The Inverse Regression Topic Model (Supplement)

This supplement includes brief elaborations on the main
paper that may be of interest to some readers. In Section 1,
we explain the minorization procedure underlying MAP in-
ference. In Section 2, we lay out the details of our stochas-
tic subgradient approximation procedure for online MAP
inference. In Section 3, we lay out a useful interpretation
of MAP prediction. In Section 4, we summarize the results
of experiments with the two other prediction methods for
the IRTM (MAP and sufficient reduction based) mentioned
in the main paper. In Section 5, we discuss exploration of
topic variation via the topic families Sy (y) themselves and
explain why we found it inadequate.

1. Minorization Scheme

Our goal in minorization is to maximize a lower bound on
the objective £ of equation (2). This maximization is done
separately for the topics 3 and ®, and distinct lower bounds
are produced for each. For concreteness, we focus on ®;
the procedure for 3 is entirely analogous. As in the main
paper, we assume real-valued metadata y; € R. The gen-
eral case is a straightforward extension.

In coordinate-wise minorization, the lower bounds, valid
in a neighborhood of the current estimate &) come from
second-order Taylor expansion; they take the form
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is a lower bound on the second derivative of ¢ with respect
to @, valid for |®,, — ®L| < 6,. Since Q, (DY) =
L(B, ®©)), it is easy to see that in fact Q,, < L for |®,, —
CIDSB )| < dy, as a function of ®,, with all other parameters
held fixed.

At the end of this section, we explain how to compute H,,
explicitly using techniques from Genkin et al. (2007).

This means that, if |9/ — ¢$)| < 6, has Q(®)
Q(fbg?)), and if ® is obtained from ®(© by setting ®,, =
! , then

LB, ) > Qu(®),) > Qu(e) = £(8, ),

so any update to @, that stays within the d,,-neighborhood

v

of <I>£u) and increases Qw also increases L. Taking advan-
tage of this, we use coordinate ascent updates of the form

O,  argmax gca,, Qu(®), where
Ay = [“0u, 6], i@ =0
Ap ={¢ €R: ¢ — )| < b,, sgn(e)sgn(@)) > 0},
otherwise.

In other words, each update either maximizes Qw over the
whole &, neighborhood of & (if ®{ = 0 or |B| >
dw), Or maximizes the lower bound over a truncated ver-
sion of the neighborhood cut off so as to remain on the
same side of 0 as <I>S,? ). An analogous update applies to
log Bk, albeit without truncation. We point out that, in
fact, truncation does not appear strictly necessary for this
algorithm to succeed, though it does seem natural in light
of the choice of the sparsity-inducing Laplace prior: the
mechanism that produces sparsity is precisely the difficulty
of escaping from the critical point (of non-differentiability)
at 0.

A naive implementation of this algorithm would update the
®,, and By, sequentially. This is impractical, however, as
it requires recomputation of the log-normalizer Cy,(y4) for
every topic-document pair after each update, with the result
that updating the weights costs Q(DW K) time.

We therefore adopt a lazy updating strategy that computes
all the new ® values before updating them, then computes
all the new 3 values before updating them. Essentially,
this approach amounts to a non-coordinate-wise minoriza-
tion algorithm. Indeed, if H — V24/(3, ®) is positive
semidefinite on Hw, m Aw
(B, ®) > £(8,9) + vi(B, 2O (0 — &)
1
+5(@ - dNTH(® - o)

=: Q(ﬁ,@) (I)GHAUP (2)



The Inverse Regression Topic Model (Supplement)

This implies £ > Q:
borhood.

= @ — \||®||; on the product neigh-

Unfortunately, optimizing this function directly is infeasi-
ble, so we replace H by a diagonal matrix D = diag(H,,),
where H,, is given by (3). This results in updates of the
form prescribed above but whose independence of each
other allows for lazy updating.! Mathematically, the ap-
proximation makes sense in this context because H, ,, =
Zd Zk 0 (ygﬁkv(yd)ﬁkw(yd)) if v 7é w, while Hw7w =
=3 >k Q (Y3 Bkw(Wa) (1 — Brw(ya))). This means that,
in the typical case when S, (y4) < 1 for all k, w, and d,
the off-diagonal entries of the lower bound on the Hessian
are much smaller than the diagonal terms. Empirically, we
find that the optimization scheme resulting from this ap-
proximation runs quickly and performs parameter estima-
tion effectively.

‘We now give an explicit value for H,, using estimates simi-
lar to those of Genkin et al. (2007) and Taddy (2013). Begin
by noting

ov
= <nd Vawk — an’muk 5kw(yd)> “Yd
and
03¢ v 2
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and letting
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In the general case of y4 € R, we would replace by H by
a block-diagonal matrix D instead, where each block would have
dimensions M x M.

We can compute these suprema exactly:
> vt Bro exp(@Y” - ya)
Brew exp(@%) - ya + Ay, - ya)
4 Prw exp(®4) - ya + Ay - ya)
> vt Bro exp(®5” - ya)
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where 3(yq) is formed at ®,, = CILS,?) + A,
first expression in this chain has the form
1
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its minimum, hence the

of Brw(Ya)(l — Brw(ya)),

or, equivalently, when Sy, exp(Py - Ya) =
> vt Bro exp(q)go) -yq). This may not always be
attainable with |A®,,| < 4, so we end up with the bound

1

. Since the

where a = and x = exp(AP,ya),
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Finally, we compute H,, exactly as

H, = Zyd ZZ 2 Vdok 4)

Fauwk

2. Stochastic Subgradient Descent Scheme

We now describe our stochastic subgradient descent
(SSGD) scheme for online MAP inference. As noted in
the paper, this method is for fitting the distortion matrix ®,
with the topics 3 held fixed.

In this setting, we wish to minimize the negative ELBO,
given up to constants independent of @, by

M= Z [ Zzng%mk logﬂkw
d k w
- Z ng(bw *Yd

+ Z <Z n:f’ydwk) 1Og Ck (yd)
k w
= 1) ]S log B + A1,

k w
Switching to M allows us to frame our algorithm in the

standard terms of convex optimization—in particular, to
work with the subdifferential O3 M (®) rather than the ’su-
perdifferential’ needed for maximization.

Our stochastic approximation is based on a two-tier sam-
pling approach. First, we sample a minibatch B C [D] of
documents and form the approximate objective

Z [ > Z ng Ydwk 108 Bew

deB
+ anfbw *Yd
w

-3 (Z n&"%mk) log C.(ya)
k w
—(n=1)>_ ) 10 Brw + A2 (5)
kow

We then choose a subgradient g € dpM and replace it
in turn by a sparse approximation §. To compute g, we
first sample a minibatch B’ C [W] of terms and define
Vieen = {w € [W]: 3 ,cpny > 0}. The sparse approxi-
mate subgradient is then given by

Guwm if w € Vieen
Jum = % “Gum ifwe BN [W] \ Vieen  (6)
0 otherwise.
Since p(w € B | w € Vipseen) = %, we see
that Ep [§g] = g¢. Further, any mapping g: B —

g(B) € doMp necessarily satisfies Eg [g] € 0p M5, s0
Ep p' [g] € OsMp, as required for SSGD.

As usual in stochastic optimization, we maintain an esti-
mate ®(*) and update it iteratively, letting t — oco. An
individual update has three stages:

1. Sample a minibatch of documents B®*) C [D] of size
S and a minibatch of terms B (Y} C [W] of size S’.

2. Choose a subgradient ¢() € 9p M (") and com-
pute the stochastic approximation §*).

3. Update (D = o) —
current step size.

Mg where ¢ is the

The first stage is carried out by repeatedly sampling with-
out replacement; the second and third, on the other hand,
require further elucidation. In the second stage, for each
w € [W]and 1 < m < M, we set

D w
gg,)main = § l Z NqgYd

deB®)
- Z Z (Z nZ’dek> ﬁkw(yd)yd]
d k v
(7N
and
03 main + A -sen(@)) if o)) 0,
g(t) _ gi(j,) main A o.w. if QS,) main > /\7
b ’L(lf,) main +A o.w. if gg,) main < _>\7
0 otherwise.

In words, each component of the subgradient is either just
the derivative in the appropriate direction (®,, # 0), cho-

sen to point in the same direction as the main term gg ) main

(®, = 0 and |g(t)

v, mainl > ), or set to zero if 0 is a sub-

gradient in dimension w (®,, = 0 and | gw mam\ < \).

After computing ¢, we use (6) to compute §(*). Note
that an actual implementation should compute g,, only
for w € B’. We also point out that, while this scheme
does not itself have a provable rate of convergence, a sim-
ple modification using projections to a ball of radius R
after each step and outputting averaged iterates ) =
Z‘%E(” . Zi:l e(M®(7) can easily be proven to converge

(Polyak, 1987; Shor, 1998).
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Figure 1. Top words in Bx(y) for y € {—4, 0, 5} in the topic family corresponding to medicine and health care. We obtained these
results using the full press release corpus. Color and horizontal position indicates ¢ value (red and left are more negative).
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Figure 2. Top words in B (y) fory € {—4, 0, 5} in the topic family corresponding to immigration. We obtained these results using the
subsampled press release corpus. Color and horizontal position indicates ® value (red and left are more negative).

3. MAP Prediction

We show that log C.(y) is convex in y.

Proposition 3.1. In the usual notation, we have

0log Ci(y)
—ay Ew s (y) [Pw]
10800
log C(y
—————= = Ewp,)[®%] — Bw~p, ) [@w]*.

oy?

In particular, log Cy,(y) is convex in y.

Proof. We show that 5 (y) is an exponential family with
natural parameter y € R. Indeed, we see that
p(w | Br, ©, ¥) = Brw(y) = Brwexp (y - Pu
Thus, if ¢{(w) = &, € R, h(w) = Brw, and aly) =
log C(y).
p(w | B, @, y) = exp (y - t(w) — a(y)) h(w),

proving that p(w | B, ®, y) for fixed Sy and P is an ex-
ponential family with parameter y € R.

Now, by the usual exponential family identity (see, e.g.,
Lehmann & Casella (1998)),

ag(yy) =Ew s,y [L(W)]

—log Cr(y)) -

and82 W)

aly

g2~ Bwes) [t(W)?] = Bwng, ) 1OV
Since a(y) = log Ci(y) and t(w) = P, the equalities

follow. Now, Ey g,y [2%] = Ewep ) [H(W)] by
Jensen’s inequality, so convexity follows. O

Since Lpreq iS a negative linear combination of terms
log Cy(y) plus the strictly concave penalty — 555 (y — )2,
Proposition 3.1 shows that L4 is strictly concave in y.

It likewise allows a simple probabilistic interpretation of
MAP prediction in the IRTM. Indeed, if 5P denotes
a document’s empirical word distribution, the proposition
immediately implies

oL __1
oy o2

+ N - <Ewwﬁemp (D]

—Z( ul ”wk)EwNﬂm)m)

After~ letting 6}, w and Bmed(y)
> 0kBr(y), we then find that the MAP estimate

(y — )
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Table 1. Though not as effective as our primary method, direct
MAP estimation often still outperforms MNIR and the super-
vised topic models, whereas sufficient reduction based prediction
is considerably less competitive. The Primary column lists the er-
ror when using the IRTM prediction method from the main paper.

Test error (L1) Method
MAP  Suff. Red. Primary
Amazon 0.989 1.03 0.996
Press Releases (Subsampled) | 0.777 0.756 0.703
Press Releases (Top Members) | 0.437 0.524 0.420
Press Releases (All) 0.924 0.901 0.826
Yelp (Subset) 0.751 0.766 0.741
Yelp (All) 0.705 0.734 0.704

Imap(0,7) given 6 and + satisfies
Eyy < gmod (gaiar (0,9)) [ PW] = Ewgeme [Dry]
1
No?
®)
Note that, at optimality, 304 ~ gmed. — >k Ok Br(y),
since 6 & 0; further, if N is large, the penalty term is dom-
inated by the empirical distortion vector term. This means
that, intuitively, the model picks gy p to bring its expected
distortion vector Eyy . gmod (5,,,»)[Pw] as close to the em-
pirical distortion vector as possible, up to adjustments due
to the prior and the variational approximation.

4. Alternate IRTM Prediction Methods

Section 2.3 of the main paper discussed two methods of
prediction with the IRTM that fare worse than our cho-
sen adjusted MAP strategy: first, prediction via a regres-
sion onto the sufficient reduction uggrn = % . Zw n*®,,,
as for MNIR in Taddy (2013); second, direct MAP pre-
diction. For completeness, we show the results of these
methods on the test sets. Though not as effective as our
primary method, direct MAP estimation often still outper-
forms MNIR and the supervised topic models, whereas suf-
ficient reduction based prediction is considerably less com-
petitive. Table 1 summarizes the results.

S. Exploration through Topic Families

Rather than using the scoring function of the main paper,
we can attempt to explore corpora by examining the most
probable words in i (y) for varying y values. Figure 1
illustrates this approach. There, the topic corresponds to
medicine and health care, and the varying high- probabil-
ity words already suggest interesting biases in Republican
and Democratic discourse on those subjects. We might
guess, for example, that Democrats discuss breast cancer
and Alzheimer’s research much more than Republicans do
and that, obversely, Republicans prioritize childrens’ health

(Gmap(0,7) — ).

care in their discourse, at least in the large press release
corpus. In this case, both of these guesses turn out to be
correct.

Unfortunately, examination of the top topic words often
does not yield such illuminating patterns; Figure 2 shows
an example of how things can go wrong. The problem is
twofold. First, when y is small (—1, 1), the most likely
words in the distorted topic strongly resemble those in the
base topic. Second, as y becomes larger (—4, 4), the words
at the top tend to become those with high (positive or neg-
ative) weight, and these may have no relation to the spe-
cific topic. Words both strongly associated with the topic
and highly variable in prevalence depending on party affil-
iation appear interleaved with others that are simply likely
in the topic or prone to sentiment-dependent variability but
not strongly associated with the topic. Moreover, the most
variable words need not be the most common, so that deep
examination of the topic is necessary to unearth them. It is
worth noting that these problems appear most pronounced
on the smaller corpora, suggesting that this approach to
topic exploration might be much more effective on big data
sets than on small ones.
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