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Markov Chain Sampling Methods for 
Dirichlet Process Mixture Models 

Radford M. NEAL 

This article reviews Markov chain methods for sampling from the posterior distri- 
bution of a Dirichlet process mixture model and presents two new classes of methods. 
One new approach is to make Metropolis-Hastings updates of the indicators specifying 
which mixture component is associated with each observation, perhaps supplemented 
with a partial form of Gibbs sampling. The other new approach extends Gibbs sampling 
for these indicators by using a set of auxiliary parameters. These methods are simple 
to implement and are more efficient than previous ways of handling general Dirichlet 
process mixture models with non-conjugate priors. 

Key Words: Auxiliary variable methods; Density estimation; Latent class models; Monte 
Carlo; Metropolis-Hasting algorithm. 

1. INTRODUCTION 
Modeling a distribution as a mixture of simpler distributions is useful both as a 

nonparametric density estimation method and as a way of identifying latent classes that 
can explain the dependencies observed between variables. Mixtures with a countably 
infinite number of components can reasonably be handled in a Bayesian framework 
by employing a prior distribution for mixing proportions, such as a Dirichlet process, 
that leads to a few of these components dominating. Use of countably infinite mixtures 
bypasses the need to determine the “correct” number of components in a finite mixture 
model, a task which is fraught with technical difficulties. In many contexts, a countably 
infinite mixture is also a more realistic model than a mixture with a small number of 
components. 

Use of Dirichlet process mixture models has become computationally feasible with 
the development of Markov chain methods for sampling from the posterior distribution 
of the parameters of the component distributions andor of the associations of mixture 
components with observations. Methods based on Gibbs sampling can easily be imple- 
mented for models based on conjugate prior distributions, but when non-conjugate priors 
are used, as is appropriate in many contexts, straightforward Gibbs sampling requires 
that an often difficult numerical integration be performed. West, Muller, and. Escobar 
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250 R. M. NEAL 

(1994) used a Monte Carlo approximation to this integral, but the error from using such 
an approximation is likely to be large in many contexts. 

MacEachem and Miiller (1998) devised an exact approach for handling non-conjugate 
priors that uses a mapping from a set of auxiliary parameters to the set of parameters 
currently in use. Their “no gaps” and “complete” algorithms based on this approach are 
widely applicable, but somewhat inefficient. Walker and Damien (1998) applied a rather 
different auxiliary variable\method to some Dirichlet process mixture models, but their 
method appears to be unsuitable for general use, as it again requires the computation of 
a difficult integral. 

In this article, I review this past work and present two new approaches to Markov 
chain sampling. A very simple method for handling non-conjugate priors is to use 
Metropolis-Hastings updates with the conditional prior as the proposal distribution. A 
variation of this method may sometimes sample more efficiently, particularly when com- 
bined with a partial form of Gibbs sampling. Another class of methods uses Gibbs 
sampling in a space with auxiliary parameters. The simplest method of this type is very 
similar to the “no gaps” algorithm of MacEachem and Miiller, but is more efficient. This 
approach also yields an algorithm that resembles use of a Monte Carlo approximation to 
the necessary integrals, but which does not suffer from any approximation error. 

I conclude with a demonstration of the methods on a simple problem, which confirms 
that the new algorithms improve on the previous “no gaps” algorithm. Which of the 
several new algorithms introduced is best likely depends on the model and dataset to 
which they are applied. Further experience with these algorithms in a variety of contexts 
will be required to assess their relative merits. 

2. DIRICHLET PROCESS MIXTURE MODELS 
Dirichlet process mixture models go back to Antoniak (1974) and Ferguson (1983). 

[Note: Dirichlet process mixture models are sometimes also called “mixture of Dirichlet 
process models,” apparently because of Antoniak’s (1974) characterization of their poste- 
rior distributions. Since models are not usually named for the properties of their posterior 
distributions, this terminology is avoided here.] These models have recently been devel- 
oped as practical methods by Escobar and West (1995), MacEachern and Miiller (1998), 
and others. 

The basic model applies to data y1, . . . , yn which we regard as part of an indefinite 
exchangeable sequence, or equivalently, as being independently drawn from some un- 
known distribution. The yi may be multivariate, with components that may be real-valued 
or categorical. We model the distribution from which the yi are drawn as a mixture of 
distributions of the form F ( 8 ) ,  with the mixing distribution over 8 being G. We let the 
prior for this mixing distribution be a Dirichlet process (Ferguson 1973), with concen- 
tration parameter (Y and base distribution Go (i.e., with base measure aGo). This gives 
the following model: 

yi I oi - F ( W  
e i 1 G  - G (2.1) 

G - DP(G0, a) .  

Here, “X - S” means “X has the distribution S”, so the right side is a specification of 
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SAMPLING METHODS FOR DIRICHLET PROCFSS MIXTURE MODELS 251 

a distribution (e.g., N(pl a’)), not of a density function. DP is the Dirichlet process, a 
distribution over distributions. Here and later, the obvious independence properties (e.g., 
given the Bi, the yi are independent of each other and of G) are silently assumed. 

Often, the distributions F and Go will depend on additional hyperparameters not 
mentioned above, which, along with a, may be given priors at a higher level, as illustrated, 
for example, by Escobar and West (1998). The computational methods discussed in this 
article extend easily to these more complex models, as briefly discussed in Section 7. 

Since realizations of the Dirichlet process are discrete with probability one, these 
models can be viewed as countably infinite mixtures, as pointed out by Ferguson (1983). 
This is also apparent when we integrate over G in model (2. l), to obtain a representation 
of the prior distribution of the 6i in terms of successive conditional distributions of the 
following form (Blackwell and MacQueen 1973): 

Here, s(0) is the distribution concentrated at the single point 6. Notation of the form 
p R  + (1  -p)S,  where R and S are distributions, represents the distribution that is the 
mixture of R and S, with proportions p and 1 - p ,  respectively. 

Equivalent models can also be obtained by taking the limit as K goes to infinity of 
finite mixture models with K components having the following form: 

Yi I Ci, 4 - F(4Ci)  
ci I p - Discrete (pl, . . . p ~ )  

4 c  - Go 
(2.3) 

p - Dirichlet ( a / K ,  . . . , cr/K). 

Here, ci indicates which “latent class” is associated with observation yi, with the num- 
bering of the ci being of no significance. For each class, c, the parameters c$~ determine 
the distribution of observations from that class; the collection of all such & is denoted 
by 4. The mixing proportions for the classes, p = (pl . . . p ~ ) ,  are given a symmetric 
Dirichlet prior, with concentration parameter written as a / K ,  so that it approaches zero 
as K goes to infinity. 

By integrating over the mixing proportions, p ,  we can write the prior for the c, as 
the product of conditional probabilities of the following form: 

- ni ,c  + a/K - 
i - l + a  ’ 

where ni,c is the number of cj for j < i that are equal to c. 
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252 R. M. NEAL 

If we now let K go to infinity, the conditional probabilities in Equation (2.6), which 
define the prior for the ci, reach the following limits: 

[Note: Some readers may be disturbed by the failure of countable additivity for these 
limiting probabilities, in which P(ci # c j  for all j < i) > 0 even though P(ci = c) = 0 
for any specific c that is not equal to some c j  with j < i. However, the limiting distribution 
of the observable quantities (the yi), and the limiting forms of the algorithms based on 
this model, are both well defined as K goes to infinity.] 

Since the ci are significant only in so far as they are or are not equal to other c j ,  the 
above probabilities are all that are needed to define the model. If we now let Bi = &, 
we can see that the limit of model (2.3) as K -+ 00 is equivalent to the Dirichlet process 
mixture model (2. l ) ,  due to the correspondence between the conditional probabilities for 
the Bi in Equation (2.2) and those implied by (2.7). 

I have previously used this limiting process to define a model which (unknown to me 
at the time) is equivalent to a Dirichlet process mixture (Neal 1992). This view is useful 
in deriving algorithms for sampling from the posterior distribution for Dirichlet process 
mixture models. Conversely, an algorithm for Dirichlet process mixture models will 
usually have a counterpart for finite mixture models. This is the case for the algorithms 
discussed in this article, though I do not give details of the algorithms for finite mixtures. 

Yet another way of formulating the equivalent of a Dirichlet process mixture model 
is in terms of the prior probability that two observations come from the same mixture 
component (equal to l/(l+cr) in the models above). This approach has been used by 
Anderson (1990, chap. 3) in formulating a model for use as a psychological theory of 
human category learning. 

3. GIBBS SAMPLING WHEN CONJUGATE PRIORS ARE USED 
Exact computation of posterior expectations for a Dirichlet process mixture model 

is infeasible when there are more than a few observations. However, such expectations 
can be estimated using Monte Car10 methods. For example, suppose we have a sample 
of T points from the posterior distribution for 8 = (01,. . . , O n ) ,  with the tth such point 
being dt)  = ( B i t ) ,  . . . ,0:)). Then using Equation (2.2), the predictive distribution for a 
new observation, yn+l, can be estimated by (1/T) cfl F(O!il), where O!ll is drawn 
from the distribution (n+a)-' cy=l c5(0:") + cr(n+a)-'Go. 

We can sample from the posterior distribution of 8 = (01, . . . , O n )  by simulating 
a Markov chain that has the posterior as its equilibrium distribution. The simplest such 
methods are based on Gibbs sampling, which when conjugate priors are used can be 
done in three ways. 

The most direct approach to sampling for model (2.1) is to repeatedly draw values 
for each Bi from its conditional distribution given both the data and the 0, for j # i 
(written as 0-i) .  This conditional distribution is obtained by combining the likelihood 
for Bi that results from yi having distribution F(0, ) ,  which will be written as F (y i ,  &), 
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SAMPLING METHODS FOR DIRICHLET PROCESS MIXTURE MODELS 253 

and the prior conditional on Bpi, which is 

1 a - ~ c W )  + n-l+cY Go. oi I n - 1 S a  . . 
3 2 2  

(3.1) 

This conditional prior can be derived from Equation (2.2) by imagining that i is the 
last of the n observations, as we may, since the observations are exchangeable. When 
combined with the likelihood, this yields the following conditional distribution for use 
in Gibbs sampling: 

ei I BL, yi - C qi,jd(Oj) + r i ~ i .  (3.2) 
j # i  

Here, Hi is the posterior distribution for 8 based on the prior Go and the single observation 
yi, with likelihood F(yi,  8). The values of the qi, j  and of ri are defined by 

Qi , j  = bF(Yi,8j) (3.3) 

where b is such that ‘&+ q i , j  + ~i = 1. For this Gibbs sampling method to be feasible, 
computing the integral defining ri and sampling from Hi must be feasible operations. 
This will generally be so when Go is the conjugate prior for the likelihood given by F .  

Let the state of the Markov chain consist of 0 = (e l , .  . . , O n ) .  

We may summarize this method as follows: 

Algorithm 1. 
Repeatedly sample as follows: 

0 For i = 1, . . . , n: Draw a new value from 8i I O - i ,  yi as defined by Equation (3.2). 

This algorithm was used by Escobar (1994) and by Escobar and West (1995). It 
produces an ergodic Markov chain, but convergence to the posterior distribution may be 
rather slow, and sampling thereafter may be inefficient. The problem is that there are 
often groups of observations that with high probability are associated with the same 8. 
Since the algorithm cannot change the 0 for more than one observation simultaneously, 
a change to the 8 values for observations in such a group can occur only rarely, as 
such a change requires passage through a low-probability intermediate state in which 
observations in the group do not all have the same 8 value. 

This problem is avoided if Gibbs sampling is instead applied to the model formulated 
as in (2.3), with the mixing proportions, p ,  integrated out. When K is finite, each Gibbs 
sampling scan consists of picking a new value for each ci from its conditional distribution 
given yi. the &, and the c j  for j # i (written as c-,), and then picking a new value for 
each q ? ~ ~  from its conditional distribution given the yi for which ci = c. The required 
conditional probabilities for ci can easily be computed: 

where n-i,c is the number of c j  for j # i that are equal to c, and b is the appropriate 
normalizing constant. This .expression is found by multiplying the likelihood, F(yi,  &), 
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254 R. M. NEAL 

by the conditional prior, which is derived from Equation (2.6) by imagining that i is the 
last Observation. (Note that the denominator n- 1 +a could be absorbed into b, but here 
and later it is retained for clarity.) The conditional distribution for 4c will generally be 
easy to sample from when the priors used are conjugate, and even when Gibbs sampling 
for dC is difficult, one may simply substitute some other update that leaves the required 
distribution invariant. Note that when a new value is chosen for &, the values of 8i = $ci 
will change simultaneously for all observations associated with component c. 

When K goes to infinity, we cannot, of course, explicitly represent the infinite 
number of &. We instead represent, and do Gibbs sampling for, only those 4c that are 
currently associated with some observation. Gibbs sampling for the ci is based on the 
following conditional probabilities (with d, here being the set of q5c currently associated 
with at least one observation): 

If c = cj for some j#i :  P ( c ~  = c I c-i, Yir d,) 

Here, b is the appropriate normalizing constant that makes the above probabilities sum 
to one. The numerical values of the c, are arbitrary, as long at they faithfully represent 
whether or not ci = cj-that is, the ci are important only in that they determine what 
has been called the “configuration” in which the data items are grouped in accordance 
with shared values for 8. The numerical values for the ci may therefore be chosen for 
programming convenience, or to facilitate the display of mixture components in some 
desired order. When Gibbs sampling for ci chooses a value not equal to any other cJ,  a 
value for $,., is chosen from Hi, the posterior distribution based on the prior Go and the 
single observation yi .  

We can summarize this second Gibbs sampling method as follows: 

Algorithm 2. Let the state of the Markov chain consist of c = (c1 1 .  . . cn) and 
d, = (dC : c E (c1 . . . cn}). Repeatedly sample as follows: 

0 For i = 1 . . . , n: If the present value of ci is associated with no other observation 
(i.e., n-i,ci = 0), remove c#ici from the state. Draw a new value for ci from 
ci I c-ir y i ,  d, as defined by Equation (3.6). If the new ci is not associated with 
any other observation, draw a value for +c, from Hi and add it to the state. 

0 For all c E { c l ,  . . . G}: Draw a new value from r$c I all yi for which ci = c- 
that is, from the posterior distribution based on the prior Go and all the data points 
currently associated with latent class c. 

This is essentially the method used by Bush and MacEachern (1996) and later by 
West, Muller, and Escobar (1994). As was the case for the first Gibbs sampling method, 
this approach is feasible if we can compute l F ( y i ,  4) dGo(q5) and sample from Hi, as 
will generally be the case when Go is the conjugate prior. 

Finally, in a conjugate context, we can often integrate analytically over the &, 
eliminating them from the algorithm. The state of the Markov chain then consists only of 
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SAMPLING METHODS FOR DIRICHLET PROCESS MIXTURE MODELS 255 

the ci, which we update by Gibbs sampling using the following conditional probabilities: 

s n-i c 
= b A 

n-l+cr If c = c j  for some j f i :  P(ci = c I c - ~ ,  yi) F(yi ,  4) dHPi ,J4)  

P(ci # c j  for all j # i  I c-i, yi) = b- / F ( Y i ,  4) dGo(4). 
n-l+CY 

(3.7) 
Here, H-i,c is the posterior distribution of 4 based on the prior Go and all observations 
yj for which j # i and cj = c. 

This third Gibbs sampling method can be summarized as follows: 

Algorithm 3. Let the state of the Markov chain consist of c = (CI, . . . , h). 
Repeatedly sample as follows: 

0 For i = 1, . . . , n: Draw a new value from ci I c-i, yi as defined by Equation (3.7). 

This algorithm is presented by MacEachern (1994) for mixtures of normals and by 
myself (Neal 1992) for models of categorical data. 

4. EXISTING METHODS FOR 
HANDLING NON-CON JUGATE PRIORS 

Algorithms 1 to 3 cannot easily be applied to models where Go is not the conjugate 
prior for F ,  as the integrals in Equations (3.4), (3.6), and (3.7) will usually not be 
analytically tractable. Sampling from Hi may also be hard when the prior is not conjugate. 

West, Miiller, and Escobar (1994) suggested using either numerical quadrature or 
a Monte Car10 approximation to evaluate the required integral. If F(yi,  4) dGo(4) 
is approximated by an average over m values for 4 drawn from Go, one could also 
approximate a draw from Hi, if required, by drawing from among these m points with 
probabilities proportional to their likelihoods, given by F(y i ,  4). Though their article is 
not explicit, it appears that West, Miiller, and Escobar’s non-conjugate example uses this 
approach with m = 1 (see MacEachern and Miiller 1998). 

Unfortunately, this approach is potentially quite inaccurate. Often, Hi, the posterior 
based on yi alone, will be considerably more concentrated than the prior, Go, particularly 
when yi is multidimensional. If a small to moderate number of points are drawn from 
Go, it may be that none are typical of Hi. Consequently, the probability of choosing ci 
to be a new component can be much lower than it would be if the exact probabilities of 
Equation (3.6) were used. The consequence of this is not just slower convergence, since 
on the rare occasions when ci is in fact set to a new component, with an appropriate 
4 typical of Hi, this new component is likely to be discarded in the very next Gibbs 
sampling iteration, leading to the wrong stationary distribution. This problem shows that 
the usual Gibbs sampling procedure of forgetting the current value of a variable before 
sampling from its conditional distribution will have to be modified in any valid scheme 
that uses values for 4 drawn from Go. 

MacEachern and Miiller (1998) presented a framework that does allow auxiliary 
values for 4 drawn from Go to be used to define a valid Markov chain sampler. I will 
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256 R. M. NEAL 

explain their idea as an extension of Algorithm 2 of Section 3. There, the numerical values 
of the ci were regarded as significant only in so far as they indicate which observations are 
associated with the same component. MacEachern and Miiller considered more specific 
schemes for assigning distributions to the ci, which serve to map from a collection of 
values for to values for the 8,. Many such schemes will produce the same distribution 
for the Bi, but lead to different sampling algorithms. 

The “no gaps” algorithm of MacEachern and Miiller arises when the q for i = 
1 , . . . , n are required to cover the set of integers from 1 to k ,  with k being the number 
of distinct c,, but are not otherwise constrained. By considering Gibbs sampling in this 
representation, they derive the following algorithm: 

Let the state of the Markov chain consist of c = (c1, . . . , G)  and 
q5 = (& : c E {CI , . . . , c,}). Repeatedly sample as follows: 

Algorithm 4. 

0 For i = 1 , .  . . , n: Let k- be the number of distinct c j  for j # i, and let these 
cj  have values in { 1, . . . , k-}. If ci # cj for all j # i, then with probability 
k - /  ( k - +  1) do nothing, leaving c, unchanged. Otherwise, label ci as k - +  1 if 
ci # cj  for all j # i, or draw a value for $k-+I  from Go if ci = cj for some 
j # i. Then draw a new value for ci from { 1 , . . . , k -  + 1) using the following 
probabilities: 

P ( C i  = c I C-i, Yil  4 1 1 .  ’ .  , &-+I)  

if 1 S c S k -  

where b is the appropriate normalizing constant. Change the state to contain only 
those q ! ~ ~  that are now associated with an observation. 

0 For all c E {cl, . . . , G}:  Draw a new value from & I yi such that ci = c, or 
perform some other update to q5c that leaves this distribution invariant. 

This algorithm can be applied to any model for which we can sample from Go 
and compute F(y i ,  O ) ,  regardless of whether Go is the conjugate prior for F .  However, 
there is a puzzling inefficiency in the algorithm’s mechanism for setting c, to a value 
different from all other cj-that is, for assigning an observation to a newly created 
mixture component. The probability of such a change is reduced from what one might 
expect by a factor of k - +  1, with a corresponding reduction in the probability of the 
opposite change. As will be seen in Section 6, a similar algorithm without this inefficiency 
is possible. 

MacEachern and Miiller also developed an algorithm based on a ‘‘complete’’ scheme 
for mapping from the & to the Oi. It requires maintaining n values for 4, which may be 
inefficient when k << n. The approach that will be presented in Section 6 allows more 
control over the number of auxiliary parameter values used. 

Another approach to handling non-conjugate priors was devised by Walker and 
Damien (1998). Their method avoids the integrals needed for Gibbs sampling, but requires 
instead that the probability under Go of the set of all 8 for which F(yi ,8)  > u be 
computable, and that one be able to sample from Go restricted to this set. Although these 
operations are feasible for some models, they will in general be quite difficult, especially 
when 8 is multidimensional. 
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SAMPLING METHODS FOR DIRICHLET PROCESS MIXTURE MODELS 257 

Finally, Green and Richardson (in press) developed a Markov chain sampling method 
based on splitting and merging components that is applicable to non-conjugate models. 
Their method is considerably more complex than the others discussed in this article, 
since it attempts to solve the more difficult problem of obtaining good performance in 
situations where the other methods tend to become trapped in local modes that are not 
easily escaped with incremental changes. Discussion of this issue is beyond the scope of 
this article. 

5. METROPOLIS-HASTINGS UPDATES AND PARTIAL GIBBS 
SAMPLING 

Perhaps the simplest way of handling non-conjugate priors is by using the 
Metropolis-Hastings algorithm (Hastings 1970) to update the c,, using the conditional 
prior as the proposal distribution. 

Recall that the Metropolis-Hastings algorithm for sampling from a distribution for 
x with probabilities n(x), using a proposal distribution g(x*lx), updates the state x as 
follows: 

Draw a candidate state, I*, according to the probabilities g(z* 1.). Compute the 
acceptance probability 

With probability a(z* , z ) ,  set the new state, z', to x*. Otherwise, let z' be the 
same as z. 

This update from x to x' leaves T invariant. When x is multidimensional, proposal 
distributions that change only one component of x are often used. Updates based on 
several such proposals, along with updates of other types, can be combined in order to 
construct an ergodic Markov chain that will converge to T .  

This approach can be applied to model (2.3) for finite K ,  with the p ,  integrated 
out, using Metropolis-Hastings updates for each c, in turn, along with Gibbs sampling 
or other updates for the &. When updating just c,, we can ignore those factors in the 
posterior distribution that do not involve ci. What remains is the product of the likelihood 
for observation i, F(y i ,  &,), and the conditional prior for ci given the other c j ,  which is 

n-i,c + a / K  
n - l + a  ' P(Ci = c 1 Li) = 

where, as before, n-i,c is the number of cj for j # i that are equal to c. This can be 
obtained from Equation (2.6) by imagining that z is the last observation. If we now 
choose to use this conditional prior for ci as the proposal distribution, we find that this 
factor cancels when computing the acceptance probability of Equation (5. l), leaving 

(5.3) 

This approach continues to work as we let K + 00 in order to produce an algorithm 
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258 R. M. NEAL 

for a Dirichlet process mixture model. The conditional prior for ci becomes 

If we use this as the proposal distribution for an update to ci, we will need to draw an 
associated value for C$ from Go if the candidate, czf , is not in {CI , . . . , cn}. Note that if 
the current ci is not equal to any other cj, the probability of choosing c,' to be the same 
as c, is zero-that is, when czf is chosen to be different from the other cj it will always 
be a new component, not the current ci, even when that also differs from the other cj. 
(The method would be valid even if a new component were not created in this situation, 
but this is the behavior obtained by taking the K 3 00 limit of the algorithm for finite 

We might wish to perform more than one such Metropolis-Hastings update for each 
K.1 

of the ci. With this elaboration, the algorithm can be summarized as follows: 

4 = (& : c E {CI, . . . , cn}). Repeatedly sample as follows: 
Algorithm 5. Let the state of the Markov chain consist of c = (c1 , .. . , c,) and 

0 For i = 1, . . . , n, repeat the following update of ci R times: Draw a candidate, 
czf, from the conditional prior for ci given by Equation (5.4). If this c,' is not in 
{cl,.. . , G},  choose a value for &; from Go. Compute the acceptance proba- 
bility, a(c,', ci), as in Equation (5.3), and set the new value of c, to c,' with this 
probability. Otherwise let the new value of ci be the same as the old value. 

0 For all c E {CI, . . . , ~ } i  Draw a new value from & 1 yi such that ci = c, or 
perform some other update to c& that leaves this distribution invariant. 

If R is greater than one, it is possible to save computation time by reusing values 
of F that were previously computed. An evaluation of F can also be omitted when c,' 
turns out to be the same as ci. The number of evaluations of F required to update one 
ci is thus no more than R+ 1. For comparison, the number of evaluations of F needed 
to update one c, for Gibbs sampling and the ''no gaps" algorithm is approximately equal 
to one plus the number of distinct cj for j # i. 

If the updates for the & in the last step of Algorithm 5 are omitted, the algorithm 
can be rephrased in terms of the Bi = &, with the following result: 

Algorithm 6. Let the state of the Markov chain consist of 8 = (0, , . . . , 0,). 
Repeatedly sample as follows: 

0 For i = 1, . . . , n, repeat the following update of Oi R times: Draw a candidate, 
Bzf , from the following distribution: 

1 CY c Wd + n-l+cr Go. n-l+CY . . 
3 f z  

Compute the acceptance probability 

~ ( e , r ,  ei) = min[i, w y i ,  0:) / ~ ( y ~ ,  wi. 

D
ow

nl
oa

de
d 

by
 [

T
ea

ch
er

s 
C

ol
le

ge
, C

ol
um

bi
a 

U
ni

ve
rs

ity
] 

at
 1

2:
32

 1
8 

M
ar

ch
 2

01
6 



SAMPLING METHODS FOR DIRICHLET PROCESS MIXTURE MODELS 259 

Set the new value of 0i to 0; with this probability; otherwise let the new value 
of Bi be the same as the old value. 

This might have been justified directly as a Metropolis-Hastings algorithm, but the 
fact that the proposal distribution for 0; is a mixture of continuous and discrete distri- 
butions introduces conceptual, or at least notational, difficulties. Note that this algorithm 
suffers from the same problem of not being able to change several 0i simultaneously as 
was discussed for Algorithm 1. 

The behavior of the Metropolis-Hastings methods (Algorithms 5 and 6) differs sub- 
stantially from that of the corresponding Gibbs sampling methods (Algorithms 2 and 1) 
and the “no gaps” method (Algorithm 4). These other methods consider all mixture com- 
ponents when deciding on a new value for ci, whereas the Metropolis-Hastings method 
is more likely to consider changing ci to a component associated with many observa- 
tions than to a component associated with few observations. Also, the probability that the 
Metropolis-Hastings method will consider changing ci to a newly created component is 
proportional to a. (Of course, the probability of actually making such a change depends 
on Q for all methods; here the issue is whether such a change is even considered.) 

It is difficult to say which behavior is better. Algorithm 5 does appear to perform 
adequately in practice, but since small values of Q (around one) are often used, one might 
wonder whether an algorithm that could consider the creation of a new component more 
often might be more efficient. 

We can produce such an algorithm by modifying the proposal distribution for updates 
to the ci. In particular, whenever ci = c j  for some j # i, we can propose changing ci to a 
newly created component, with associated 6 drawn from Go. In order to allow the reverse 
change, in which a component disappears, the proposal distribution for “singleton” ci 
that are not equal to any c j  with j # i will be confined to those components that are 
associated with other observations, with probabilities proportional to ~ i , ~ .  Note that 
when the current ci is not a singleton, the probability of proposing a new component is a 
factor of (n-l-tty) / cr greater than the conditional prior, while when ci is a singleton, the 
probability of proposing any existing component is a factor of (n-lfcr) / (n-1) greater 
than its conditional prior. The probability of accepting a proposal must be adjusted by 
the ratio of these factors. 

On their own, these updates are sufficient to produce a Markov chain that is ergodic, 
as can be seen from the fact that there is a nonzero probability that a single scan of the data 
items will result in a state where every data item is associated with a different component. 
Such a chain would often sample inefficiently, however, since it can move an observation 
from one existing component to another only by passing though a possibly unlikely 
state in which that observation is a singleton. Such changes can be made more likely 
by combining these Metropolis-Hastings updates with partial Gibbs sampling updates, 
which are applied only to those observations that are not singletons, and which are 
allowed to change ci for such an observation only to a component associated with some 
other observation. In other words, these updates perform Gibbs sampling for the posterior 
distribution conditional on the set of components that are associated with at least one 
observation remaining the same as at present. No difficult integrations are required for 
this partial Gibbs sampling operation. 

Combining the modified Metropolis-Hasting updates, the partial Gibbs sampling up- 
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260 R. M. NEAL 

dates, and the usual updates to & for c E {CI , . . . , c,} produces the following algorithm: 

Let the state of the Markov chain consist of c = (c1 , . . . , c,) and 
C#J = (& : c E { C I  , . . . , c,}). Repeatedly sample as follows: 

Algorithm 7. 

For i = 1, . . . , n, update c, as follows: If ci is a not a singleton (i.e., ci = c j  for 
some j #i), let c,' be a newly created component, with &; drawn from Go. Set 
the new ci to this c,t with probability 

Otherwise, when ci is a singleton, draw c,' from c-i, choosing c,' = c with 
probability n-i,c / (n- 1). Set the new ci to this c,' with probability 

If the new ci is not set to c,t, it is the same as the old ci. 
0 For i = 1, . . . , n: If ci is a singleton (i.e., ci # cj for all j # i), do nothing. 

Otherwise, choose a new value for ci from {c]  , . . . , c,} using the following 
probabilities: 

where b is the appropriate normalizing constant. 

perform some other update to q5c that leaves this distribution invariant. 
0 For all c E (c1 , . . . , c,}: Draw a new value from & I yi such that ci = c, or 

6. GIBBS SAMPLING WITH AUXILIARY PARAMETERS 
In this section, I show how models with non-conjugate priors can be handled by 

applying Gibbs sampling to a state that has been extended by the addition of auxiliary 
parameters. This approach is similar to that of MacEachern and Miiller (1998), but differs 
in that the auxiliary parameters are regarded as existing only temporarily; this allows more 
flexibility in constructing algorithms. 

The basic idea of auxiliary variable methods is that we can sample from a distribu- 
tion 7rz for z by sampling from some distribution 7rzy for (2, y), with respect to which 
the marginal distribution of z is 7rz. We can extend this idea to accommodate auxiliary 
variables that are created and discarded during the Markov chain simulation. The perma- 
nent state of the Markov chain will be z, but a variable y will be introduced temporarily 
during an update of the following form: 

1. Draw a value for y from its conditional distribution given z, as defined by 7rzy. 

2. Perform some update of (z, y) that leaves 7rzy invariant. 
3. Discard y, leaving only the value of z. 

It is easy to see that this update for IC will leave 7rz invariant as long as 7rz is the marginal 
distribution of z under 7rzy. We can combine several such updates, which may involve 
different auxiliary variables, along with other updates that leave 7rz invariant, to construct 
a Markov chain that will converge to 7rz. 
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'i 

cd3 cd3 cd3 
6+a 6+cx 6+a 6+a 6+a 6+a 6+a 

- - -  2 1 2 1 - _ _ - _ _  

0, 01 0 2  0 3  04 

I 

8, '2 '3 '4 ' 5  ' 6  '7 

Figure 1. Representing the conditional prior distribution for a new observation using auxiliary parameters. 
The component for the new observation is chosen from among the four components associated with other 
observations plus three possible new components, with parameters. 4 5 ,  4 6 ,  h, drawn independently from Go. 
The probabilities used for this choice are shown at the top. The dashed arrows illustrate the possibilities of 
choosing an existing component, or a new component that uses one of the auxiliary parameters. 

We can use this technique to update the ci for a Dirichlet process mixture model 
without having to integrate with respect GO. The permanent state of the Markov chain 
will consist of the ci and the &, as in Algorithm 2, but when ci is updated, we will 
introduce temporary auxiliary variables that represent possible values for the parameters 
of components that are not associated with any other observations. We then update ci by 
Gibbs sampling with respect to the distribution that includes these auxiliary parameters. 

Since the observations yi are exchangeable, and the component labels ci are arbitrary, 
we can assume that we are updating ci for the last observation, and that the cj for other 
observations have values in the set, { 1, . . . , k - } ,  where k -  is the number of distinct cj 
for j # i. We can now visualize the conditional prior distribution for ci given the other cj 

in terms of m auxiliary components and their associated parameters. The probability of 
ci being equal to a c in { 1 , .  . . , k - }  will be n-i,c/(n-l+a), where is the number 
of times c occurs among the cj  for j # i. The probability of ci having some other value 
will be a/(n-l+a), which we will split equally among the m auxiliary components we 
have introduced. Figure 1 illustrates this setup for m = 3. 

This representation of the prior gives rise to a corresponding representation of the 
posterior, which also includes these auxiliary parameters. The first step in using this 
representation to update ci is to sample from the conditional distribution of these auxiliary 
parameters given the current value of ci and the rest of the state. If ci = c j  for some 
j # i, the auxiliary parameters have no connection with the rest of the state, or the 
observations, and are simply drawn independently from Go. If ci # c j  for all j # i (i.e., 
ca is a singleton), then it must be associated with one of the m auxiliary parameters. 
Technically, we should select which auxiliary parameter it is associated with randomly, 
but since it turns out to make no difference, we can just let c, be the first of these 
auxiliary components. The corresponding value for 4 must, of course, be equal to the 
existing &i. The 4 values for the other auxiliary components (if any, there are none if 
m = 1) are again drawn independently from Go. 

We now perform a Gibbs sampling update for ci in this representation of the pos- 
terior distribution. Since ci must be either one of the components associated with other 
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262 R. M. NEAL 

observations or one of the auxiliary components that were introduced, we can easily do 
Gibbs sampling by evaluating the relative probabilities of these possibilities. Once a new 
value for ci has been chosen, we discard all C#I values that are not now associated with 
an observation. 

This algorithm can be summarized as follows: 

Algorithm 8. Let the state of the Markov chain consist of c = (c1, . . . , c,) and 
= (& : c E {CI, . . . , c,}). Repeatedly sample as follows: 

0 For a = 1, . . . , n: Let k -  be the number of distinct cj for j # i, and let h = k-fm. 
Label these c j  with values in { 1, . . . , k - } .  If ci = cj for some j # i, draw values 
independently from Go for those cPc for which k- < c 5 h. If c, # cj  for all 
j # i, let ci have the label k- + 1, and draw values independently from Go for 
those q5c for which k - +  1 < c 5 h. Draw a new value for ci from { 1 , .  . . , h}  
using the following probabilities: 

where n-+ is the number of cj for j # i that are equal to c, and b is the 
appropriate normalizing constant. Change the state to contain only those C#Ic that 
are now associated with one or more observations. 

0 For all c E { c l ,  . . . , G}: Draw a new value from c $ ~  I yi such that ci = c, or 
perform some other update to q5c that leaves this distribution invariant. 

Note that the relabelings of the cj above are conceptual; they may or may not require 
any actual computation, depending on the data structures used. 

When m = 1, Algorithm 8 closely resembles Algorithm 4, the “no gaps” algorithm 
of MacEachern and Miiller (1998). The difference is that the probability of changing 
ci from a component shared with other observations to a new singleton component is 
approximately k-+ 1 times greater with Algorithm 8, and the same is true for the reverse 
change. When a is small, this seems to be a clear benefit, since the probabilities for other 
changes are affected only slightly. 

In the other extreme, as m + 00, Algorithm 8 approaches the behavior of Algo- 
rithm 2, since the m (or m-l) values for C#Ic drawn from Go effectively produce a Monte 
Carlo approximation to the integral computed in Algorithm 2. However, the equilibrium 
distribution of the Markov chain defined by Algorithm 8 is exactly correct for any value 
of m, unlike the situation when a Monte Carlo approximation is used to implement 
Algorithm 2. 

7. UPDATES FOR HYPERPARAMETERS 
For many problems, it is necessary to extend the model to incorporate uncertainty 

regarding the value of Q or regarding the values of other hyperparameters that determine 
F and Go. These hyperparameters can be included in the Markov ch in  simulation, as 
is briefly discussed here. 
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The conditional distribution of QI given the other parameters depends only on the 
number of distinct G. It can be updated by some Metropolis-Hastings method, or by 
methods discussed by Escobar and West (1995). Alternatively, one can eliminate QI from 
the model by integrating over it. As noted by MacEachern (1998), the moderate number 
of one-dimensional numerical integrations required for this can be done once, before the 
Markov chain simulation. 

If F depends on hyperparameters y, the conditional density for y given the current 
& will be proportional to its prior density times the likelihood, nr=l F(yi, &, y). If Go 
depends on hyperparameters 71, the conditional density for 71 given the current ci and 
4c will be proportional to its prior density times nc Go(&, q), where the product is 
over values of c that occur in {cl, . .  . , G}. Note that each such c occurs only once 
in this product, even if it is associated with more than one observation. The difficulty 
of performing Gibbs sampling or other updates for y and 71 will depend on the detailed 
forms of these conditional distributions, but no issues special to Dirichlet process mixture 
models are involved. 

One subtlety does arise when algorithms employing auxiliary 4 parameters are used. 
If 4 values not associated with any observation are retained in the state, the conditional 
distribution for 71 given the rest of the state will include factors of Go(q5,~) for these 
4 as well as for the 4 values associated with observations. Since this will tend to slow 
convergence, it is desirable to discard all unused 4 values, regenerating them from Go 
as needed, as is done for the algorithms in this article. 

8. A DEMONSTRATION 
I tested the performance of Algorithms 4 through 8 on the following data (y1 , . . . , y9): 

-1.48, -1.40, -1.16, -1.08, -1.02, +0.14, +0.51, +0.53, +0.78 

A Dirichlet process mixture model was used with the component distributions having 
the form F(0)  = N(B,0.12), the prior being Go = N(0 ,  l ) ,  and the Dirichlet process 
concentration parameter being a = 1. Although Go is in fact conjugate to F ,  the al- 
gorithms for non-conjugate priors were used. However, this conjugacy was exploited 
in Algorithms 4, 5 ,  7, and 8 in order to implement the Gibbs sampling step where a 
new value for q ! ~ ~  is drawn from its posterior distribution given the data associated with 
component c. If the prior used were not conjugate, this Gibbs sampling update might be 
more difficult, or might have to be replaced by a Metropolis update, or by some other 
update leaving the conditional distribution invariant. 

A state from close to the posterior distribution was found by applying 100 iterations 
of Algorithm 5 with R = 5.  This state was then used to initialize the Markov chain for 
each of the algorithms, which were all run for 20,000 subsequent iterations (one iteration 
being one application of the operations in the descriptions given earlier). 

The performance of each algorithm was judged by the computation time per iteration 
and by the “autocorrelation time” for two quantities: k, the number of distinct ci, and 
81, the parameter associated with y1. The autocorrelation time for a quantity, defined as 
one plus twice the sum of the autocorrelations at lags one and up, is the factor by which 
the sample size is effectively reduced when estimating the expectation of that quantity, 
as compared to an estimate based on points drawn independently from the posterior 
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Table 1. Performance of the Algorithms Tested 

Time per iteration Autocorrelation Autocorrelation 
in microseconds time. for k time for 8, 

Alg. 4 (“no gaps”) 7.6 13.7 8.5 
Alg. 5 (Metropolis-Hastings, R = 4) 8.6 8.1 10.2 

Alg. 7 (mod M-H & partial Gibbs) 8.0 6.9 5.3 

Alg. 8 (auxiliary Gibbs, m = 2) 8.8 3.7 4.7 
Alg. 8 (m = 30, approximates Alg. 2) 38.0 2.0 2.8 

Alg. 6 (M-H, R = 4, no C$ update) 8.3 19.4 64.1 

Alg. 8 (auxiliary Gibbs, m = 1) 7.9 5.2 5.6 

distribution (see Ripley 1987, sec. 6.3). It was estimated using autocorrelation estimates 
from the 20,000 iterations. 

The Metropolis-Hastings methods (Algorithms 5 and 6) were run with R, the num- 
ber of updates for each ci, set to 4. This makes the computation time per iteration 
approximately equal to that for the other methods tested. Gibbs sampling with auxiliary 
parameters (Algorithm 8) was tested with m = 1 and m = 2. It was also run with 
m = 30, even though this is clearly too large, because with a large value of m, this 
algorithm approximates the behavior of Algorithm 2 (apart, of course, from computa- 
tion time). This lets us see how much the autocorrelation times for the algorithms are 
increased over what is possible when the prior is conjugate. 

The results are shown’in Table 1. They confirm that Algorithm 8 with m = 1 is 
superior to the “no gaps” method. Setting m = 2 decreases autocorrelation times further, 
more than offsetting the slight increase in computation time per iteration. The simple 
Metropolis-Hastings method (Algorithm 5) performs about as well as the “no gaps” 
method. The combination of Metropolis-Hastings and partial Gibbs sampling of Algo- 
rithm 7 performs about as well as Algorithm 8 with m = l. As expected, performance 
is much worse when updates for the q ! ~ ~  are omitted, as in Algorithm 6. 

The results for Algorithm 8 with m = 30 show that there is a cost to using algorithms 
that do not rely on the prior being conjugate, but this cost is small enough to be tolerable 
when a non-conjugate prior is a more realistic expression of prior beliefs. Note that if 
Algorithm 2 were implemented for this model using analytic integration, the time per 
iteration would be roughly the same as for Algorithm 8 with a small value of m (ie, 
about nine microseconds), while the autocorrelation times would be about the same as 
those shown for Algorithm 8 with m = 30. 

Although Algorithm 8 with m = 1 can be seen to essentially dominate the “no gaps” 
method (Algorithm 4), due to its greater probability of changes involving singletons, the 
varying characteristics of Algorithms 5, 7, and 8, with various settings of R and m, are 
such that each algorithm can be expected to outperform the others on at least some data 
sets. The relative performance of the methods may also be affected by other aspects of 
the model, such as whether updates are also done for hyperparameters. The methods 
tested here are implemented in my software for flexible Bayesian modeling (the above 
results were obtained using the version of 1998-09-01). This software is available from 
my Web page (http://www.cs.utoronto.ca/Nradford/), and can be used to experiment with 
these algorithms in conjunction with various models and datasets. 
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