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Abstract

We develop several predictive models link-

ing legislative sentiment to legislative text.

Our models, which draw on ideas from ideal

point estimation and topic models, predict

voting patterns based on the contents of bills

and infer the political leanings of legisla-

tors. With supervised topics, we provide

an exploratory window into how the lan-

guage of the law is correlated with political

support. We also derive approximate pos-

terior inference algorithms based on varia-

tional methods. Across 12 years of legisla-

tive data, we predict specific voting patterns

with high accuracy.

1. Introduction

Quantitative political scientists analyze patterns in

legislative data to better understand how governments

behave. One focus of quantitative political scientists

is roll call data, historical records of legislators’ votes

on a set of issues. Roll call data can reveal informa-

tion about the members of a government; for example,

we can analyze roll call data from the United States

Congress or the British Parliament to uncover the po-

litical leanings of their members (Clinton et al., 2004).

Roll call data is essential for understanding govern-

ment because it represents atomic and concrete ac-

tions of its members. But this data is only one part

of a richer record which includes bill texts, speeches,

press releases, public plans, and other items. In this

work, we extend methods for roll call data to include
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other information. Specifically, we integrate bill texts

into contemporary models of roll call data. This gives

a new way of exploring and analyzing the government

record and, further, gives a useful predictor of gov-

ernment. While traditional methods can only fill in

missing votes, we develop tools that can predict how

legislators will vote on a new bill.

We will extend the ideal point model. The ideal point

model is a mainstay in quantitative political science

for analyzing roll call data (Clinton et al., 2004). It

posits a latent “political space” along the real line and

places each legislator and bill in that space. The legis-

lator’s position is called an ideal point, because a bill

at this position maximizes her utility. The model as-

sumes that whether a legislator votes yea on a bill de-

pends on a function of the ideal point and the bill’s lo-

cation.1 With these assumptions, we can use observed

roll call data to infer ideal points and bills’ locations.

Figure 1 illustrates ideal points from the 111th Senate.

Political scientists examine ideal points to understand

legislators’ preferences. But as predictive models,

ideal point models suffer from a fundamental limi-

tation: they are models of the votes alone. Conse-

quently, they can be used to fill in missing votes but

cannot predict how legislators will vote on future leg-

islation. Further, they provide no insight into what

drives voting patterns—the political activity of the

legislature is summarized with two columns of real

numbers.

To these ends, we describe several models that con-

nect the voting patterns of legislators to the original

1These assumptions stem from a particular utility model, and
this methodology is an instance of the item-response model from
psychometrics and educational testing (Lord, 1980). Each bill
also has another variable, the difficulty, which is described below
but omitted in the introduction.
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inferred from text. The ideal point variance is σ2
u; the

variance for both discrimination and difficulty is σ2
d .

We now develop models relating the text of a bill to

the variables ad and bd . Associating text to bill vari-

ables has a predictive advantage because new bills can

be situated in the space of ideal points. It also has an

interpretive advantage because language becomes as-

sociated with political sentiment.

Modeling ideal points with text regression. We de-

veloped two predictive ideal-point models which use

text regression (Kogan et al., 2009). For these, we first

fit an ideal-point model to a training set of bills and all

legislators using the variational algorithm described in

Section 2. We then fit ridge regression3 (LARS) and

Lasso 4 (L2) to these bills’ parameters ad ,bd using a

vector of their n-gram5 counts wwwd as covariates.

Modeling ideal points with supervised topics. The

text regression models link individual words or

phrases to bill sentiment. In this section, we connect

textual themes with bill sentiment. We refer to this

model as an ideal point topic model (IPTM).

To model themes, we use the assumptions of su-

pervised Latent Dirichlet Allocation (sLDA) (Blei &

McAuliffe, 2008). As in Latent Dirichlet Allocation

(Blei et al., 2003), each bill is represented as a mix-

ture of latent topics θd , where each of K topics βk

is a multinomial probability distribution over terms.

For the nth term of bill d, we draw topic zdn from

Mult(θd), and then draw word wdn from the topic βzn
.

Like sLDA, the ideal point topic model further as-

sumes each bill d is attached to a response variable.

In this case, the response variable is the 2-component

vector of bill variables (ad ,bd). The distribution of

the response is a linear model whose covariates are

the empirical distribution of the topics zzzd for the bill,

ad ∼ N (ηηη⊤
a z̄d ,σ

2
d)

bd ∼ N (ηηη⊤
b z̄d ,σ

2
d),

where z̄d = (1/N)∑n zdn. This setting is more com-

plex than the original sLDA model: the response vari-

ables are hidden—they are not observed directly, but

3Implemented in the “penalized” package for R
4implemented with the “lars” package for R
5See Section 5 for details.

are used downstream in the voting model.

Finally, we add a Gaussian prior to ηηη. The full model

is represented as a graphical model in Figure 2.

The only observed variables in the model are the bill

texts and votes. Our goal in fitting this model is to

uncover the posterior

p(Ad ,Bd ,Xu,ηηη,β,z,θ|WWW ,VVV ), (2)

which can then be used in exploratory or predictive

tasks. Conditioned on these variables, our analysis

proceeds with the posterior distribution of the ideal

points, discriminations and difficuties, topics, and co-

efficients. Computing the posterior exactly is in-

tractable, so we use variational inference to approxi-

mate it. We describe this in further detail in Section 4.

This posterior allows us to explore the connection be-

tween language and political tone. For example, the

coefficients ηηη are a direct connection between bills’

topics and the political tone of these bills. Examples

of this are provided in Section 5. The topics β, learned

from both text and votes, provide a lexical window

into legislative issues. The parameters ηηη,β together

also allow us to predict votes using the text of new

bills; Section 4 provides detail about this.

Anchoring legislators. Note that a fit of the ideal

point model has multiple modes. In one mode,

Democrats tend to have positive ideal points, while

Republicans are negative; in another, Republicans are

positive, while Democrats are negative. To keep fits of

the different models identifiable, several researchers

have applied nonzero priors over specific legislators

to encourage the model to prefer one of these modes

(Jackman, 2001; Clinton et al., 2004; Martin & Quinn,

2002).

In the study in Section 5, we anchor four legislators

with strong priors (σd = 10−3) at ideal points ±4. We

select two congresspersons from each chamber and

two from each party: Kennedy (S-Dem) and Wax-

man (H-Dem) are centered at +4 and Enzi (S-Rep)

and Donald Young (H-Rep) are centered at -4.6 We

selected these Senators for consistency with previous

work (Clinton et al., 2004). We selected the Repre-

sentatives because they have held long offices in the

6This value was selected to be large yet not completely out of
the ordinary.
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House. Without these sharp priors, the model still

discovers ideal points which cleanly separate political

parties but may converge on “opposite” modes in dif-

ferent fits. With the priors, we obtain consistent ideal

points at the expense of predictive performance.

3. Related work

Ideal point models, a form of spatial voting model,

have roots as far back as the 1920s (Enelow &

Hinich, 1984). They are fit by both frequentist (Poole

& Rosenthal, 1985; Heckman & Snyder, 1996) and

Bayesian methods (Jackman, 2001; Martin & Quinn,

2002; Clinton et al., 2004), have been embedded in

a time series (Martin & Quinn, 2002; Wang et al.,

2010), and have been developed for higher dimen-

sional political spaces (Jackman, 2001; Heckman &

Snyder, 1996).

Topic models have been applied to Senate speeches,

such as to discern “the substantive structure of the

rhetorical [legislative] agenda” (Quinn et al., 2006).

They have also been used with legislative speeches to

gauge legislators’ sentiment toward legislation using

roll-calls (Thomas et al., 2006). Modeling sentiment

in text is more generally discussed in the field of sen-

timent analysis; see Pang and Lee (2008) for a review.

The ideal point topic model relates closely to user-

recommendation models based on matrix factoriza-

tion (Salakhutdinov & Mnih, 2008). Matrix factoriza-

tion methods for recommendation are akin to large-

scale spatial behavior models (though usually with no

“difficulty” term, which acts as an intercept). Many

of these matrix factorization models for user recom-

mendation do not provide a method of predicting one

user’s item preference without other users’ prefer-

ences on the same item.

Two works stand out as closely related to this work.

One of these is fLDA, which models binary or con-

tinuous ratings with user affinity to topics (Agarwal &

Chen, 2010). Another is Wang et al. (2010), who

describe a similar application by combinating topic

models and matrix completion. Their work also draws

on ideal point models, models transitions over time,

and is designed to learn the dimensionality of the la-

tent factors. Under the generative assumptions of their

model, bills and matrix cells (e.g., votes) are condi-

tioned on a shared mixture; in our model, votes are

conditioned on words’ topics.

This is the first work to study predictive accuracy of

votes on new bills, where we use a spatial voting

model as a “cold” prediction mechanism.

4. Posterior Inference

Computing the posterior in Equation 2 is intractable.

Posterior inference for traditional Bayesian ideal point

models is traditionally implemented with MCMC

methods such as Gibbs sampling (Johnson & Albert,

1999; Jackman, 2001; Martin & Quinn, 2002; Clinton

et al., 2004). We introduce an alternative algorithm –

which can be applied to both the standard ideal point

model and the ideal point topic model – which uses

variational methods (Jordan et al., 1999). Variational

methods provide a deterministic alternative to Gibbs

sampling that is amenable to optimization in large-

scale datasets. They have been successfully applied

to many kinds of topic models, where corpus size and

vocabulary dimension are large. Furthermore, in the

ideal point topic model, fast Gibbs samplers are un-

available because the conditionals needed are not an-

alytically computable. An MCMC strategy would re-

quire a more complicated sampling scheme.

Variational methods posit a family of distributions

over the latent variables. That family is indexed by

free parameters, called variational parameters, which

are fit to minimize the KL divergence between the

variational family and the true posterior. The family is

chosen to be simpler than the posterior, which allows

for efficient optimization. Though simpler, the fitted

variational distributions are found to be good proxies

for the true posterior (Jordan et al., 1999).

We begin by specifying a fully-factorized variational

distribution for the model posterior. First, word as-

signments zdn and topic proportions are governed by

multinomial parameters φd and Dirichlet parameters

γd , as in LDA (Blei et al., 2003). The variational dis-

tribution for legislators’ ideal points Xu; bills’ param-

eters Ad ,Bd ; and coefficients ηηη are Gaussian with re-

spective means τu, κd , η̂ and variances σ2
τ , σ2

κ, σ2
η.
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The variational distribution is

q(τ,στ,κ,σκ,φ,θ) = (3)

∏
u

q(Xu|τu,σ
2
τ)×∏

D

q(Ad ,Bd |κd ,σ
2
κ)

×∏
D

q(θd |γd)∏
Nd

p(zn|φn)×q(ηηη|η̂,ση̂).

Inference proceeds by minimizing the KL between

Equation 3 and the true posterior 2, which is equiv-

alent to maximizing a lower bound on the marginal

probability of the observations. We use coordinate

and gradient ascent to maximize this bound. The sup-

plementary materials give further details of the varia-

tional inference algorithm.

Prediction After they are fit to legislators’ votes and

bill text, the variational parameters τ, η̂, and β can

be used to estimate the vote of each legislator on a

new bill d using its text. To predict whether legisla-

tor u votes yea on d, the per-word parameters φn of

d are estimated using the topics β. Once φ has been

estimated, the probability of a yea vote is given by

p(vud = yea) = σ(τu(φ̄dη̂b) + φ̄dη̂a)
7, where φ̄d is

1
Nd

∑Nd
φn. In practice, we fit η̂ with no regulariza-

tion after the model has converged. This gives slightly

better results which are more robust to parameter se-

lection.

5. Analyzing the U.S. House and Senate

We studied the performance of these models on 12

years of data from the United States House of Rep-

resentatives and Senate. We first demonstrate how the

ideal point topic model can be used to explore legisla-

tive data; then we evaluate the models’ generalization

performance in predicting votes from bill texts.

We collected roll-coll votes for Congressional ses-

sions 106 through 111 (January 1997 to January

2011). We used votes about bills and resolutions, and

only votes regarding the legislation as a whole (as op-

posed to, e.g., amendments of the legislation). We

downloaded the data from Govtrack, an independent

Website which provides comprehensive legislative in-

formation to the public. Our collection contains 4,447

bills, 1,269 unique legislators, and 1,837,033 yea or

7The estimate Eq [σ(Xu(z̄dηb)+ z̄dηa)] can be more theoreti-
cally justified, but results from the two estimates are (in practice)
identical.
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Figure 3. Predictive log likelihood on heldout votes. Models are

shown by color for different regularizations (x axis), for Con-

gresses 106 to 111. For LARS and L2, the regularization is the

complexity parameter; for the ITPM, the regularization is the the

number of topics. The yea baseline is the horizontal black line.

LARS is below the fold for 106-107. The ideal point topic model

performs with less variance across its regularization parameter

(the number of topics).

nay roll-call votes.

To select the vocabulary, we lemmatized the bills with

Treetagger (Schmid, 1994). Then we retained a vo-

cabulary of statistically significant n-grams (1 ≤ n ≤
5) using likelihood ratios. These n-grams were treated

as terms.8 We removed n-grams occurring in fewer

than 0.2% of all bills and more than 15% of bills. We

also removed an n-gram if it accounted for more than

0.2% of all tokens or fewer than than 0.001% of all

tokens. After this process, our vocabulary contained

4,743 unique n-grams.

We used the anchor legislators described in Section 2.

We ran variational inference until the change in in-

crease in the objective function was less than 0.01%.

5.1. Exploring topics and bills

In this section, we examine a fit of the ideal point topic

model for all the bills and votes of a session. This

demonstrates the model’s use as an exploratory tool

of political data. For this analysis, we used dispersion

8When one n-gram subsumes another, we chose to observe the
longer of the two
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5.3. Predicting votes from text

Prediction on heldout bills. We measured predictive

accuracy and log likelihood for these models under a

variety of regularization settings (LARS is parameter-

ized by 0 < f ≤ 1, L2 is parameterized by Λ ≥ 0, and

IPTM is parameterized by topics K).

We also devised two baselines for comparison with

the three models described so far. The first of these

provides a lower bound: assume all votes are yea.

Because the majority (85%) of votes in our corpus

were yea votes, this presents a more reasonable over-

all baseline than random guessing (at 50%). We call

this model the yea model. The second baseline fit a

logistic regression trained for members of each party

(with a separate one for mixed or independent legisla-

tors), with terms as covariates. This baseline (imple-

mented with the R glm library) used too much mem-

ory to use more than 800 terms and therefore led to

results worse than the yea baseline.

For each 2-year period (called a Congress), the bills

were partitioned into 6 folds. For each model, we it-

eratively (1) remove a fold, (2) fit the model to the

remaining folds (by Congress), and (3) form predic-

tions on the bills in the removed fold. Across folds,

we thus obtain a complete data set of held-out votes.

Across all sessions, the yea baseline predicts votes

correctly 85% of the time. The ideal point topic model

is better, correctly predicting 89% of votes with 64

topics (this means that 62,000 more votes are cor-

rectly predicted). Overall performance for L2was best

for Λ = 1000 (90%), and LARS was best at f = 0.01

(82%). While the ideal point topic model had lower

accuracy than L2, its log-likelihood was nearly the

same. These results are summarized in Figure 4, and

further details are in the supplementary materials.

Sequential prediction. Our final study examined

the performance of these models on predicting fu-

ture votes from past votes. To do this, we fit a

64-topic IPTM and L2 predictive models on the first

3,6,9, . . . ,21 months of a Congress.9 We then tested

these each of these fits on the following three months

of unseen votes. The ideal-point topic model correctly

predicted 87.0% of votes, and L2 correctly predicted

9A bug prevented LARS from completing in most runs of this
setting

88.1% of votes; their log-likelihood was identical.

With these models, one could predict 31,000 to 55,000

votes above the baseline, based only on the text of the

bills. The simpler of the two models, L2, performs

better at prediction.

6. Future directions and summary

The text-regression models and the ideal point topic

model have incorporated bill texts into the simplest

kind of ideal point model of roll call data, although

these have only scratched the surface of this field. We

suggest several avenues for further work.

Here we have studied multiple topics with a one-

dimensional political space. As noted in Section 5,

this is a predictive bottleneck.10 Solutions include in-

creasing the dimension of the legislator and bill vari-

ables, a mixture model as in Wang et al. (2010), or

modeling individual users’ affinities to topics, as in

Agarwal & Chen (2010).

One of the central advantages of generative proba-

bilistic models is their modularity. Another avenue

of future work is to incorporate other elements of the

legislative process, such as speech transcripts (Quinn

et al., 2006; Thomas et al., 2006) and auxiliary fea-

tures such as bill sponsor, into this model’s supervi-

sion, to improve both the predictive power and ex-

ploratory capabilities of the ideal point topic model.

We have developed several models associating the text

of legislation to legislators’ voting patterns. These

models provide a way of exploring large collections of

legislative data and predicting the votes of new bills.

Though we were motivated by (and focused on) polit-

ical science data, we note that these models are among

several (as, e.g., (Agarwal & Chen, 2010)) that can be

applied in a variety of collaborative filtering settings.

They provide a way to model a collection of users and

their decisions about collections of textual items.
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1. Supplementary materials

A Variational inference

Inference for the ideal point topic model requires vari-

ational updates (see (Jordan et al., 1999) for more de-

tails about variational inference). Minimizing the KL

between the variational distribution and the true pos-

terior is equivalent to maximizing the following lower

bound on the model evidence (called the “evidence

lower bound”, or ELBO):

log p(WWW ,VVV ) =
Z

p(WWW ,VVV |β,ηηη, I,X ,z,θ)p(β,ηηη, I,X ,z,θ)

≥ Eq

[

∑
D

∑
N

log p(wn|zn,β)+ log p(zn|θd)

]

+Eq

[

∑
D

log p(Ad ,Bd |zd,1:n,ηηη)+ log p(ηηη)

]

+Eq

[

∑
U

log p(xu)+∑
D

log p(vud |xu,Ad ,Bd)

]

+Eq

[

∑
D

log p(θd |α)

]

+H(q)

=: L(η̂,κ,τ,φ,γ), (1)

where the expectations are taken with respect to the

variational distribution q. This bound is optimized by

block coordinate ascent. We repeatedly optimize each

variational parameter until the relative increase in the

lower bound is below a specified threshold.

One important detail in this equation is that

Eq [log p(vud |xu,Ad ,Bd)] is not available in closed

form under the variational distribution. We approx-

imate the expectation in Equation 1 by applying the

second-order multivariate Delta method (Bickel &

Doksum, 2007), also applied to the logit distribution

in (Chang & Blei, 2009; Braun & McAuliffe, 2010).

This Taylor approximation no longer guarantees that

our objective is a lower bound; however, (Braun &

McAuliffe, 2010) have found it to work better than

a first-order approximation (which does maintain the

lower bound).

We now turn to the coordinate updates.

Updates for ηηη The variational update for η̂ can

be found by collecting terms in the evidence lower

bound, taking the derivative with respect to η̂, setting

this to zero, and solving for η̂. Letting κκκdisc be a bill’s

discrimination parameters, we have the the exact up-

date for the vector η̂disc:

η̂disc←

(

Eq

[

Z̄T Z̄
]

+
σ2

d

σ2
η

)−1

Eq [Z̄]
T

κκκdisc.

The update for η̂diff, controlling a bill’s difficulty pa-

rameter κκκdiff, is analogous.

Updates for β, φ, and γ The updates for β and γ are

exactly as in LDA (Blei et al., 2003), and the update

for φ is exactly as in sLDA (Blei & McAuliffe, 2008);

we omit details here.

Updates for κd and τu We cannot solve for κ and τ

exactly, so they must be optimized via gradient ascent.

For bill d, the gradient with respect to κ is

∇κd,iL(κd,i) =
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where ρud = exp(τT
u κd−ad)

exp(τT
u κd−ad)+1

and 1v is an indicator de-

scribing whether vote v was a yea-vote.
1



To optimize this, we apply second-order gradient as-

cent to the sum ∑d
∂L

∂κd
, repeating the updates

κn
d = κn−1

d −
1000

1000+n0.6
H−1 (∇κd

L(κd))

until convergence. In implementation, we constructed

the Hessian H numerically by evaluating the above

gradient with coordinates perturbed by 10−5. For

the data we used, this was sufficiently fast; if a

bill has enough votes, an alternative implementation

might use more frequent updates and fewer iterations

through the votes.

The gradient for the user-ideal parameter τu is nearly

identical to that for κ:

∇τu,iL(τu,i) =
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Again, we update this via second-order gradient as-

cent.

Updates for σκ and σλ. Once per iteration, we up-

date the the variances σκ and σλ. As with η̂, these

updates are exact:

σ2
κ ←

ND

∑D,v∈V (d) τT
u τu(ρuvd−ρ2

uvd)n +ND/σ2
d

σ2
τ ←

NU

∑U,v∈V (u) κT
d κd(ρudv

−ρ2
udv

)n +NU/σ2
u

,

where above we have U users, D bills, and an N-

dimensional ideal-point model.

B Implementation details

We provided details of a variational implementation of

the ideal point topic model. Here we describe several

modifications to improve this algorithm.

Second order updates. Note that the second-order

updates for κ and τ may violate the convexity assump-

tion. To mitigate this, and to prevent the parameters

Model Regularization Accuracy Log Expected

Likelihood Correct

Probability

lars 0.001 0.819 -0.855 0.792

lars 0.01 0.822 -0.984 0.793

lars 0.03125 0.817 -1.091 0.792

lars 0.0625 0.807 -1.214 0.787

lars 0.125 0.799 -1.337 0.781

lars 0.25 0.786 -1.479 0.770

lars 0.5 0.770 -1.640 0.755

lars 1 0.735 -1.903 0.723

l2 0.01 0.815 -0.914 0.793

l2 0.1 0.832 -0.794 0.811

l2 1 0.850 -0.636 0.829

l2 10 0.876 -0.498 0.853

l2 100 0.891 -0.371 0.866

l2 1000 0.897 -0.302 0.868

l2 10000 0.873 -0.324 0.841

iptm 4 0.871 -0.370 0.849

iptm 8 0.869 -0.348 0.845

iptm 16 0.883 -0.321 0.858

iptm 32 0.883 -0.314 0.856

iptm 64 0.887 -0.306 0.858

iptm 128 0.873 -0.456 0.845

yea 0.853 -0.417 0.749

Figure 1. Prediction metrics for heldout prediction experiments.

from diverging for large σd or σu, we add a constant

to each element of the diagonal (Levenberg, 1944).

We add a sufficiently large constant to guarantee that

all 1×1 and 2×2 principal minors have positive de-

terminant (this is necessary but not sufficient to guar-

antee that H is positive definite). We have observed

that H only requires this adjustment for early model

iterations.

Identifiability. In the modeling section, we dis-

cussed using nonzero priors for certain legislators to

make the posterior identifiable. These priors may not

be sufficient to guarantee that the model finds specific

modes. To encourage the model to converge to the de-

sired optimum, we allow the first two iterations of this

model one extra dimension for the ideal point. We

believe this ”blessing of dimensionality” allows the

model to rotate ideal points toward the desired mode.

Annealing. We set the model parameters y for σ2
d to

1.0 before the first iteration and update it with y←
y0.9(σ2

d)
0.1 in a form of “variational annealing”. We

apply the same annealing to σu.

2. Experimental Results.

The experimental results for cross-fold validation are

presented in Figure 2. Top performers by various met-

rics are highlighted in bold.

We also display ideal points for all Senators (Figure 4)

and all legislators (Senators and House representa-

tives) (Figure 3) in the fit of the 111th Congress.




