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ABSTRACT
When capturing videos on a mobile platform, often the target of
interest is contaminated by the surrounding environment. To alle-
viate the visual irrelevance, camera panning and zooming provide
the means to isolate a desired field of view (FOV). However, the
captured audio is still contaminated by signals outside the FOV.
This effect is unnatural—for human perception, visual and auditory
cues must go hand-in-hand.

We present the concept of Audiovisual Zooming, whereby an
auditory FOV is formed to match the visual. Our framework is built
around the classic idea of beamforming, a computational approach
to enhancing sound from a single direction using a microphone
array. Yet, beamforming on its own can not incorporate the auditory
FOV, as the FOV may include an arbitrary number of directional
sources. We formulate our audiovisual zooming as a generalized
eigenvalue problem and propose an algorithm for efficient compu-
tation on mobile platforms. To inform the algorithmic and physical
implementation, we offer a theoretical analysis of our algorith-
mic components as well as numerical studies for understanding
various design choices of microphone arrays. Finally, we demon-
strate audiovisual zooming on two different mobile platforms: a
mobile smartphone and a 360◦ spherical imaging system for video
conference settings.
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Figure 1: Audiovisual zooming. When the camera captures
both people (a), we hear them both talk. (b) As the cam-
era zooms in and focuses on the woman, her speech in the
captured video is enhanced while the man’s speech is sup-
pressed. (c) Then, the camera pans and focuses on the man,
in this process his speech becomes more pronounced while
the woman’s speech fades out. In our system, the camera’s
FOV synchronizes with its auditory focus—what you see is
what you hear (see supplementary video).

1 INTRODUCTION
The camera can tilt, pan, pedestal, dolly, truck, and zoom—to control
what the viewer sees. Historically, this rich vocabulary of camera
control is only at the professional’s disposal. Today, everymobile de-
vice is equipped with a compact and light camera, allowing anyone
to decide what imagery in what way is to be captured. Whenever
one captures a video, audio is also captured, but the vocabulary with
which a user can exert control over the audio pales in comparison to
user control over the video. No matter where the camera is pointed
or how zoomed it is, the sound is always recorded regardless of its
incoming direction, be it from behind the camera or somewhere
in the view. As a result, the captured video might not match the
audio, leading to an unnatural experience.

The problem is that the camera lacks an auditory field of view, one
that is synchronized with and driven by the camera’s optical field
of view (FOV). In this work, we introduce the concept of focusing
an auditory FOV (see Figure 1) to address the problem. We call our
concept Audiovisual Zooming.

The closest field-of-study to this concept is Beamforming [9], a
computational technique that constructs a directional microphone
by using an array of omnidirectional microphones. Leveraging the
different time delays of signals that arrive from different directions,
the idea is to linearly combine microphone signals into an output
signal boosting the sound coming from a target direction, while sup-
pressing everything else for monoaural directional sound filtering.
In almost all beamforming techniques, the single target direction
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Figure 2: Audiovisual zooming is implemented on two mo-
bile platforms: an off-the-shelf planar microphone array
(with 6 microphones) is attached to a smartphone [left] and
a 360° Ricoh camera [right] to show smartphone and tele-
conferencing utility.

needs to be specified or estimated, and plays an important role
in the mathematical formulation of beamforming. It is this essen-
tial notion of target direction that sets apart our method from the
traditional beamforming.

Our audiovisual zooming requires no target direction. In contrast,
we introduce auditory FOV, which defines a directional region (i.e.,
a solid angle area) consistent with the camera’s optical FOV. All
sounds, no matter how many, coming from within this region are
enhanced, while those outside of the region are suppressed. In this
way, the captured audio is in synchronization with the captured
imagery. In other words, what you see is what you hear.

One approach toward this goal is jointly analyzing the captured
audio and visual content through deep learning [7, 23, 37]. The
success of this approach lies in the strong correlation between the
motion in captured imagery and the resulting audio, as well as the
feasibility of constructing a large training dataset. But often the
motion-audio correlation is weak or even undetectable—for exam-
ple, when the sound source is far from the camera, or occluded
by other objects (but still in the FOV). In addition, there may be
arbitrary numbers/types of sound sources in the FOV. Construct-
ing a training dataset that covers all these cases quickly becomes
intractable, and the resulting deep neural networks are unlikely to
run on a low-budget mobile device where the camera often resides.

Technical contributions. In this work, we augment the micro-
phone array and beamforming approaches to enable audiovisual
zooming, without learning from training data. Motivated by mi-
crophone array beamforming, we view the signals sampled by
individual microphones as random variables of some underlying
stochastic process. From this perspective, we estimate two complex-
valued matrices, called spectral matrices, in frequency domain: one
describes the autocorrelation and cross-correlation of microphone
signals that come from within the FOV, and the other describes
signals coming from outside of the FOV. We show that with these
two matrices, the problem of enhancing towards an FOV can be
formulated as a generalized eigenvalue problem that can be easily
solved on a mobile device. Our approach is not meant to improve
beamforming, but rather to enable audiovisual zooming.

To analyze our approach, we derive a theoretical error bound for
our spectral matrix estimation, and reveal a connection of the error

residual to the performance of the classic minimum variance dis-
tortionless response (MVDR) beamformer. Empirically, we conduct
simulations to understand how various design parameters affect a
microphone array.

These inferences inform our implementation. Our final algo-
rithm is simple and can be easily deployed on mobile devices. We
realize the audiovisual zooming system by attaching a planar mi-
crophone array to two different mobile imaging platforms: a mobile
smartphone and a 360◦ spherical imaging system for teleconfer-
ence settings (see Figure 2). Finally, we demonstrate our system in
a number of use cases.

2 RELATEDWORK
Our audiovisual zooming is built on classic beamforming. We there-
fore briefly review related work in this area. We also discuss the
difference of our approach from the general idea of audiovisual
machine learning approaches.

Beamforming. A rich and mature research field, acoustic beam-
forming has a long history, dating back to 1970s when Billingsley [3]
invented the microphone antenna called the acoustic telescope. We
refer the reader to [20] for a review of the development of acoustic
beamforming techniques and to [9] for an exhaustive survey of the
state of the field.

In general, the various beamforming methods falls into one of
two categories: fixed and adaptive. Fixed beamformers are best
summarized by the well-known Delay-and-Sum method [30, 33],
which delays the signal received by each microphone according to
the relative propagation delays from a target direction, and then
sums the signals together across the microphones. This serves to
enhance the gain of the target direction, but often does little to
suppress anything else.

The seminal work of Capon [5] introduces an adaptive, or data-
dependent, beamforming technique, later known as the Minimum
Variance Distortionless Response (MVDR) beamformer [28, 32].
This approach optimizes a set of weights to linearly combine the
signals in time-frequency space so as to minimize residual noise
and constrain the sound from the desired direction to be undis-
torted. The robustness of MVDR beamformer is later improved
by various extensions such as dynamic loading [18]. Since our
method is built on the MVDR beamformer, we will briefly review
its formulation in §3.1. There are also other variants, such as the
Linearly Constrained Minimum Variance (LCMV) [10], Principal
component [14, 36], and Generalized Eigenvalue [35] beamformers,
all of which are special cases of a shared underlying optimization
framework [32].

All these beamforming techniques have the same goal: enhancing
the sound from a single direction, and they have no notion of field
of view (FOV). In contrast, our goal is to enhance all sounds from
within an arbitrary FOV and suppress everything outside. It is this
very difference that requires a different beamforming formulation
and thus necessitates the development of a new algorithm.

Recently, a few methods have been proposed to enhance sounds
from multiple sources. Thiergart et al. [31] introduced acoustic
zoom, wherein all detected sound sources are individually isolated
via direction-of-arrival (DOA) estimation and beamforming, and



then combined through a weighting scheme defined by their zoom-
ing parameters. Ruochen et al. [27] used a spherical microphone
array and the psychoacoustic theory to model sound perceptions
and control audio boosting using camera metadata in so-called
B-Format Encoding. A more recent method [6] uses MVDR beam-
forming in three orthogonal directions and chooses the sound from
the microphone closest to the target region. Just by choosing a mi-
crophone signal, this method does not enhance received sound, and
is inherently limited for small form-factor arrays. Our method, in
contrast, requires no estimation of DOAs and can be implemented
using compact microphone arrays.

Audiovisual learning. Recently, a line of work has emerged that
combines computer vision and audio via deep learning for speech
recognition, separation, and enhancement [8, 12, 21, 25]. Particu-
larly related to our work, Ephrat et al. [7] recently introduced a deep
learning model that detects and analyzes facial movements along
with learning a mask on Fourier coefficients to mask out desired
speech associated with particular facial motion. Zhao et al. [37]
addressed a similar problem of separating the sound of multiple
on-screen objects by training a self-supervised model. Owens and
Efros [23] used a deep neural network to predict whether audio and
visual tracks are temporally aligned. Features learned through train-
ing are then used to perform an on/off screen speaker separation.
Afouras et al. [2] trained a deep neural network that takes audio
and visual cues to denoise speech spectrograms. While impressive,
these work require that the visual component of the sound is both
visible and has sufficient pixel resolution to capture the appearance
and motion. Our work does not rely on any analysis of visual cues,
and as such, can enhance sound coming from any FOV even when
the motion that produces this sound is occluded or far away from
the camera.

Summary. Our method differs from previous works in that 1)
no knowledge of DOAs is required, 2) the user may specify any
arbitrary FOV to match that of a camera’s, and 3) our approach
will enhance only the sound from within that FOV and attenuate
everything else. In this way, the camera drives the experience entirely,
forcing the focused audio content to match what is being viewed.

3 THEORY OF AUDIOVISUAL ZOOMING
A cornerstone of our audiovisual zooming system is microphone
array beamforming. To understand our algorithm, we start with a
brief review of this classic technique.

Microphone array model. We consider a microphone array that
consists ofM sensors receiving sound from all directions. The time-
domain signals captured by microphone i (i = 1...M) is

yi (t) =
S∑
s=1

hs→i (t) ∗ xs (t) + ni (t), (1)

where ∗ denotes the convolution operator, s indices individual
sound sources, xs (t) is the signals emitted at sound source s , ni (t) is
the noise at microphone i , andhs→i (t) is the Acoustic Transfer Func-
tion for source s impinging on microphone i . This transfer function
accounts for how the sound propagates from s to i , including both
direct and indirect propagation (e.g., reflection and diffraction by
the environment).

Because the sound propagation largely depends on its frequency
components, the microphone array model is often expressed in
time-frequency (T-F) domain [9] through the Short-Time Fourier
Transform (STFT). In T-F domain, the convolution operator becomes
into a multiplication, and Eq. (1) is written as

Yi (n,ω) =
S∑
s=1

Hs→i (n,ω)Xs (n,ω) + Ni (n,ω), (2)

where n and ω index the time frame and the discrete frequency bin,
respectively. We then stack the STFT coefficients for all sensors in
a vector,

Y (n,ω) = [Y1(n,ω), . . . ,YM (n,ω)]T . (3)

With these notations, we now briefly review the classic beamform-
ing algorithms, as follows.

3.1 Beamforming Briefing
The general idea of beamforming is simple. It linearly combines
the input multi-channel signals into a mono-channel signal in T-F
domain. Provided a set of frequency-dependent weights w(ω) =
[w1(ω), . . . ,wM (ω)]T , the linear combination outputs a signal as
wH (ω)Y (n,ω), where the superscript H denotes conjugate trans-
pose. By carefully choosing the weights w , the resulting signal
enhances the sound received from a given single direction d .

Intuitively, this is possible because the sound signals recorded at
different microphones differ in both amplitude and phase. One can
choose the weightsw to “adjust” the differences such that when the
signals are superimposed, they interfere constructively for sound
coming from the direction d but destructively for sound from other
directions. Numerous algorithms have been devised to estimate the
weightsw . Here we only review the ones that are most relevant to
our method, while referring the reader to the textbooks [4, 32] for
a comprehensive introduction.

3.1.1 Spectral matrix. A fundamental philosophy in microphone
array processing is to model the received signal as a stochastic
process. Each individual sample yi [t] of microphone i is assumed to
be an outcome of some underlying random process.

An important notion from this vantage point is the spectral ma-
trix, anM ×M complex-valued Hermitian matrix, denoted as R(ω),
describing the frequency-domain signal statistics received by the
microphone array. Its diagonal element Rii (ω) indicates the auto-
correlation (in frequency domain) of the impinging signal received
by microphone i , that is, the power spectrum of the signal at i . Its
off-diagonal element Ri j (ω) describes the cross-correlation of signals
received by microphone i and j, reflecting the phase differences
between the two microphone signals. In short, the spectral matrix
encapsulates information needed for the estimation ofw—toward
constructively enhancing the signal of a given direction.

In practice, R(ω) is estimated using the frequency-domain snap-
shots Y (n,ω) in (3). A simple yet common estimator is

R(ω) ≈
1
N

N∑
n=1

Y (n,ω)YH (n,ω), (4)

from which many improvements have been developed (such as the
Forward-Backward averaging [28]).



If a set of weightsw(ω) is used to combine the microphone sig-
nals in the frequency bandω, it can be shown that the output signal
has the power spectrum expressed aswH (ω)R(ω)w(ω) [4]). From
now on, when there is no confusion, we will ignore the frequency
parameter ω and simply write R andw .
3.1.2 Minimum Variance Distortionless Response (MVDR) beam-
former. In beamforming theory, the spectral matrix R is viewed as a
composition of two parts, signal spectral matrix Rs and noise spec-
tral matrix Rn. Rs accounts for the signal solely from the desired
directiond (sometimes also called the direction of arrival), while Rn
accounts for the unwanted signals including both the ambient noise
(i.e., Ni in (2)) and those from the undesired directions. Note that
R might not be a simple summation of Rs and Rn if the unwanted
signals and the desired signal are (at least partially) correlated.

The classic MVDR beamformer finds the optimal w in the fol-
lowing sense: it minimizes the power of unwanted signals, while
keeping the signal from the desired direction undistorted. This is
formally expressed as a constrained optimization problem,

wBF = argmin
w

wHRnw, s.t. wHvd = 1. (5)

Here the objective function measures the power of unwanted sig-
nals in the output. The constraint requires the incoming signal
from the directiond to remain undistorted in the output signal. The
vector vd , called the steering vector, indicates the relative phases
of the signal impinging on all M microphones from the desired
direction d , defined as

vd =
[
e−j

ω
c d

T p1 · · · e−j
ω
c d

T pM
]T
, (6)

where c is the speed of sound, and pi (i = 1...M) is the spatial posi-
tion of each microphone in the array. The steering vector describes
the relative phase difference of a plane wave sound impinging on
the microphones from direction d . The intuition behind the con-
straint in (5) is that the weightsw need to compensate the received
phase differences at the microphones from direction d and thereby
constructively combine the signals to boost the signal from d .

MVDR beamformer is one of the most widely used beamforming
techniques. Provided a single steering directiond and an estimation
of Rn, it has realtime performance even on a low-budget mobile
device, since the weights can be analytically written as

wBF =
vH
d R−1n

vH
d R−1n vd

. (7)

Oftentimes, however, estimation of Rn from microphone recordings
is challenging. An approximation is by replacing Rn in (5) with the
spectral matrix R, as R can be directly estimated using the recorded
signals in (4). Then, the optimization objective is to minimize the
total output power subject to the constraint in (5). This is the so-
called Minimum Power Distortionless Response (MPDR) beamformer,
one that lays the foundation of our audiovisual zooming method.

3.2 Beamforming Toward a Field of View
Almost all beamforming techniques require to know a steering
direction d . Indeed, this single steering direction is pivotal for es-
tablishing the constraint in MVDR/MPDR formulation (5). How-
ever, in our work, we wish to enhance signals toward a field of
view (FOV), that is, a continuous set of steering directions (Figure 3).

Figure 3: Unlike traditional beamforming, our audiovisual
zooming system does not rely on a specific target direction.
Any sound sources captured by the camera’s FOV will be en-
hanced, while those outside of the FOV are suppressed.

How to incorporate the FOV in microphone array beamforming is
the challenge that we need to overcome.

We determine the beamforming FOV based on the camera’s FOV
(elaborated in §5.3). We also note that the beamforming FOV may
vary as the user zooms in/out or pans the camera.

3.2.1 Generalized eigenvalue formulation. The starting point of our
method is also the spectral matrix (recall §3.1.1). Yet, for our purpose
of beamforing toward an FOV, the signal and noise spectral matrices,
Rs and Rn, must be interpreted in a different way. Now, Rs accounts
for all signals coming from directions inside the FOV, while Rn
includes signals outside of the FOV. Suppose for now we know both
Rs and Rn. We can formulate a beamforming optimization problem
by maximizing the output signal-to-noise (SNR) ratio, namely

wFOV = argmax
w

wHRsw
wHRnw

. (8)

Here the numerator and denominator measure the powers of de-
sired signals and unwanted signals, respectively. This formulation
is known in traditional beamforming, although not widely used.
This is because it needs the estimation of both Rs and Rn, and when
a single steering direction is considered (e.g., when the desired sig-
nal is a plane wave along a direction), this formulation is identical
to MVDR beamformer [32]—no need to solve (8) directly.

But this formulation is significant for our problem, since it re-
quires no steering direction. Indeed, the desire of steering toward an
FOV can be expressed by Rs, which can include signals from an arbi-
trary set of directions. If Rs and Rn can be robustly estimated, then
solving forwFOV amounts to a simple generalized eigenvalue prob-
lem (by noticing that the objective in (8) is a generalized Rayleigh
quotient):

Rsw = λRnw . (9)

The solutionwFOV in (8) is the eigenvector of the maximal eigen-
value.

3.2.2 Estimation of signal and noise spectral matrices. The remain-
ing question is how to estimate Rs and Rn that respect the FOV.
Some traditional beamforming methods (such as MVDR) also need
to estimate Rn, for which a popular approach is by estimating a
noise mask in T-F domain [13]. There, a common assumption is that
the desired signal is the speech of a single voice. In other words,
it assumes that the desired signal has a T-F structure, which can



be inferred and used to estimate the mask by a machine learning
model trained over a large speech dataset.

In our problem, the desired signals are those received in the FOV.
In stark contrast to the single speech assumption, their structure
is unclear, as they might include an arbitrary number of speakers,
other types of sound, and even ambient noise coming from the FOV.
It is too expensive to construct a sufficient training dataset for a
machine learning model producing reasonable masks.

We resort to the MPDR beamformer to estimate Rs and Rn. First,
consider a direction θ . The MPDRweightswθ for enhancing signals
from θ is expressed in (7), where the steering vector vd = vθ is
defined in (6) and the matrix Rn is replaced by the total spectral
matrixR estimated using (4). Substituting this expression inwH

θ Rwθ
yields the power spectrum of the MPDR output signal,

P(θ ) =
[
vH
θ R−1vθ

]−1
. (10)

Recall that the effect of MPDR beamformer is to boost the signal
from direction θ while suppressing signals from other directions.
Thus, P(θ ) can be viewed as an estimation of the power of a plane
wave coming from the direction θ .

Using this estimation, the microphone array spectral matrix
resulted from the sound wave only from θ direction is written as
P(θ )vθv

H
θ (see Appendix A for more details). If we assume that

signals from different directions are uncorrelated, then the signal
spectral matrix for sound coming from an FOV is an integral of the
single-direction estimation over the entire FOV:

Rs ≈
∫
Θ
P(θ )vθv

H
θ dθ , (11)

whereΘ is the solid angle area spanned by the camera’s FOV, set by
the current camera direction and zoom settings. Similarly, the noise
spectral matrix Rn can be estimated using the same integral but over
the solid angle area S3 \ Θ, where S3 denotes the solid angle of an
entire 3D sphere. Note that both Rs and Rn are frequency dependent,
and thus they are estimated for each individual frequency band. The
estimation (11) can be applied to an arbitrary FOV, and is agnostic
to the sound source distribution in the FOV.

We note that a similar integral has been used for standard MVDR
beamformer [11] to estimate the spectral matrix excluding a single
sound direction. However, the accuracy of the power spectrum
estimation (10) and thematrix estimation (11) are unclear. In the rest
of this section, we theoretically analyze and justify this estimation.

3.2.3 Analysis. Our estimation of the single-direction power P(θ )
is built on the MPDR beamformer. Traditionally, a beamformer is
used to enhance sound from a direction s . It has been shown that
the MPDR beamformer is identical to the MVDR beamformer when
the steering direction d (in MPDR) is chosen to be the true sound
source direction s , but MPDR beamformer is much less reliable [4]:
a small mismatch between d and s can degrade significantly the
MPDR performance. Fortunately, this is not an issue in our case,
since we have no explicit notion of sound sources. When evaluating
the integral (11), we treat each direction d in the FOV as a true
sound source direction s .

Next, we present an analytical understanding of (10) and (11)
for spectral matrix estimation. First, if the recording environment
has only (uncorrelated) ambient noise, then the acoustic power is

uniform in space, and the spectral matrix R has the form, R = σ IM ,
where σ is the ambient noise power, and IM is an M × M iden-
tity matrix, whereM is the number of microphones. We therefore
expect the estimated Rs to have power proportional to the FOV
area . In this case, P(θ ) is a constant σ/M , and Rs in (11) indeed has
diagonal elements proportional to the FOV area. Now, consider the
general case of estimating the signal power P(θ ) for the direction θ .
Assuming signals from different directions are uncorrelated, then
the (true) spectral matrix can be decomposed into two,

R = Rc +mθvθv
H
θ , (12)

where Rc accounts for the sound signals from all directions but θ ,
and the second term is the contribution of a plane wave coming
from θ : mθ is its power, and vθ is a vector defined in (6) (see
Appendix A for more explanation of the plane wave contribution).
To see how well the estimation (10) approximates the true power
mθ , we express P(θ ) analytically by applying the matrix inversion
lemma [19] on R and obtain

P(θ ) =

[
vH
θ R−1c vθ −

mθ

1 +mθv
H
θ R−1c vθ

(vH
θ R−1c vθ )

2
]−1

=

(
a −

mθa
2

1 +mθa

)−1
=mθ +

1
a
,

(13)

where a denotes vH
θ R−1c vθ for short. It is evident the estimated

power P(θ ) differs from the true powermθ by a constant 1/a. In
fact, 1/a is the noise power in the output signal from the MVDR
beamformer (i.e., using Rc in (5) and computing wH

FBRcwFB), and
the MVDR beamformer is designed to minimize exactly this noise
power (1/a). Here noise is all the signals not from direction θ . Thus,
from (13), we conclude that the estimation accuracy of P(θ ) depends
onmθa, the output SNR ratio of the MVDR beamformer.

Furthermore, we show that the estimation of Rs in (11) has a
bounded error. Formally, we rewrite (11) as

Rs =
∫
Θ
mθvθv

H
θ dθ + ∆. (14)

The first term here is the true signal spectral matrix, and ∆ is
the error residual introduced by the estimator (11). As derived in
Appendix B, ∆ is bounded from above and below:

λmin
M

∫
Θ
vθv

H
θ dθ ≤ ∆ ≤

λmax
M

∫
Θ
vθv

H
θ dθ , (15)

where λmin and λmax are the minimal and maximal eigenvalues
of Rc, respectively. This derivation indicates that the residual is
bounded from above, proportional to the power of the strongest
signal direction other than θ and inversely proportional to the
microphone array size.

In light of this, a simple strategy for improving estimation accu-
racy of Rs is improving the MVDR’s output SNR ratio or increasing
the number of microphones (i.e., M). In the next section, we pro-
vide more guidance on microphone array design for audiovisual
zooming through numerical simulations.



4 EMPIRICAL STUDIES OF ARRAY DESIGNS
We implement our audiovisual zooming system on a microphone ar-
ray, which has many design parameters. Yet, there is no golden rule
to set those parameters; they depend on specific applications [16].
We conduct a series of simulation experiments to understand the
design parameters tailored for our applications, wherein the mobile
device such as a smartphone is the form factor that we will restrict
the microphone array to fit in. Concretely, we explore the following
questions:

• How does beamforming change with frequency?
• How big should the array be?
• What number of microphones should we use?
• How should we sample the spatial directions in (11)?

The first three questions are to understand microphone array con-
figuration, while the last is for efficient implementation of our au-
diovisual zooming algorithm. Because the audiovisual zooming is
based on MVDR beamforming, we must understand how the beam-
forming performance changes with respect to the array’s design
parameters. Therefore, the studies here are not meant to evaluate
our audiovisual zooming method. Rather, we examine MVDR beam-
forming under different setups to understand design parameter
choices. While there have been plenty of empirical studies of mi-
crophone array parameters (e.g., see [1, 9, 24]), our primary goal of
conducting these studies is to inform our specific algorithm.

In this section, we present the conclusions we learned from the
empirical studies. The details of our simulations and their results
are in Appendix C of the supplementary.

Setup. We consider a circular array consisting of a number of om-
nidirectional microphones evenly placed on a circle in the X-Y plane
(see Figure 7 in Appendix C) centered at the origin. We choose this
configuration because it matches the off-the-shelf physical array
that we will use. We also place six sound sources throughout the
space: four orthogonal sources in the X-Y plane at 0◦, 90◦, 180◦, and
270◦. The other two are placed along the positive and negative Z-
axes, respectively. The environment is filled with ambient Gaussian
noise. The MVDR beamformer aims to enhance the sound coming
from the positive Z-direction, while suppressing everything else.

Frequency dependence. MVDR performance is frequency depen-
dent. Our experiments focus on the frequency range of typical hu-
man speech (i.e., 300-3420Hz). The results are visualized as MVDR
beam patterns in Figure 7 of Appendix C at 300Hz, 1860Hz, and
3420Hz. Towards the steering direction, the beamformer always
has unit gain, thanks to the distortionless constraint in (5), but its
shape varies across frequencies. In general, beamforming perfor-
mance increases as frequency increases. The beam pattern at 3420Hz
(Figure 7-d) also shows some side lobs near the X-Y plane—a phe-
nomenon known as spatial aliasing occurring at high frequencies.

Array size. Next, we study the effect of the overall size of the
array: the number of microphones is fixed and the inter-microphone
spacing is changed. Figure 8 in Appendix C shows the details of our
studies. In general, the simulations show that better directionality
requires a larger array size—but not too large. For example, once the
array size reaches 50cm, we get non-trivial spatial aliasing effects.
Though there is a strong gain toward the target direction, there
are also many unwanted secondary gains in other directions. One

way to avoid spatial aliasing is to increase the spatial sampling rate.
This brings up the next natural question: how many microphones
should we use?

Number of microphones. We simulate the beamformer response
as we change the number of microphones while fixing the overall
size (i.e., 5cm in radius). The results are shown in Figure 10 in
Appendix C. When we increase the number of microphones, we
obtain better suppression of the interference relative to the target.
However (and perhaps somewhat surprisingly), the performance
plateaus once we have sufficient microphones. Figure 10 shows
that 16 microphones become superfluous, yielding no improvement
over 8. In other words, more microphones improve performance, but
have diminishing returns.

For the 8- and 16-microphone cases, there are “indentations” in
the directions of the X-Y plane interferers (bottom row of Figure 10),
indicating so-called null responses toward those directions—this
is the desired effect. Although there are reasonably larger gains
near the areas of those indentations, no sounds comes from those
directions in our setup, and so no suppression is needed. This is
the advantage of adaptive beamformers (like MVDR): they work
to rearrange the gain distribution to best nullify interferers while
distributing energy in places where no sound is thought to be.

Sampling density. Our audiovisual zooming algorithm estimates
spectral matrices Rn and Rs in (11) through Monte Carlo integra-
tion. In practice, we need to sample directions within a desired
FOV Θ and at its outside S3 \Θ. The sampling density of the direc-
tions should not be arbitrary because for each target we beamform
towards, there is an effective main lobe with a non-trivial width,
meaning that although the gain in the direction of the target is
maximal, there is also non-zero gain from directions nearby the
target direction. As shown in Figure 9 in Appendix C, the gain
falls off as the sound incoming direction deviates from the target
direction. We determine an acceptable reduction in dB (i.e., 1.8dB)
for nearby sounds and Figure 9 suggests sampling directions with
an angular separation of 20◦.

Discussions: extending to 3D arrays. Thus far, most microphone
arrays have a 2D planar configuration. We note that there is inher-
ently a symmetry. For the sound wave coming from an elevation an-
gle θ in spherical coordinates, no 2D planar array can disambiguate
it from the wave coming from the same but negated elevation angle
−θ (and the same azimuthal angle). For our applications, this is not
a significant problem, as the sound waves from behind the array are
often blocked by the user who is holding the camera to capture or
the table on which the array is placed (see Figure 4). Nevertheless,
here we study the performance of a 3D array for future extension.
We add an additional microphone at the center of the array and
gradually move it along the negative Z-axis to break the planar
symmetry. We then examine how this affects the beam pattern.
As shown in Figure 11, this additional microphone indeed helps to
break the symmetry. As it moves further away from the microphone
plane, the interferer behind the array attenuates more. However,
such a 3D array is much more bulky than the 2D array. Today, the
form factor of a mobile device is one of the most decisive factors for
its use on a daily basis. It is unclear if a 3D array is worth equipping
on mobile devices.



MVDR Our Method
SDR [dB] -2.96793 -0.0095
SNR [dB] -0.86467 1.80908
WADA-SNR [dB] 5.1604 7.55923
STOI 0.66414 0.71992
PESQ 1.75125 2.04402

Table 1: Comparison of our method against MVDR. Our
method consistently outperforms MVDR.

5 EXPERIMENTS AND RESULTS
We demonstrate our results via experiments on both synthetic and
real data: first, we use synthetic mixtures of clean speech sources
in various configurations to evaluate audiovisual zooming enhance-
ment (§5.1) using the following quantitative metrics:

(1) Signal-to-Distortion-Ratio (SDR) [34]. SDR evaluation takes as
input the enhanced signal and the reference signal it should
ideally match. It first decomposes the enhanced signal into four
components: a target component coming from the reference
signal, an interferer component containing other unwanted
sources’ contributions, a noise component encapsulating sensor
noises and an artifact component capturing distortions from
other sources (like forbidden distortions of the sources and/or
"burbling" artifacts). SDR is then calculated as the logarithmic
ratio (in dB) of the energy in the target component to the energy
in the unwanted components.

(2) Signal-to-Noise-Ratio (SNR). SNR is defined here to be the log-
arithmic ratio (in dB) of the energy of the enhanced signal to
that of the noise signal, the latter of which is defined at each
time point as the difference between the enhanced signal and
the reference signal.

(3) Waveform Amplitude Distribution Analysis SNR (WADA-SNR)
[15]. This metric evaluation assumes that clean speech has an
amplitude distribution well approximated by the Gamma distri-
bution with a shaping parameter of 0.4, and that the additive
noise signal is Gaussian. It is calculated by studying the ampli-
tude distribution of the enhanced signal. As the reference signal
we are attempting to recover in our experiments is oftentimes
speech, we use this metric to measure enhancement quality that
better correlates with our task.

(4) Short-Time Objective Intelligibility (STOI) [29]. Popular objec-
tive measures such as SDR and SNR above often do not reflect
well the speech intelligibility–how easily the resulting signals
can be understood by humans. The STOI score is designed to
bridge that divide.

(5) Perceptual Evaluation of Speech Quality (PESQ) [26]. Similar to
STOI, commonmeasures like SDR and SNR do not correlate well
with voice quality evaluation results from humans. PESQ was
developed to model these subjective tests better, and is a widely
used industry standard for objective voice quality testing.

Next, we perform real experiments using audio loud speakers in
various configurations to compute SDR, SNR, WADA-SNR, STOI
and PESQ enhancements. Finally, we show qualitative performance
using two different hardware platforms to demonstrate feasibility in

Metric Method 90◦ 45◦ 30◦ 15◦

SDR [dB] MVDR -4.08 -1.10 -3.54 -1.98
Ours -2.11 0.08 -2.56 -1.29
MVDR -0.55 0.78 -0.52 -0.19SNR [dB] Ours 0.75 1.86 0.48 0.79
MVDR -0.24 1.73 1.13 1.60WADA-SNR [dB] Ours 1.30 3.39 3.42 4.26
MVDR 0.46 0.58 0.50 0.53STOI Ours 0.59 0.63 0.54 0.56
MVDR 1.72 1.95 1.86 1.71PESQ Ours 2.00 2.17 2.07 1.80

Table 2: Comparison of our method against MVDR for real
loudspeaker experiments shown in Figure 4.

mobile settings. For all experiments, we tested our method against
the MVDR beamforming approach as a basis-of-comparison.

5.1 Synthetic Mixture of Speech
As there are no public datasets for audiovisual zooming, we gen-
erated data by mixing clean speech tracks in different (virtual)
geometric configurations. We performed randomized trials to span
the space around a given microphone array, varying the number of
speakers and the solid angle over which we wished to enhance the
sound. For each target solid angle, different numbers of speech sig-
nals were randomly placed within to differentiate from traditional
beamforming scenarios where only one sound source is targeted.

We use the same 6-microphone hexagonal array configuration
as in §4 and simulate sound source directions by delaying the audio
signal at each microphone appropriately. In all cases, clean speech
signals are obtained from real recordings. For each trial, we do as
follows: a) starting from a selection of 10 clean speech sound tracks,
we randomly choose between 2-10 overall speakers, of which 1-
4 are randomly chosen to be targets and the rest are interferers;
b) we randomly select a solid angle between 10° and 120° in both
azimuth and elevation as well as a randomly-chosen direction-to-
focus; c) given these setups, we randomly place the targets within
the solid angle target-FOV as well as randomly place the interferers
elsewhere. We run 500 random trials, applying both our method as
well as MVDR (directed towards the center of the target FOV), and
compute averaged metrics. The results are shown in Table 1.

Qualitatively, because MVDR (and other beamforming methods)
only enhances sound from a single direction, when a conic angle of
space contains multiple sounds, a relativelymuffled sound enhance-
ment results when pointing towards the FOV center. In contrast,
our method integrates all sounds coming from within the desired
FOV and attempts to enhance all equally, resulting in a more crisp
sound enhancement.

5.2 Audio Speaker Experiments
We perform real experiments using four loudspeakers, playing
individual sound tracks through each in various geometric config-
urations. The speakers are placed about a circular round-table, at
90°, 45°, 30°, and 15° (see Figure 4).

In each scenario, a single sound track is produced from each
speaker and all speakers play simultaneously from different direc-
tions. We then cycle through the speakers and select either two or
three adjacent speakers as the targets, while all others serve as the
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Figure 4: Loudspeaker experiments. Four audio loudspeak-
ers play individual sounds in configurations of 90° (a), 45°
(b), 30° (c), and 15° (d) angular separations. The microphone
array is placed on the table (indicated by the orange boxes).
We then select anywhere between 2-3 speakers to simulta-
neously enhancewhile attenuating all other speaker sounds
(see supplementary video).

interferers. Again, we focus on more than one target sound at a time
so as to differentiate from traditional beamforming scenarios. In
some experiments, all speakers play clean speech tracks whereas in
others, one of the speakers plays either a soft music track (e.g., jazz)
or a pre-recorded “crowd noise” (e.g., recording from a crowded
restaurant). Never is the music or crowd chosen as the target: these
serve only to provide interference signals.

In each experiment, once the target and interferers are chosen,
we play the sounds twice: a) first, all are played together to mimic
a “noisy” environment; b) second, we play only the target sounds
alone to serve as the “ground truth” against which we can compute
SNR/SDR metrics. We present our results in each of the angular
cases separately in Table 2. By all the metrics, our method out-
performs MVDR.

5.3 Use Case Demonstration
Finally, we demonstrate Audiovisual Zooming on two mobile plat-
forms: a smartphone and a 360° camera, both attached to a 6-
microphone hexagonal array (see Figure 2).

We refer to our supplementary video for the audiovisual zoom-
ing demonstration using both platforms. Using the smartphone,
we demonstrate a scenario in which a user captures two persons
speaking simultaneously. When both persons are captured in the
camera’s FOV (see Figure 1-a), their voices are mixed together. As
the user zooms in the camera’s FOV to focus on one person (see
Figure 1-b), her voice stands out while the other’s voice is sup-
pressed. Next, the user shifts the camera’s FOV to another person
(see Figure 1-c), and consequently his voice gradually becomes clear
while the other fades out. We note that in this process the change of
audio signal is fully synchronized with the change of the camera’s
FOV, thanks to our audiovisual zooming technique—for example,
the sound gradually changes from one person’s voice to another
voice as the camera pans.

To demonstrate the 360° camera, four people sit around a round
table and simultaneously converse. The 360° camera with the micro-
phone array is placed on the table and pointed upwards. It is difficult

Figure 5: Speaker separation on a Ricoh camera. Using amo-
bilemicrophone array attached to a 360° camera,we perform
audiovisual zooming on 4 people seated around a table at
roughly 90° angular offsets from one another. In this sce-
nario, 2 pairs of people are having simultaneous conversa-
tions andwe use ourmethod to focus in on one conversation.
The left shows the raw noisy spectrogram as recorded in one
of the microphones in the array. On the right, we show the
spectrogram after sound enhancement using our method,
which is noticeably cleaner (see supplementary video).

to distinguish the individual speakers in the raw audio. Since the
360° camera captures all speakers, the user can set the camera’s FOV
on individual speakers to boost their voice relative to the others’.
As the camera’s FOV switches from one speaker to another, the
boosted voice switches correspondingly. Consequently, the user
can choose to see and hear individual speakers (see supplementary
video).

In these scenarios, it was not possible to obtain ground truth (e.g.,
target-only sounds that perfectly match the raw, noisy signals), and
so here we show our results qualitatively via spectrograms before
and after enhancement (see Figure 5).

6 CONCLUSION
In this work, we extend the concept of the camera’s FOV to enhance
audio recording. Traditionally, camera’s FOV defines only the visual
frustum through which the visual content is captured by the camera.
A fundamental limitation is the inconsistency between captured
visual and auditory content—the sound is captured regardless of
the FOV setup. To address this limitation, we have introduced an
audiovisual zooming technique by leveraging the microphone array
and augmenting classic beamforming methods. We have presented
a method that estimates the sound spectral matrices which accounts
for the desired sound signals within the FOV and those outside
of the FOV. The estimated spectral matrices allow us to enhance
sound coming within the FOV by solving a generalized eigenvalue
problem. Our method requires no analysis of captured video frames.
It can enhance however many sound sources within the FOV, and
the captured imagery is in tandem with the resulting sound signal.

A limitation of our approach is that in a reflective environment, a
sound source outside of the FOV may emit sound waves that arrive
to the microphone from within the FOV through reflections. In
this case, our audiovisual zooming method will still enhance those
received sound signals. In the future, we plan to investigate this lim-
itation by estimating the room acoustics, which might require the
analysis of captured video frames to understand the environment
geometry and acoustic properties (e.g., [17]).
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Figure 6: Consider a microphone array in which eachmicro-
phone is located at position pi . A single sound comes from
the direction d as a plane wave. The angle between the mi-
crophone array’s facing direction and the sound incoming
direction is θ .

A SPECTRAL MATRIX OF SOUND FROM A
DIRECTION θ

Consider a plane wave impinging on a microphone array (see Fig-
ure 6). Let pi denote the position of individual microphones, and
the plane wave comes from the direction d with an intensityA. The
angle between the sound incoming direction and the microphone
array’s facing direction is θ . Then, the sound waves received at
individual microphone is expressed as

si = A
1
2 e−j(

ω
c d

T pi+ωt).

Here ω
c d

Tpi is the (relative) phase at the microphone i . Putting
all si into a vector s = [s1 . . . sM ]T , we can compute the spectral
matrix by its definition [22] as

R(ω) = FFT{ssT } = Avdv
H
d
, (16)

wherevd is the steering vector defined in (6). This expression (16)
is what we used in (11).

B DERIVATION OF ERROR BOUND (15)
First, we substitute (13) into the Rs estimation (11) and obtain the
expression of ∆ in (14),

∆ =

∫
Θ

1
a
vθv

H
θ =

∫
Θ

1
vH
θ R−1c vθ

vθv
H
θ . (17)

HerevH
θ R−1c vθ is bounded by the maximum and minimum eigen-

value of R−1c . Also, notice thatvθ is the steering vector, which has
a specific form (6). Therefore, we have

λĉminv
H
θ vH

θ = λĉminM ≤ vH
θ R−1c vθ ≤ λĉmaxv

H
θ vH

θ = λĉmaxM, (18)

where M is the number of microphones; λĉmax and λĉmin are the
maximum and minimum eigenvalues of R−1c , respectively. They are
related to the eigenvalues of Rc through

λĉmax =
1

λmin
and λĉmin =

1
λmax

.

Combing this expression with (17) and (18), we obtain the error
bound of ∆ as shown in (15).

(a) (b)(a) (b)

(a) (c) (c) (d)

Figure 7: Frequency dependence.We visualize the frequency
dependence of the MVDR beam patterns. (a) The array con-
sists of 6microphones shown as gray cubes on the X-Y plane,
where the microphones are spaced evenly 5cm from one an-
other. The 6 sound sources are spread throughout the space:
4 interfering sources are shown in red on the X-Y plane
along with another interfering source in the negative z-axis.
The target is shown in blue in the positive z-axis. (b-d) The
MVDR beam patterns at three different frequencies, 300Hz
(b), 1860Hz (c), and 3420Hz (d), are shown both in the shape
of the surface and as the color (yellow as 1 and blue as 0).

C DETAILS OF EMPIRICAL STUDIES
In our empirical studies, the MVDR beamformer aims to enhance
the sound coming from the positive Z-direction, while suppressing
everything else. Sincewe know preciselywhat the unwanted signals
are in our simulation, we can directly compute the noise spectral
matrix Rn, which is in turn used in (7) to evaluatewBF. We visualize
MVDR performance by evaluating its beam pattern across a range
of frequencies. The beam pattern describes the effective gain for
signals coming from individual directions θ when the beamformer
is set to enhance toward a direction θ0. It is defined as

д(θ ;θ0) = |wH
BF,θ0vθ |, (19)

where wH
BF,θ0

is the MVDR weights from (7) when the steering
direction is set to be θ0, andvθ is defined in (6).

Frequency dependence. To study the frequency dependence of
the microphone array’s performance, we use sound sources that
produce sound signals at a fixed frequency, and the frequency is
varied to ascertain the beamforming performance with respect to
frequency change. This is seen in Figure 7 as tighter main lobes in
the target’s direction for higher frequencies, meaning the interfer-
ing sounds are better suppressed.

Array size. Figure 8 shows the change in average beam pattern
across the human speech frequency range (300-3420Hz) as the
microphone spacing is changed from 0.5cm to 5cm and then to
50cm. The more microphones we have, the better we can sample
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Figure 8: Role of array size.Weuse a 6-element circular array
but vary the inter-microphone spacing to adjust the overall
array size. On the left of each subplot is the spatial configura-
tion: the target, interferers, and ambient noise are the same
as before (Figure 7), and the spacing of the microphones (in
the x-y plane) changes from 0.5cm (a) to 5cm (b) to 50cm
(c). On the right of each subplot is the average beam pattern
across the frequency range of human speech, to indicate the
average performance of the beamformer in that range.

(spatially) with larger array sizes. The smallest spacing setting of
0.5cm gives almost no directionality, with an omni-directional gain
response. As we increase to 5cm, the directionality improves with
better suppression of the interference sources relative to the target.

Number of microphones. The simulation setup and results are
shown in Figure 10 and its caption.

Sampling density. Figure 9 (bottom) shows a plot of average gain
(y-axis) within the human frequency range as a function of elevation
(x-axis) angle (e.g., offset from the target direction). Note that we
ignore the variation of azimuth angle because it has no effect for
the given array configuration and target direction, as shown in
Figure 7. Therefore, we consider the microphone array scenario as
shown on the top (circular 6-sensor array with 5cm spacing). The
simulation shows that the gain falls off from the target direction for
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Figure 9: Target proximity sensitivity. When beamforming
at a target in the presence of interferers, it is important
to know how the gain falls off from the direction of the
target for nearby interferers. We show this for a given 6-
microphone array configuration with 5cm spacing [top] as a
3D surface plot of average gain (across the human frequency
range) as a function of azimuth and elevation angular offset
from the desired target direction [bottom]. This allows us to
better understand how close sounds can be before they are
not sufficiently separable.

any nearby sounds within a small FOV of the target. We use this
to determine a reasonable sampling rate for our sphere integration
approach, as discussed in the main text (in §4). Here, we convert
the gain as expressed in (19) to dB as: дdB (θ ) = 20 ∗ loд10(д(θ )).

Extension to 3D arrays. We explore the effect of a 3D microphone
array as a future extension. 3D array is able to break the symmetry
that a 2D array suffers from, although it is much more bulky and
might not be compatible with the small form factor of most mobile
devices. The result and simulation details are shown in Figure 11
and its caption.



Figure 10: Here the microphone array geometry is a circle with a fixed 5cm radius in the X-Y plane. We examine how chang-
ing the number of microphones on this circule affects the average beam pattern of the beamformer. The definition of beam
pattern is presented in Appendix C. [Top-Left] A single microphone yields an omnidirectional response. [Top-Middle] Two
microphones improves directionality by suppressing two side interferers, but not the others. [Top-Right] Four microphones
improves directionality further. [Bottom-Left] Eight microphones are better, and the performance plateaus as 16 [Bottom-
Middle] or 32 [Bottom-Right] microphones yield no clear improvement.

Figure 11: 3D asymmetries. Effect of MVDR beamforming as a microphone as added to the third dimension. We consider
our baseline 6-microphone circular planar array and we add an extra microphone at the center. We then move the extra mic
along the negative z-dimension to break the 2D symmetry and observe how this affects the gain for the previously-ambiguous
interference behind the array. [Top-Left] The extra mic is at z=0, and so the symmetry remains. [Top-Middle] The extra mic
moves down the negative z-axis by 5mm, and the gain in the direction of the interferer subsides. As the microphone moves
further along the axis by 10mm [top-right], 15mm [Bottom-Left], 20mm [Bottom-Middle], and 30mm [Bottom-Right], the
gain in the direction of the interferer attenuates more andmore while the gain in the direction of the target remains maximal.
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