather than a Laplace
equation. To accelerate the color evaluation, Boyé et al. [14]
developed a vectorial solver using the Finite Element Met-
hod, and Sun et al. [4] proposed a boundary element based
formula, which was later improved in [5] to handle both
Laplacian and bi-Laplacian curves in a unified framework.
Higher-order curves offer greater flexibility than the stan-
dard diffusion curves, but their inverse problems are more
difficult and remain unsolved. In this paper, we focus on
the inverse problem for original diffusion curves and discuss
potential extension to higher-order domains in §6.3.

Theory and applications of shape optimization: We
build our curve optimization on the theoretical foundation
of shape optimization [8], [15], a subfield of optimal control
theory. Mathematically, it solves the problem of finding a
bounded set Ω to minimize a continuous functional on Ω.
The core idea of shape optimization has been used for image
segmentation since the seminal work of [16], [17]. It is also
related to surface gradient flow widely studied in geometry
processing [18], [19]. In areas outside of computer graphics,
shape optimization has been used to enhance mechanical
structures such as airfoils [20] and photonic crystals [21]. It

has also been used in computer vision for image segmenta-
tion (e.g., [22], [23]). To our knowledge, shape optimization
has not yet been applied in vector graphics. In this paper,
we solve a shape optimization problem with a PDE con-
straint (§5.1), which is significantly more challenging than a
conventional shape optimization problem.

3 BACKGROUND

We now briefly revisit the mathematical formulation of
diffusion curve images and present the main focus of this
work: the inverse diffusion curve problem.

Diffusion curve images: The color field u in a diffu-
sion curve image [1], [2] is a harmonic function satisfying a
Laplace equation with a Dirichlet boundary condition:

u(x) = {C`(x), Cr(x)} , x ∈ B
∆u(x) = 0, otherwise,

(1)

where the boundary B consists of the entire set of diffusion
curves; C` and Cr specify the colors on the left and right side
of each curve, respectively. Typically, both the shapes of the
curves and their left- and right-side colors are specified by
the user, and the entire color field is uniquely determined
by solving the Laplace equation (1).

Since its invention, diffusion curves have been augmen-
ted. Orzan et al. [1] proposed to apply per-pixel blurring to
the rasterized image of u, the solution of (1). Finch et al. [13]
further extended to diffuse colors using higher-order elliptic
PDEs such as the biharmonic equations.

Inverse diffusion curve problem: While plenty of
extensions of the forward diffusion curve problem have
been proposed, largely under-explored is the inverse problem,
one that computes a set of diffusion curves such that the
resulting vector image closely resembles a user-provided 2D
color field. In this paper, we address this inverse problem
which in turn involves two subproblems:
• Curve geometry: To build a diffusion curve image, one

needs to decide where to place the curves (namely, to
determine B).

• Curve coloring: Given the curve geometry, the colors on
both sides of each curve (namely C` and Cr) need to be
specified.

As discussed in §2, recent work [7], [12] has largely focused
on optimizing curve coloring with their geometry prede-
termined (using edge detection). In contrast, we focus on
the complementary problem of directly optimizing curve
geometry. We demonstrate in §6 that curves with optimized



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 3

Input

Curve
Initialization
(Section 4.2)2D Color Field

Curve
Optimization

(Sections 4.3, 5)
Post-Processing

(Section 4.4)

Diffusion Curve Image

Output

Boundary Curves
(Section 4.1)

Fig. 2: Our pipeline. The input to our method is a 2D color field. After obtaining a set of boundary curves indicating color
jump discontinuities (§4.1), our method constructs a set of initial curves (§4.2) and optimizes their shapes and trajectories
(§4.3 and §5). Finally, we post-process the optimized curves and obtain the resulting diffusion curve image (§4.4).

geometries generally yield higher-quality of reconstructions,
regardless of the curve coloring schemes.

4 OUR PIPELINE

We develop a complete pipeline, as outlined in Figure 2
and Algorithm 1, for automatic creation of diffusion curve
images. Our method takes as input a color field I allowing
to query for color values at for all x in the image domain Ω.
Then, starting with extracting a set of boundary curves (§4.1)
that indicate jump discontinuities in I , our method genera-
tes a set of curves as “initial guesses” (§4.2) which are then
deformed by our core curve optimization algorithm (§5) to
minimize reconstruction error (§4.3). Lastly, we post-process
the deformed curves (§4.4) to generate final diffusion curve
images.

As one of our main contributions, the key component
of our pipeline (lines 7, 11, and 13 of Algorithm 1) is a
curve optimization algorithm that deforms diffusion curves
to minimize the reconstruction error. Detailed discussions
and mathematical derivations on this algorithm are in §5.
In the rest of this section, we provide more details for the
remaining steps of Algorithm 1.

4.1 Boundary Curves

Provided an input color field I , we start the pipeline by
obtaining a set of boundary curves ∂Ω indicating the outer
boundary and jump discontinuities of I .1 See Figure 3-ab
for an example. In practice, we obtain the boundary curves
∂Ω depending on specific representation of the input color
field I :
• Pixel images. A common way to represent color fields

is using standard pixel images. The boundary curves,

1. The necessity of boundary curves is explained in §5.

0.0

0.1

0.2

0.3

0.4

0.5

(a) (b) (c)

Fig. 3: A sample color field: (a) the color field representing
a smoothly shaded torus viewed from the top; (b) the
corresponding boundary curves; (c) a visualization of the
color field.

Algorithm 1 Diffusion curve placement

Require: Color field I (defined on Ω)
1: procedure CURVEPLACEMENT(I, Ω, ε0)
2: compute boundary curves ∂Ω . §4.1
3: partition Ω into connected components
4: B← ∂Ω
5: for each component C do
6: D0 ← CURVEINIT(‘global’, ∂C, I, C) . Alg. 2
7: D← CURVEOPT(D0, ∂C, I, C) . Alg. 3
8: while R(C; ∂C ∪ D) > ε0 do
9: D′0 ← CURVEINIT(‘local’, ∂C ∪ D, I, C)

10: D′ ← CURVEOPT(D′0, ∂C ∪ D, I, C)
11: D← D ∪ D′
12: end while
13: D← CURVEOPT(D, ∂C, I, C)
14: post-process D . §4.4
15: B← B ∪ D
16: end for
17: return B
18: end procedure

however, are not uniquely defined in this case. To obtain
these curves in practice, we use Canny edge detection
similar to Orzan et al.’s work [1].

• 3D renderings. If the color field is defined by the rende-
ring of a 3D scene, the boundary curves can be obtained
by extracting object contours.

• Other vector formats. For input color fields represented
in other vector formats (e.g., gradient mesh), ∂Ω can
be determined directly based on the underlying vector
representation (e.g., triangle edges).

Please refer to §6.2 for more details and experimental results
on boundary curve computation.

4.2 Curve Initialization

Desired properties: Similar to gradient descent met-
hods, our curve optimization algorithm takes an initial
guess to start with. For ensuring high-quality optimization
results, there are a few properties required of the initial
curves:
1) Easy to compute: The curve initialization step should not

require intense computation: we rely on the optimization
step to refine the shapes of these curves.

2) Good coverage: The initial curves should provide a
good coverage to the full image domain Ω, so that the



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 4

r0

Fitted
Va

lu
e

Component #

Selected
iso-value r~

r~ ’s internal boundary

Fig. 4: Fitting r0 with 9 components (indicated with purple
dots) using a piecewise linear function r̃ with 2 pieces (m =
1). The value of r̃ at its internal boundary is selected as iso-
value.

optimization is less prone to local optima.

3) Being well-shaped: The initial curves need to be well-
shaped. For example, they should have low complexities
and not self-intersect or collide with the boundaries.

To achieve these properties, we use iso-contours of the
residual field as the initial curves:

R0(∂Ω;x) = (u0(x)− I(x))2, ∀x ∈ Ω. (2)
In (2), u0 is given by the diffusion curve image using
only the input boundary curves ∂Ω. These curves can be
computed easily from a set of iso-values (Property 1). In
addition, as long as the iso-values are distributed properly,
the resulting iso-contours will provide a good coverage to
the image domain while being well shaped (Properties 2 and
3). For example, to make the initial curves never intersecting
with ∂Ω, we can simply pick strictly positive iso-values as
R0(∂Ω;x) = 0 for all x ∈ ∂Ω.

Our approach: To choose a set of properly distributed
iso-values, we start with sampling a set of points in Ω and
stacking the residual values (2) at these points into a vector
r0 in ascending order (lines 2 and 3 in Algorithm 2). The
resulting vector r0 provides a picture on the distribution
of residuals. We adopt two complementary schemes, global
and local, to set iso-values using r0, and thereby obtain the
iso-contours:
• Global: The global scheme constructs a relatively large set

of initial curves over the entire domain Ω. Assume that the
number of iso-values m is given. Ideally, we would like
to find m values such that the consequent iso-contours
optimally capture the structure of 2D residual field R0.
In practice, we solve this problem approximately and rely
on our curve optimization algorithm to refine the curves.
Particularly, we solve a well-studied 1D problem [24]: to
fit a piecewise linear function r̃ with m + 1 pieces that

Algorithm 2 Diffusion curve initialization

Require: Color field I (defined on Ω) and boundary curves
∂Ω

1: procedure CURVEINIT(scheme, ∂Ω, I , Ω)
2: generate uniform point samples in Ω
3: form r0 by evaluating R0(∂Ω;x) on the sampled

points
4: if scheme = ‘global’ then . Global scheme
5: fit a piecewise function f to r0

6: let A to be the (internal) piece boundaries of f
7: else . Local scheme
8: A← {0.9 max(r0)}
9: end if

10: return iso-contours with iso-values specified in A
11: end procedure

(a1) (a2) (b1) (b2)

Fig. 5: Two examples of boundary curves and correspon-
ding partitioning of domain Ω. For clean and well defined
boundaries (a1), Ω can be divided into many well shaped
components (a2); for messier boundaries often resulting
from edge detections (b1), there are normally fewer compo-
nents with more complex shapes (b2). Our approach works
well for both cases.

closely describes r0 (interpreted as a polyline). Then, the
values of r̃ at its m internal piece boundaries are used as
iso-values (see Figure 4).

• Local: The local scheme, in contrast to the global one, adds
curves locally in regions with high approximation error. In
this case, we use only one iso-value determined based on
the maximal sampled residual (line 8 of Algorithm 2).

In our curve placement algorithm (detailed in §4.3), we use
the global scheme at the beginning to ensure that the initial
curves provide a good coverage to the domain Ω (Property
2). Then, the local scheme is applied iteratively to add small
sets of curves in high-residual areas. The combination of
both schemes offers sufficient approximation accuracy wit-
hout introducing unnecessarily complex curves (Property
3). We find that m = 2 works well in our experiments.

4.3 Curve Placement

Given the initial curves generated by Algorithm 2, our curve
optimization algorithm iteratively refines their trajectories
to reduce reconstruction errors and finalize curve geometry.
We postpone the details of this algorithm (Algorithm 3) and
its derivations until §5 but present here the complete curve
placement steps described in Algorithm 1.

The curve placement process is built on the algorithms
of curve initialization and optimization schemes. It takes
as input the target color field I defined on domain Ω, the
previously obtained boundary curves ∂Ω, and a tolerance ε0
on reconstruction error. Based on ∂Ω, we partition the dom-
ain Ω into a number of connected components and process
them individually in parallel (line 3 of Algorithm 1). Figure 5
illustrates example boundaries and resulting partitionings.
Notice that our approach allows boundary curves to exist
inside individual components (e.g., Figure 5-b)—these cur-
ves will remain fixed throughout the entire pipeline.

For each connected component C, our approach gene-
rates diffusion curves via several passes, each of which
involves initializing a set of curves (Algorithm 2) and opti-
mizing their shapes (Algorithm 3 in §5). In the first pass, we
start with initial curves constructed using the global scheme
(lines 6 and 7). After this pass, if the approximation error
remains beyond a tolerance ε0, additional passes are used
in which new curves are initialized using the local scheme
(lines 8 to 10). After the error drops below the threshold,
we perform a final pass (line 13) in which all curves created
in previous passes are optimized together. Finally, we post-
process the resulting curves to remove redundant curve
segments (line 14 and §4.4). An example of this curve



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 5

In
it

ia
l

. . .

O
pt

im
iz

ed

. . .

Pass 1 Pass 2 Pass 3 Final pass

Fig. 6: An example of our curve placement process (Al-
gorithm 1) using Figure 3-ab as input. New curves are
constructed using the global scheme in Pass 1 and the local
one in the following passes. The final pass (Pass 5) generates
no new curves. Instead, it starts with those created in all
previous passes. In each pass, active curves (those being
added and/or optimized) and previously generated ones
are drawn as green and dark yellow strokes, respectively.

placement process is illustrated in Figure 6.

4.4 Curve Post-Processing

Lastly, we post-process the curves B returned by Algo-
rithm 1 and generate the final diffusion curve image.

Curve Coloring: Notice that Algorithm 1 returns op-
timized curve geometry instead of actual diffusion curves.
Thus, to turn B into a set of diffusion curves, their coloring,
namely colors on both sides of each curve, needs to be
provided. This corresponds to specifying the values of C`

and Cr in (1).
As aforementioned, this curve coloring step is comple-

tely orthogonal and complementary to our core technique
(Algorithm 1). Thus, in the rest of this paper, we use a simple
scheme which directly sample color values on both sides
of each curve from the input color field I . That is, for any
x ∈ B, we set

C`(x) = I(x + δn`) and Cr(x) = I(x + δnr), (3)
where n` and nr respectively denote normal directions
pointing left and right side of a point x on a curve (thus,
n` = −nr) and δ is a small positive number that can be set to
the size of one pixel when I is represented as a pixel image.
Our experiments demonstrate that this simple scheme can
yield high-quality results thanks to our optimized curve ge-
ometry (§6.2). In §6.3, we show that more advanced coloring
techniques can further improve reconstruction accuracy.

Removing redundant curve segments: As mentioned
in §5.4, we represent diffusion curves as polylines consisting
of a number of line segments. Some of these segments,
however, may be unnecessary. Note that the colors across
a line segment are continuous because of the boundary
condition (5) on B. If the color gradient normal to a segment
is also continuous across, then the segment as a boundary
has no influence on the solution color field u. A mathema-
tical explanation is in §3 of the supplementary document.
Precisely, a normal gradient is continuous when

dn(x) =
∂u(x)

∂n`
+
∂u(x)

∂nr
, x ∈ B, (4)

is zero. In practice, we solve u using the Finite Element Met-
hod (§5.4) and check if |dn(x)| at the center point x of each
segment is below a threshold. If so, we mark the segment as

Color value           (input)

Domain outer boundary          (input)

Diffusion curves      (input/output)

Fig. 7: Input and output of our curve optimization algo-
rithm. Input: color field I , domain Ω and its outer boundary
∂Ω, initial diffusion curves B; output: refined curves B.

unnecessary. Lastly, for each curve output by Algorithm 1,
we remove a largest set of connected redundant segments
to avoid breaking the curve into many small disconnected
components.

To transform the final polyline into a standard diffusion
curve made from end-to-end connected Bézier curves, we
adopt the Potrace algorithm [25], which was also used in
prior work [1].

Per-pixel blurring (optional): The curves placed in
a smooth color region have continuous color values across
the curves. However, since these curves serve as boundaries
in the Laplace solve, color gradients may not necessarily
remain continuous across curves generated by Algorithm 1.
Such gradient discontinuities can sometimes lead to noti-
ceable artifacts [13]. Thus, our pipeline includes an optional
step following the original framework of diffusion curves [1]
to perform per-pixel blurring on the rasterized image. The
size of blur kernel at each pixel is determined by another
Laplace equation:

K(x) = K0(x), x ∈ Γ

∆K(x) = 0, otherwise,
where K0(x) gives the desired kernel size along the curves.
In particular, we set K0(x) = 0 for all x ∈ ∂Ω since
the boundaries and discontinuities in the input color field
should never be blurred. For x ∈ B, the value dn(x) indi-
cates the magnitude of the gradient domain discontinuity.
Thus, we set K0(x) = b |dn(x)|a for all x ∈ B, where a and
b are two global parameters. In our implementation, we set
a = 0.2 and b to 5% of the longest axis of Ω’s bounding box.

More advanced curve coloring techniques (e.g., [7]) may
optimize color gradients across the curves, largely removing
gradient discontinuity artifacts. In this case, per-pixel blur-
ring is unnecessary (§6.3).

5 DIFFUSION CURVE OPTIMIZATION

We now detail the core of our pipeline, the optimization of
diffusion curve geometries to approximate a given 2D color
field. We first describe an algorithm minimizing the approx-
imation error of diffusion curve images (§5.1, §5.2) and then
extend it to balance accuracy against curve length (§5.3).
Lastly, we provide implementation details (§5.4) followed
by the discussions of further extensions (§5.5).

We introduce Shape Optimization [8] to formulate the
inverse diffusion curve problem. While building our ap-
proach on existing shape optimization concepts and theo-
ries (§5.2), we also develop a new formula for regularizing
curve length (§5.3). Please refer to the supplementary do-
cument for complete derivations and a review of related
background.

Curve Optimization in a Nutshell: The major steps of
our approach are outlined in Algorithm 3. Its input includes



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 6

After timestep

Higher cost Lower cost

Fig. 8: Curve optimization. Given a set of curves B0,
we construct a velocity field v so that if one deforms B0

according to v, the resulting curves Bt provide a lower cost.

the color field I , a 2D closed domain Ω over which I is
defined, and a set of initial curves B in Ω (Figure 7). In this
section, the color field I is treated as a black box, allowing
I(x) and ∇I(x) to be evaluated for any x ∈ Ω. Our curve
optimization algorithm then iteratively refines the curves by
changing their shapes (i.e., the trajectories) and topologies to
obtain better approximation. The resulting diffusion curve
image consists of the optimized curves B and the domain
boundary ∂Ω. During the optimization process, the colors
along both sides of these curves (i.e., C` and Cr of the
Laplace equation (1)) are sampled from the given color filed
I , and the approximated color value u(x) for all x ∈ Ω is
determined according to the equation (1) with the Dirichlet
boundary condition

u(x) = I(x), ∀x ∈ B ∪ ∂Ω. (5)
We note that rather than sampling color values along the
curves, prior methods [7], [12] post-optimize color values
after the curves are determined. We will discuss the exten-
sion of our method to incorporate their post-optimization
later (§5.5) and examine it in our experiments (§6.3).

5.1 PDE-Constrained Optimization Problem

Formally, our iterative curve optimization process minimi-
zes a cost functional defined as the L2 residual of the color
approximation,

R(Ω;B) =
1

2

∫
Ω

(u(x)− I(x))2 dΩ, (6)

where u is the color field determined by diffusion curves.
We write B as a parameter of R to emphasize the depen-
dence of the residual on B through the Dirichlet boundary
condition (5). Since u is the solution of the Laplace equa-
tion (1), we are concerned with an optimization problem
with a PDE constraint,

min
B
R(Ω;B) s.t. u satisfies the Laplace eqn. (1). (7)

PDE-constrained optimization problems are known to be chal-
lenging in general [26]. In our problem (7), the optimization
variables are the shapes of diffusion curves, that is, the
spatial trajectories and topologies of the curves. Ideally,
a curve can have an arbitrarily continuous trajectory, and
therefore needs to be represented using a continuous functi-
onal rather than using individual and discrete parameters.
More importantly, the error residual R(Ω;B) depends on
the optimization variables (the curves) through the Laplace
equation (1) in a complex manner: any local change to the
curves B has a global impact, one that changes u over the
entire domain Ω, which further affects the residual via (6).

5.2 Gradient-Descent Solver

We propose a new approach for solving the curve optimi-
zation problem (7), following the general spirit of gradient

descent. Starting from a set of initial curves, our appro-
ach iteratively decreases the residual (6) by adjusting their
shapes. Throughout, a fundamental difficulty we need to
address is the computation of the residual’s “gradient” with
respect to the shapes of the curves, as the conventional
gradient in terms of continuous curves is undefined.

We develop our method from the perspective of functio-
nal analysis: in each gradient-descent step, we first construct
a velocity field v on the curves, specifying v(x) for all x ∈ B
(Figure 8). We then use v(x) to deform the curves, analo-
gous to a (2D) surface flow in geometry processing [27], [28].
In other words, we evolve the curves via a single step of the
forward Euler method of integrating ẋ = v(x), ∀x ∈ B.

We now present the details of computing such a v
that after deforming the curves accordingly, the residual is
guaranteed to decrease (lines 5–7 of Algorithm 3). Briefly
speaking, we will first assume that v(x) is known and ana-
lytically express how much the residual would change if the
curve is deformed according to v. This analytical expression
allows us to formulate the condition of v resulting in a
decrease of the residual, and thereby provides us a recipe
for computing v.

Fréchet derivative as a linear form: Given a domain
Ω and a set of initial curves B0, we consider a general cost
functional,

C(Ω;B0) =

∫
Ω0

y(x;B0) dΩ, (8)

where y is continuous on Ω and may depend on the choice
of B0. Our residual (6) takes the form y(x;B0) = 1

2 (u(x) −
I(x))2 and depends on B0 via the Laplace solution u.
Assuming a known v, we introduce the Fréchet derivative [29]
of C with respect to v. Let Bt denote the curves evolved
according to v after an infinitesimal time period of t, that
is, x 7→ x + v(x) t for all x ∈ B0 (Figure 8). The Fréchet
derivative of C is a linear form of v satisfying that

dC(Ω;B0) = lim
t↓0

1

t
(C(Ω;Bt)− C(Ω;B0)).

Conceptually, this derivative measures how quickly the
cost functional C changes as we deform the curves using
v infinitesimally According to Hadamard-Zeloésio Structure
Theorem [30], such a linear form always exists when Ω, B0

and v are sufficiently regular, which is usually the case
in practice. For our cost functional (6), we further reduce
the Fréchet derivative into a linear form expressed as a

Algorithm 3 Gradient-descent diffusion curve optimization

Require: initial curves B0, color field I on Ω with boundary
∂Ω

1: procedure CURVEOPT(B0, ∂Ω, I , Ω)
2: ∆R←∞; B← B0 . ∆R tracks residual change
3: while ∆R > ε do
4: triangulate Ω using ∂Ω ∪ B as boundaries . §5.4
5: solve the Laplace equation (1) for u(x)
6: solve the Poisson equation (11) for p(x) . §5.2
7: compute vn(x) = −BR(x) using (12)
8: forward-Euler curve advancement, B← B + vnt
9: evaluate R using (6), and update its change ∆R

10: end while
11: return current curves B
12: end procedure



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 7

boundary integral

dC(Ω;B0) = L[v(x)] :=

∫
Γ0

B(x)vn(x) dΓ, (9)

where vn(x) := v(x) · n(x) denotes the normal velocity on
the curves (Figure 8), Γ0 = ∂Ω∪B0 includes both the domain
boundary ∂Ω and all the inner curves B0 (see Figure 7), and
B is another function independent from v but related to the
specific integrand y. In the rest of this subsection, we aim to
derive a formula to evaluate B(x) for any x ∈ B0.

Once B is known, setting

vn(x) =

{
−B(x) if x ∈ B0,

0 if x ∈ ∂Ω
(10)

guarantees a negative derivative value in (9) (assuming that
B does not vanish everywhere on B0). This provides a
formula of constructing vn, which we then apply to deform
the curves B0. With a sufficiently small timestep size t, the
deformed curves Bt, computed by x+vn(x) t for all x ∈ B0,
is guaranteed by construction to yield a smaller residual
value and thus a better approximation of I .

Computational Recipe: Shape Optimization Theory
has provided a simple recipe of computing B for our
particular cost functional (6). Here we simply present the
formulas. Please see §3 of the supplementary document a
detailed derivation.

We first solve the Laplace equation (1) to compute u(x),
which in turn allows us to construct a Poisson equation with
a Dirichlet boundary condition,

∆p(x) = u(x)− I(x)

p(x) = 0, ∀x ∈ Γ0.
(11)

Next, the solution p of this equation, together with u, allows
the computation of B(x) in a simple form

B(x) =
∂p(x)

∂n

(
∂I(x)

∂n
− ∂u(x)

∂n

)
. (12)

Combining (12) and (10) computes the normal velocity vn,
the velocity that can deform the curves B0 and lead to a
decrease of the approximation residual (6). This compu-
tation is performed at each gradient-decent step, and the
optimization process stops when the residual change drops
below a threshold ε. Figure 10 illustrates the optimization
process with synthetic examples.

5.3 Regularizing Curve Complexity

So far, our optimization problem (7) focuses solely on
minimizing the L2 residual (6). However, because the L2

error along a curve is always zero due to the boundary
condition (5), one simple way to yield a very low residual is
to use space-filling curves. Indeed, if we start with one curve
in a complex color region, it becomes zigzag after running
the optimization for many iterations (Figure 9-a). While
the numerical residual is low for such curves, their largely
increased geometric complexity may be undesirable for
certain applications (such as vector graphics editing). Thus,
we propose a simple extension to the cost functional (6),
providing users the flexibility to trade approximation accu-
racy for simpler curves. To this end, we add a regularization
term to (6) to penalize the total length of the curves:

R̃(Ω;B) =
1

2

∫
Ω

(u(x)− I(x))2 dΩ + α

∫
B

dΓ, (13)

where α is a user-specified scalar controlling the strength
of regularization. It can be shown that similar to (9), the

Curves

Error (8×)

Curves

Error (8×)

(a) Weak regularization (b) Strong regularization

Fig. 9: Our method allows the user to regularize curve
complexity. Subfigures (a) and (b) show two optimization
results using the color field illustrated in Figure 3 as input.
Both results are generated using Algorithm 3 with identical
initial configurations (a circle) but varying α values. The
resulting curves and error images (scaled by 8×) are shown
to the right of the final images. See Figures 6 and 14 for
results created using our full pipeline (Algorithm 1).

Fréchet derivative of the second term is also a linear form of
vn. Let RL(B0) =

∫
B0
dΓ. Then, its derivative is

dRL(B0) =

∫
B0

κ(x)vn(x) dΓ, (14)

where κ(x) measures the curvature of a point x on the
curves. This formula has been used to derive the mean cur-
vature flow [31] in geometry processing. It is also a special
case of the Fréchet derivative of a general boundary integral
(see §1.3 of the supplementary document). Following the
derivation of B in §5.2, we obtain the normal velocity for
decreasing R̃(Ω;B), that is, vn(x) = −BR(x)−ακ(x). With
this slightly different velocity formula, the entire optimiza-
tion algorithm remains the same as before. In addition, the
user is able to control the complexity of resulting curves by
adjusting the strength of regularization (Figure 9).

5.4 Implementation Details

We now present implementation details of Algorithm 3,
wherein two major steps are solving the Laplace equation (1)
and the Poisson’s equation (11). Both PDEs have Dirichlet
boundary conditions defined on the boundary of Ω and
the optimized curves B (recall (5)). Since we also need to
evaluate the domain integral over Ω during the iterations
(line 9 of Algorithm 3), we triangulate the entire domain of
Ω and use the Finite Element Method [32] for both solves,
while other numerical solvers (e.g., the Boundary Element
Method) could also be applied.

Finite element discretization: We discretize the boun-
dary and optimized curves into piecewise linear segments
and represent them using polylines. The velocity vn is
discretized and stored at every vertex along the polylines.
We use the package Triangle [33] to triangulate the domain
Ω (line 4 of Algorithm 3). The resulting triangle mesh is
then used in the finite element solves. The computation of
curves’ normal velocity in (12) involves boundary normal
derivatives of the finite element solutions (i.e., ∂p/∂n and
∂u/∂n). We choose the second-order finite element basis, as
it offers higher accuracy especially near the boundary (see
§4 of the supplementary document).

Curve tracking: Advancing the curves using the com-
puted normal velocity (i.e., computing Bt given B0 and vn in



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 8

Closed Curve︷ ︸︸ ︷

Reference Initial 50 iter. 100 iter. 240 iter.

Open Curve︷ ︸︸ ︷

Reference Initial 25 iter. 100 iter.

Fig. 10: Synthetic validation of our diffusion curve opti-
mization algorithm. The left-most column contains input
color fields given by one closed curve (top) and one open
curve (bottom). The following columns respectively show
diffusion curve images after Algorithm 3 finishing a varying
number of iterations. Our resulting curves precisely match
the original.

Figure 8) is a typical yet nontrivial surface tracking problem.
We use a recently developed explicit tracking approach [34],
which advances the vertices on curve polylines using expli-
cit forward Euler method, and then carefully remeshes the
polylines to ensure correct topology changes and a collision-
free state.

Timestep size t: To ensure robust curve tracking,
we dynamically set the timestep size t for the forward-
Euler curve advancement (line 8 in Algoirthm 3). We start
with choosing a t value such that the vertex displacement
vn(x) t,∀x ∈ B would not collapse any polyline segment on
B. This ensures that possible topology changes can be robus-
tly processed. From this starting value, we iteratively halve
t until the residual value (after a step of curve deformation)
decreases.

5.5 Discussions

Measuring geometric complexities: In Eq. (13) and
the rest of this paper, we use the total length of all diffusion
curves to measure their geometric complexity. Depending
on specific applications, there may exist other metrics more
suitable to user needs. As an example, in §2 of the supple-
mentary document, we discuss another possible measure
which can also be incorporated in our curve optimization
framework.

Coloring schemes: As described at the beginning of
this section, given the curve geometry B, we specify colors
on both sides of each curve by directly sampling color
values from the input color field I . Alternatively, prior

(a) Reference (b) Stronger Regularization

RMSE: 0.0135 Complexity: 17.56

(c) Weaker Regularization

RMSE: 0.0108 Complexity: 20.22

Fig. 11: Our method allows the user to balance resulting
accuracy with curve complexity by varying the strength of
regularization.

work [7], [12] propose to post-optimize curve colors for
better reconstruction accuracy. Our method can easily adopt
this approach, post-optimizing the colors after the curves
are optimized. We implemented this approach and present
the results in §6.3.

Higher-order domains and curves: While our appro-
ach focuses on solving the inverse problem of the stan-
dard (first-order) diffusion curves, it can be also applied
to higher-order domains. For instance, as demonstrated in
§6.3, we can feed∇I instead of I to Algorithm 3 to compute
curves offering a higher order of smoothness.

In principle, one can use the cost function (6) to optimize
u(x) resulted from higher-order (e.g., biharmonic diffusion)
curves. However, in our straightforward derivation follo-
wing that in §5.1 (for biharmonic curves), we found that this
derivation dramatically complicates the form of the Fréchet
derivative (9) and thus that of the velocity field (10). As a
result, the velocity field to evolve higher-order curves are
much more difficult to evaluate numerically. We thus leave
the extension of (6) to higher-order curves as a future work.

6 RESULTS

In §6.1, we show experimental results demonstrating the
validity of our curve optimization algorithm as well as
how the regularization behaves in practice. Then, in §6.2,
we show reconstructed diffusion curve images using input
color fields represented in three forms: pixel image, 3D
renderings, and gradient meshes. In addition, we show
preliminary results motivating possible future applications.

6.1 Experimental Results

Synthetic validations: We design two synthetic tests
(Figure 10) to validate our diffusion curve optimization
algorithm (Algorithm 3). In these tests, the input color fields
I are themselves diffusion curve images with continuous
colors. In this case, the optimal B is simply the set of
diffusion curves used to generate I . Although the shape
optimization problem is in general non-convex, our method
successfully finds the optimal solutions for both closed and



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 9

Sculpture Jade Spinner

Flower Dolphin Butterfly

Fig. 12: Input pixel images for generating diffusion curve
results in Figures 13 and 14.

open curves. Please see the accompanying video for curve
deformation animations.

Regularizing curve complexity: As discussed in §5.3,
our method is able to balance resulting accuracy and curve
complexity by varying the strength α of regularization in
Eq. (13). Figure 11 shows how α influences resulting curves
generated with our full pipeline (Algorithm 1). Figure 11-a
has simpler curves (due to greater α), but some highlights
at the bottom-left of the image are absent. Figure 11-b, on
the other hand, provides lower approximation error but at
the cost of greater curve complexity (resulting from a lower
α). In all our results, the complexity is numerically defined
as total curve length normalized, so that the longest axis of
each image’s bounding box has unit length.

6.2 Main Results

We now show diffusion curve images generated using our
method (Algorithm 1). All our results utilize the per-pixel
blurring described in §4.4. Please refer to the supplemental
material for unblurred versions.

Theoretically, our approach does not require the in-
put color field I to have any particular representation or
discretization. In practice, we demonstrate such flexibility
using three types of input: pixel images, 3D renderings, and
gradient meshes. The execution time for generating each of
these results is summarized in Table 1. The supplemental vi-
deo contains animations demonstrating the creation process
for these results.

Pixel images: One common way to represent a color
field I is to use standard pixel images. In this case, I(x) is
evaluated using bilinear interpolation, and ∇I(x) using fi-
nite difference. As stated in §4.1, we perform edge detection
to obtain the boundary curves ∂Ω required by Algorithm 1.
Although color discontinuities are not well defined for stan-
dard pixel images, our method in practice is robust on the
choice of boundary curves. Figure 13 shows three examples
with boundary curves detected using Canny detector with
three thresholds. Notice how missing boundaries (when
increasing the threshold) are handled by additional curves
generated by Algorithm 1. All our results for standard pixel
input used thresholds between 0.1 and 0.2.

Figure 14 contains diffusion curve images reconstructed
from pixel input (Figures 3-a and 12) using Algorithm 1 as

TABLE 1: Optimization time (in seconds) for generating
results in Figures 14, 15, and 16 using our approach on a
Linux machine with an 8-core Intel Xeon E5 CPU.

Input Format Scene Time Scene Time

Pixel images
(Figure 14)

Torus 14.5 Sculpture 48.3
Jade 37.6 Spinner 62.7
Flower 64.2 Dolphin 43.7
Butterfly 505.3

3D renderings
(Figure 15)

Cornell Box 27.8 Carved 97.2
Twill 13.5 Knots 295.6
Wobble Chess 460.3

Grad. meshes
(Figure 16)

Apple 44.2 Tomato 16.7
Mango 16.1 Candle 11.6

well as previous edge detection based methods [1], [7].2 The
parameters for each method are selected such that the re-
sulting curves have approximately identical complexities (me-
asured with their total lengths). Our method outperforms
previous ones when handling smoothly varying color fields.
Notice that, in the bottom two rows (i.e., Flower and Jade),
Xie et al.’s approach [7] has slightly higher approximation
errors (measured in RMSE), because it requires higher curve
complexities to work properly in these cases.

3D renderings: Another kind of color field common to
computer graphics applications is renderings of 3D scenes.
Our approach can be used to approximate these color fields
with diffusion curve images. In this case, we represent I
as high-resolution pixel images and obtain the boundary
curves ∂Ω directly using object contours.3 Figure 15 demon-
strates diffusion curve images generated using our method
from 3D renderings, where slightly higher curve complex-
ities (compared to Figure 14) are permitted to ensure low
reconstruction errors. Our method successfully captures de-
tailed appearances: from glossy surfaces to smooth shadow
boundaries.

Gradient meshes: Our approach can also generate
diffusion curve images directly from input color fields I
represented using other vector formats. We demonstrate this
using input color fields represented as gradient meshes in
SVG format [35] where each mesh grid is a Coons Patch [36].
In this case, the color I(x) and gradient ∇I(x) can be
evaluated analytically for any x ∈ Ω, and the boundary
curves ∂Ω are simply the mesh boundaries. As shown
in Figure 16, our method directly creates diffusion curve
images closely approximating the gradient meshes, without
having to rasterize the input into pixel formats.

6.3 Additional Results

Coloring optimization: As discussed in §5.5, our
technique is orthogonal and complementary to coloring op-
timization techniques which take diffusion curve geometry
as input and optimizes colors (and color gradients) at both
sides of the curves. These techniques can be used to replace
our simple coloring scheme which samples color values di-
rectly (§5.1) and performs per-pixel blurring (§4.4). Figure 18
demonstrates that our optimized curve geometry can be
coupled with the coloring optimization scheme introduced
by Xie et al. [7] to further reduce reconstruction errors. Since

2. We thank the authors of [7] for confirming the correctness of results
in Figure 14 generated with their approach.

3. In this example, we assume all objects to be homogeneous. To
handle heterogeneity, ∂Ω needs to include color jumps across object
surfaces.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 10

Threshold = 0.1︷ ︸︸ ︷ Threshold = 0.15︷ ︸︸ ︷ Threshold = 0.2︷ ︸︸ ︷
Ja

de

RMSE: 0.0277 RMSE: 0.0277 RMSE: 0.0276

Sp
in

ne
r

RMSE: 0.0322 RMSE: 0.0337 RMSE: 0.0356

Fl
ow

er

RMSE: 0.0259 RMSE: 0.0253 RMSE: 0.0248

Fig. 13: Our approach, when handling standard pixel images, is insensitive to threshold values used for detecting
initial boundary edges. For the examples above, three different thresholds varying from 0.1 to 0.2 have been used.
Boundary curves and additional ones generated by Algorithm 1 are shown in red and green, respectively. The resulting
reconstructions under roughly identical curve complexities offer similar qualities.

this technique explicitly optimizes color gradients across
each curve, we did not perform per-pixel blurring.

Higher-order domain: Our approach can be applied
to higher-order domains for generating curves with higher-
order smoothness (as discussed in §5.5). Figure 19 shows
an example where our pipeline (Algorithm 1) is applied
to color gradients rather than original color values. In
other words, given a RGB image I , we can use ∇I , a
six-channel image, as the input. Given our reconstructed
gradient image, we solve an additional least square problem
to recover the final image.

However, as observed by Xie et al. [7], we found that
for natural images, solving the optimization at higher-order
domains generally does not lead to better approximation
accuracy under similar curve complexities. This is because
higher-order domains are usually filled with significantly
more high-frequency contents that require complex (almost
space-filling) curve geometry to accurately reconstruct.

Animated result: Lastly, we show preliminary results
to motivate future applications of our approach. Since our
method optimizes the shape of diffusion curves iteratively, it
is suitable for generating animated results from a sequence
of gradually changing input color fields. The basic idea is
curve reusing: taking optimized curve geometry from one
frame as the initial configuration to “warm start” the next.

Figure 20 and the accompanying video show a proof-of-
concept example. The input is the relighting (i.e., the object
stays static while the light source moves) of a shiny torus
knot. In this case, the boundary curves keep unchanged
throughout all frames, and optimized curve geometry from
one frame remains valid for all other frames. Previous
methods [1], [7] cannot easily enforce curve coherence across

different frames, leading to temporally noisy animations. By
modifying the curve initialization step in Algorithm 1 to
reuse optimized curve geometry, we are able to accelerate
the optimization process by 2.3×, and the resulting anima-
tion has lower approximation error and little noise. Please
see the supplementary video for full animations.

7 CONCLUSION

This paper introduces a novel solution to the inverse diffu-
sion curve problem. The key component of our approach is
a curve optimization algorithm that iteratively deforms a set
of diffusion curves in a way that guarantees the reduction
of approximation error. Based upon the core algorithm, we
develop a full pipeline that takes an input color field as well
as a set of boundary curves, and produces an image with
well-shaped and clean curves that closely matches the input.
Our approach offers the generality to take input presented in
different formats, which we demonstrate using three types:
pixel images, 3D renderings, and gradient meshes.

Limitations and Future Work: Our approach has a few
limitations that can inspire future work. Firstly, it requires
the color field to be C0 continuous everywhere except
at the given boundaries. Robustly finding clean boundary
curves, however, can be challenging. Secondly, if the color
field contains spatially high-frequency features, very fine
triangulation may be needed to fully resolve them. Not
meeting the required level of resolution can lead to results
with poor accuracy. Furthermore, our reconstructed curves,
despite being simpler than those produced with previous
methods [1], [7], are still too complex for many manual
editing applications. This is mainly due to our error me-
trics (6) and (13) being focused on reconstruction error but



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 11

not the curve editability. In the future, more sophisticated
error metrics and regularization schemes can be developed
in order to enable easy editing of automatically generated
diffusion curves. Lastly, the diffusion curves considered in
this work are mainly the first-order curves, ones that are
described by the diffusion equation. While we demonstrated
a simple extension to handle high-order curves (in §6.3), it
remains open how to derive a shape optimization method
for biharmonic diffusion curves.

REFERENCES

[1] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and
D. Salesin, “Diffusion curves: A vector representation for smooth-
shaded images,” ACM Trans. Graph., vol. 27, no. 3, pp. 92:1–92:8,
2008.

[2] S. Jeschke, D. Cline, and P. Wonka, “A GPU Laplacian solver for
diffusion curves and Poisson image editing,” ACM Trans. Graph.,
vol. 28, no. 5, 2009.

[3] K. Takayama, O. Sorkine, A. Nealen, and T. Igarashi,
“Volumetric modeling with diffusion surfaces,” ACM Trans.
Graph., vol. 29, no. 6, pp. 180:1–180:8, 2010. [Online]. Available:
http://dx.doi.org/10.1145/1882261.1866202

[4] X. Sun, G. Xie, Y. Dong, S. Lin, W. Xu, W. Wang, X. Tong,
and B. Guo, “Diffusion curve textures for resolution independent
texture mapping,” ACM Trans. Graph., vol. 31, no. 4, 2012.

[5] P. Ilbery, L. Kendall, C. Concolato, and M. McCosker, “Biharmonic
diffusion curve images from boundary elements,” ACM Trans.
Graph., vol. 32, no. 6, 2013.

[6] T. Sun, P. Thamjaroenporn, and C. Zheng, “Fast multipole re-
presentation of diffusion curves and points,” ACM Trans. Graph.,
vol. 33, no. 4, pp. 53:1–53:12, 2014.

[7] G. Xie, X. Sun, X. Tong, and D. Nowrouzezahrai, “Hierarchical dif-
fusion curves for accurate automatic image vectorization,” ACM
Trans. Graph., vol. 33, no. 6, pp. 230:1–230:11, 2014.

[8] J. Sokolowski and J.-P. Zolésio, Introduction to shape optimization.
Springer, 1992.

[9] W.-M. Pang, J. Qin, M. Cohen, P.-A. Heng, and K.-S. Choi, “Fast
rendering of diffusion curves with triangles,” IEEE Computer
Graphics and Applications, vol. 32, no. 4, pp. 68–78, 2012.

[10] R. Prévost, W. Jarosz, and O. Sorkine-Hornung, “A vectorial
framework for ray traced diffusion curves,” in Computer Graphics
Forum, 2014.

[11] J. Canny, “A computational approach to edge detection,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, no. 6, pp.
679–698, 1986.

[12] S. Jeschke, D. Cline, and P. Wonka, “Estimating color and texture
parameters for vector graphics,” in Computer Graphics Forum,
vol. 30, no. 2, 2011, pp. 523–532.

[13] M. Finch, J. Snyder, and H. Hoppe, “Freeform vector graphics with
controlled thin-plate splines,” ACM Trans. Graph., vol. 30, no. 6, pp.
166:1–166:10, 2011.

[14] S. Boyé, P. Barla, and G. Guennebaud, “A vectorial solver for
free-form vector gradients,” ACM Trans. Graph., vol. 31, no. 6, pp.
173:1–173:9, 2012.

[15] J. Haslinger et al., Introduction to shape optimization: theory, approxi-
mation, and computation. Siam, 2003, vol. 7.

[16] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” International journal of computer vision, vol. 1, no. 4, pp.
321–331, 1988.

[17] D. Mumford and J. Shah, “Optimal approximations by piecewise
smooth functions and associated variational problems,” Communi-
cations on pure and applied mathematics, vol. 42,5, 1989.

[18] R. Schneider and L. Kobbelt, “Geometric fairing of irregular mes-
hes for free-form surface design,” Computer aided geometric design,
vol. 18, no. 4, pp. 359–379, 2001.

[19] K. Crane, U. Pinkall, and P. Schröder, “Robust fairing via confor-
mal curvature flow,” ACM Trans. Graph., vol. 32, no. 4, 2013.

[20] B. Mohammadi, O. Pironneau, B. Mohammadi, and O. Pironneau,
Applied shape optimization for fluids. Oxford University Press
Oxford, 2001, vol. 28.

[21] M. Burger, S. J. Osher, and E. Yablonovitch, “Inverse problem
techniques for the design of photonic crystals,” IEICE transactions
on electronics, vol. 87, no. 3, pp. 258–265, 2004.

[22] A. Herbulot, S. Jehan-Besson, S. Duffner, M. Barlaud, and G. Au-
bert, “Segmentation of vectorial image features using shape gra-

dients and information measures,” Journal of Mathematical Imaging
and Vision, vol. 25, no. 3, pp. 365–386, 2006.

[23] M. Jung, G. Peyré, and L. D. Cohen, “Nonlocal active contours,”
SIAM Journal on Imaging Sciences, vol. 5, no. 3, pp. 1022–1054, 2012.

[24] U. Ramer, “An iterative procedure for the polygonal approxi-
mation of plane curves,” Computer Graphics and Image Processing,
vol. 1, no. 3, pp. 244–256, 1972.

[25] P. Selinger, “Potrace: a polygon-based tracing algorithm,” Potrace
(online), 2003.

[26] R. Pinnau and M. Ulbrich, Optimization with PDE constraints.
Springer, 2008, vol. 23.

[27] J. A. Sethian et al., “Level set methods and fast marching met-
hods,” Journal of Computing and Information Technology, vol. 11,
no. 1, pp. 1–2, 2003.

[28] K. A. Brakke, “The surface evolver,” Experimental mathematics,
vol. 1, no. 2, pp. 141–165, 1992.

[29] R. Coleman, Calculus on Normed Vector Spaces. Springer, 2012.
[30] M. C. Delfour and J.-P. Zolésio, Shapes and geometries: metrics,

analysis, differential calculus, and optimization. Siam, 2011, vol. 22.
[31] C. Mantegazza, Lecture notes on mean curvature flow. Springer,

2011, vol. 290.
[32] O. C. Zienkiewicz and P. Morice, The finite element method in

engineering science. McGraw-hill London, 1971, vol. 1977.
[33] J. R. Shewchuk, “Triangle: Engineering a 2d quality mesh genera-

tor and delaunay triangulator,” in Applied computational geometry
towards geometric engineering. Springer, 1996, pp. 203–222.

[34] T. Brochu and R. Bridson, “Robust topological operations for
dynamic explicit surfaces,” SIAM Journal on Scientific Computing,
vol. 31, no. 4, pp. 2472–2493, 2009.

[35] T. Bah, “Advanced gradients for SVG (online),” 2011.
[36] S. A. Coons, “Surfaces for computer-aided design of space forms,”

DTIC Document, Tech. Rep., 1967.
[37] J. Bonet and R. D. Wood, Nonlinear Continuum Mechanics for Finite

Element Analysis. Cambridge University Press, 1997.

Shuang Zhao is an Assistant Professor in the
Department of Computer Science at University
of California, Irvine. Before joining UCI, he was
a postdoctoral associate at MIT. Shuang recei-
ved his M.S. and Ph.D. in computer science
from Cornell University. His research focuses on
material appearance modeling and physically-
based rendering. He has been serving as the
Information Director for ACM Transactions on
Graphics.

Frédo Durand is a professor of Electrical En-
gineering and Computer Science at the Massa-
chusetts Institute of Technology, and a member
of the Computer Science and Artificial Intelli-
gence Laboratory (CSAIL). He received his PhD
from Grenoble University, France. His research
interests span most aspects of picture genera-
tion and creation. He received an Eurographics
Young Researcher Award in 2004, an NSF CA-
REER award in 2005, a Microsoft Research New
Faculty Fellowship in 2005, a Sloan fellowship

in 2006, and the ACM SIGGRAPH Computer Graphics Achievement
Award in 2016.

Changxi Zheng is an Assistant Professor in
the Computer Science Department at Columbia
University. Prior to joining Columbia, he received
his M.S. and Ph.D. from Cornell University and
his B.S. from Shanghai Jiaotong University. His
research spans computer graphics, physically-
based simulation, computational design, compu-
tational acoustics, scientific computing and ro-
botics. He has been serving as an Associated
Editor of ACM Transactions on Graphics, and
won the NSF CAREER Award and the Cornell

CS Best Dissertation award in 2012.

http://dx.doi.org/10.1145/1882261.1866202


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 12

Ours︷ ︸︸ ︷ Orzan et al. [1]︷ ︸︸ ︷ Xie et al. [7]︷ ︸︸ ︷
To

ru
s

RMSE: 0.0105 Complexity: 15.20 RMSE: 0.0758 Complexity: 15.50 RMSE: 0.0157 Complexity: 15.02

Sc
ul

pt
ur

e

RMSE: 0.0281 Complexity: 17.55 RMSE: 0.1148 Complexity: 17.98 RMSE: 0.0341 Complexity: 17.91

Ja
de

RMSE: 0.0262 Complexity: 19.11 RMSE: 0.0388 Complexity: 19.77 RMSE: 0.0429 Complexity: 19.56

Sp
in

ne
r

RMSE: 0.0322 Complexity: 18.08 RMSE: 0.0451 Complexity: 18.40 RMSE: 0.0422 Complexity: 18.42

Fl
ow

er

RMSE: 0.0248 Complexity: 16.42 RMSE: 0.0331 Complexity: 18.24 RMSE: 0.1489 Complexity: 18.92

D
ol

ph
in

RMSE: 0.0303 Complexity: 20.68 RMSE: 0.0487 Complexity: 21.20 RMSE: 0.0595 Complexity: 20.99

Bu
tt

er
fly

RMSE: 0.0326 Complexity: 32.83 RMSE: 0.0390 Complexity: 32.91 RMSE: 0.0370 Complexity: 32.91

Fig. 14: Comparisons between diffusion curve images generated by our approach and previous methods using pixel
images (top row) as input. The parameters are adjusted so that the resulting curves generated by each method have
roughly identical complexities. Our approach not only yields lower approximation error (measured in RMSE), but also
generates better shaped and relatively simple curves.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 13

Cornell Box︷ ︸︸ ︷ Carved︷ ︸︸ ︷

Reference Ours Curves Reference Ours Curves

Twill︷ ︸︸ ︷ Knots︷ ︸︸ ︷

Reference Ours Curves Reference Ours Curves

Wobble Chess︷ ︸︸ ︷

Reference Ours Curves

Fig. 15: Diffusion curve images generated from renderings of 3D scenes using our approach. The boundary curves are
obtained using mesh contours extracted from the scene geometries.

Apple︷ ︸︸ ︷ Tomato︷ ︸︸ ︷

Reference Gradient Mesh Ours Curves Reference Gradient Mesh Ours Curves

Mango︷ ︸︸ ︷ Candle︷ ︸︸ ︷

Reference Gradient Mesh Ours Curves Reference Gradient Mesh Ours Curves

Fig. 16: Diffusion curve images generated from gradient meshes directly (i.e., without rasterizing into pixel images) using
our method. The boundary curves are given by the mesh boundaries.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 14

Reference Ours Curves
Le

av
es

A
pp

le
Eg

gp
la

nt
Fr

ui
ts

Fl
am

in
go

Fig. 17: Additional results generated by our approach from
pixel input. Please see the supplementary materials for
more results.

Our Optimized Our Curves + Our Curves +
Curve Geometry Our Coloring Xie et al. [7]

RMSE: 0.0322 RMSE: 0.0237

RMSE: 0.0248 RMSE: 0.0221

RMSE: 0.0326 RMSE: 0.0235

Fig. 18: Our core approach is completely orthogonal and
complementary to coloring optimization techniques. In par-
ticular, sophisticated coloring optimization schemes such
as [7] can be applied to our optimized curve geometry to
further improve reconstruction accuracy.

R
ef

er
en

ce
O

ur
s

R
ef

er
en

ce
O

ur
s

Grad. img X (64×) Grad. img Y (64×) Original image

O
ur

C
ur

ve
s

Fig. 19: Application of our method on the color gradient
domain instead of the original domain. In this case, the
input color field to our approach (Algorithm 1) is a six-
channel image representing color gradients in horizontal (X)
and vertical (Y) directions of the original image.

Frame 1 Frame 25 Frame 50

R
ef

er
en

ce

10 20 30 40 50
Frame #

0

5

10

15

20

25

30

35

40

Cu
rv

e C
om

pl
ex

ity

ours (w/ reusing)
ours (w/o reusing)
[Orzan et al. 2008]
[Xie et al. 2014]

10 20 30 40 50
Frame #

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE

 (×
10

−2
)

ours (w/ reusing)
ours (w/o reusing)
[Orzan et al. 2008]
[Xie et al. 2014]

Fig. 20: Animated results consisting of 50 frames from
relighting a torus knot. Three of these frames are shown on
the top (where white arrows indicate regions with moving
shadows). Higher curve complexities (left plot) are used
for [7] for fewer artifacts. Reusing optimized curves from
one frame as the starting point (i.e., initial curves) for the
optimization of the next frame leads to temporally coherent
curve geometry and better approximation accuracy (right
plot). See the supplementary video for full animations.


	Introduction
	Related Work
	Background
	Our Pipeline
	Boundary Curves
	Curve Initialization
	Curve Placement
	Curve Post-Processing

	Diffusion Curve Optimization
	PDE-Constrained Optimization Problem
	Gradient-Descent Solver
	Regularizing Curve Complexity
	Implementation Details
	Discussions

	Results
	Experimental Results
	Main Results
	Additional Results

	Conclusion
	References
	Biographies
	Shuang Zhao
	Frédo Durand
	Changxi Zheng


