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Abstract

Topic models, such as latent Dirichlet allocation (LDA), can be useful
tools for the statistical analysis of document collections and other dis-
crete data. The LDA model assumes that the words of each document
arise from a mixture oftopics, each of which is a distribution over the vo-
cabulary. A limitation of LDA is the inability to model topic correlation
even though, for example, a document about genetics is more likely to
also be about disease than x-ray astronomy. This limitation stems from
the use of the Dirichlet distribution to model the variability among the
topic proportions. In this paper we develop the correlated topic model
(CTM), where the topic proportions exhibit correlation via the logistic
normal distribution [1]. We derive a mean-field variational inference al-
gorithm for approximate posterior inference in this model, which is com-
plicated by the fact that the logistic normal is not conjugate to the multi-
nomial. The CTM gives a better fit than LDA on a collection of OCRed
articles from the journalScience. Furthermore, the CTM provides a nat-
ural way of visualizing and exploring this and other unstructured data
sets.

1 Introduction

The availability and use of unstructured historical collections of documents is rapidly grow-
ing. As one example, JSTOR (www.jstor.org ) is a not-for-profit organization that main-
tains a large online scholarly journal archive obtained by running an optical character recog-
nition engine over the original printed journals. JSTOR indexes the resulting text and pro-
vides online access to the scanned images of the original content through keyword search.
This provides an extremely useful service to the scholarly community, with the collection
comprising nearly three million published articles in a variety of fields.

The sheer size of this unstructured and noisy archive naturally suggests opportunities for
the use of statistical modeling. For instance, a scholar in a narrow subdiscipline, searching
for a particular research article, would certainly be interested to learn that the topic of
that article is highly correlated with another topic that the researcher may not have known
about, and that is not explicitly contained in the article. Alerted to the existence of this new
related topic, the researcher could browse the collection in a topic-guided manner to begin
to investigate connections to a previously unrecognized body of work. Since the archive
comprises millions of articles spanning centuries of scholarly work, automated analysis is
essential.



Several statistical models have recently been developed for automatically extracting the
topical structure of large document collections. In technical terms, a topic model is a
generative probabilistic model that uses a small number of distributions over a vocabulary
to describe a document collection. When fit from data, these distributions often correspond
to intuitive notions of topicality. In this work, we build upon the latent Dirichlet allocation
(LDA) [4] model. LDA assumes that the words of each document arise from a mixture
of topics. The topics are shared by all documents in the collection; the topic proportions
are document-specific and randomly drawn from a Dirichlet distribution. LDA allows each
document to exhibit multiple topics with different proportions, and it can thus capture the
heterogeneity in grouped data that exhibit multiple latent patterns. Recent work has used
LDA in more complicated document models [9, 11, 7], and in a variety of settings such
as image processing [12], collaborative filtering [8], and the modeling of sequential data
and user profiles [6]. Similar models were independently developed for disability survey
data [5] and population genetics [10].

Our goal in this paper is to address a limitation of the topic models proposed to date: they
fail to directly model correlation between topics. In many—indeed most—text corpora, it
is natural to expect that subsets of the underlying latent topics will be highly correlated. In
a corpus of scientific articles, for instance, an article about genetics may be likely to also
be about health and disease, but unlikely to also be about x-ray astronomy. For the LDA
model, this limitation stems from the independence assumptions implicit in the Dirichlet
distribution on the topic proportions. Under a Dirichlet, the components of the proportions
vector are nearly independent; this leads to the strong and unrealistic modeling assumption
that the presence of one topic is not correlated with the presence of another.

In this paper we present thecorrelated topic model(CTM). The CTM uses an alterna-
tive, more flexible distribution for the topic proportions that allows for covariance structure
among the components. This gives a more realistic model of latent topic structure where
the presence of one latent topic may be correlated with the presence of another. In the
following sections we develop the technical aspects of this model, and then demonstrate its
potential for the applications envisioned above. We fit the model to a portion of the JSTOR
archive of the journalScience. We demonstrate that the model gives a better fit than LDA,
as measured by the accuracy of the predictive distributions over held out documents. Fur-
thermore, we demonstrate qualitatively that the correlated topic model provides a natural
way of visualizing and exploring such an unstructured collection of textual data.

2 The Correlated Topic Model

The key to the correlated topic model we propose is the logistic normal distribution [1]. The
logistic normal is a distribution on the simplex that allows for a general pattern of variability
between the components by transforming a multivariate normal random variable. Consider
thenatural parameterizationof aK-dimensional multinomial distribution:

p(z | η) = exp{ηT z − a(η)}. (1)

The random variableZ can take onK values; it can be represented by aK-vector with
exactly one component equal to one, denoting a value in{1, . . . ,K}. The cumulant gener-
ating function of the distribution is

a(η) = log
(∑K

i=1 exp{ηi}
)

. (2)

The mapping between the mean parameterization (i.e., the simplex) and the natural param-
eterization is given by

ηi = log θi/θK . (3)
Notice that this is not the minimal exponential family representation of the multinomial
because multiple values ofη can yield the same mean parameter.
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Figure 1: Top: Graphical model representation of the correlated topic model. The logistic
normal distribution, used to model the latent topic proportions of a document, can represent
correlations between topics that are impossible to capture using a single Dirichlet. Bottom:
Example densities of the logistic normal on the 2-simplex. From left: diagonal covariance
and nonzero-mean, negative correlation between components 1 and 2, positive correlation
between components 1 and 2.

The logistic normal distribution assumes thatη is normally distributed and then mapped
to the simplex with the inverse of the mapping given in equation (3); that is,f(ηi) =
exp ηi/

∑
j exp ηj . The logistic normal models correlations between components of the

simplicial random variable through the covariance matrix of the normal distribution. The
logistic normal was originally studied in the context of analyzing observed compositional
data such as the proportions of minerals in geological samples. In this work, we extend its
use to a hierarchical model where it describes thelatent composition of topics associated
with each document.

Let {µ,Σ} be aK-dimensional mean and covariance matrix, and let topicsβ1:K be K
multinomials over a fixed word vocabulary. The correlated topic model assumes that an
N -word document arises from the following generative process:

1. Drawη | {µ,Σ} ∼ N (µ,Σ).

2. Forn ∈ {1, . . . , N}:
(a) Draw topic assignmentZn | η from Mult(f(η)).
(b) Draw wordWn | {zn, β1:K} from Mult(βzn).

This process is identical to the generative process of LDA except that the topic proportions
are drawn from a logistic normal rather than a Dirichlet. The model is shown as a directed
graphical model in Figure 1.

The CTM is more expressive than LDA. The strong independence assumption imposed
by the Dirichlet in LDA is not realistic when analyzing document collections, where one
may find strong correlations between topics. The covariance matrix of the logistic normal
in the CTM is introduced to model such correlations. In Section 3, we illustrate how the
higher order structure given by the covariance can be used as an exploratory tool for better
understanding and navigating a large corpus of documents. Moreover, modeling correlation
can lead to better predictive distributions. In some settings, such as collaborative filtering,



the goal is to predict unseen items conditional on a set of observations. An LDA model
will predict words based on the latent topics that the observations suggest, but the CTM
has the ability to predict items associated withadditionaltopics that are correlated with the
conditionally probable topics.

2.1 Posterior inference and parameter estimation

Posterior inference is the central challenge to using the CTM. The posterior distribution of
the latent variables conditional on a document,p(η, z1:N |w1:N ), is intractable to compute;
once conditioned on some observations, the topic assignmentsz1:N and log proportions
η are dependent. We make use of mean-field variational methods to efficiently obtain an
approximation of this posterior distribution.

In brief, the strategy employed by mean-field variational methods is to form a factorized
distribution of the latent variables, parameterized by free variables which are called the vari-
ational parameters. These parameters are fit so that the Kullback-Leibler (KL) divergence
between the approximate and true posterior is small. For many problems this optimization
problem is computationally manageable, while standard methods, such as Markov Chain
Monte Carlo, are impractical. The tradeoff is that variational methods do not come with
the same theoretical guarantees as simulation methods. See [13] for a modern review of
variational methods for statistical inference.

In graphical models composed of conjugate-exponential family pairs and mixtures, the
variational inference algorithm can be automatically derived from general principles [2,
14]. In the CTM, however, the logistic normal isnot conjugate to the multinomial. We
will therefore derive a variational inference algorithm by taking into account the special
structure and distributions used by our model.

We begin by using Jensen’s inequality to bound the log probability of a document:

log p(w1:N |µ,Σ, β) ≥ (4)

Eq [log p(η |µ,Σ)] +
∑N

n=1(Eq [log p(zn | η)] + Eq [log p(wn | zn, β)]) + H (q) ,

where the expectation is taken with respect to a variational distribution of the latent vari-
ables, and H(q) denotes the entropy of that distribution. We use a factorized distribution:

q(η1:K , z1:N |λ1:K , ν2
1:K , φ1:N ) =

∏K
i=1 q(ηi |λi, ν

2
i )

∏N
n=1 q(zn |φn). (5)

The variational distributions of the discrete variablesz1:N are specified by theK-
dimensional multinomial parametersφ1:N . The variational distribution of the continuous
variablesη1:K areK independent univariate Gaussians{λi, νi}. Since the variational pa-
rameters are fit using asingleobserved documentw1:N , there is no advantage in introduc-
ing a non-diagonal variational covariance matrix.

The nonconjugacy of the logistic normal leads to difficulty in computing the expected log
probability of a topic assignment:

Eq [log p(zn | η)] = Eq

[
ηT zn

]
− Eq

[
log(

∑K
i=1 exp{ηi})

]
. (6)

To preserve the lower bound on the log probability, we upper bound the log normalizer
with a Taylor expansion,

Eq

[
log

(∑K
i=1 exp{ηi}

)]
≤ ζ−1(

∑K
i=1 Eq [exp{ηi}])− 1 + log(ζ), (7)

where we have introduced a new variational parameterζ. The expectation Eq [exp{ηi}] is
the mean of a log normal distribution with mean and variance obtained from the variational
parameters{λi, ν

2
i }; thus, Eq [exp{ηi}] = exp{λi + ν2

i /2} for i ∈ {1, . . . ,K}.



wild type
mutant

mutations
mutants
mutation

gene
yeast

recombination
phenotype

genes

p53
cell cycle
activity
cyclin

regulation
protein

phosphorylation
kinase

regulated
cell cycle progression

amino acids
cdna

sequence
isolated
protein

amino acid
mrna

amino acid sequence
actin
clone

gene
disease

mutations
families
mutation

alzheimers disease
patients
human

breast cancer
normal

development
embryos

drosophila
genes

expression
embryo

developmental
embryonic

developmental biology
vertebrate

mantle
crust

upper mantle
meteorites

ratios
rocks
grains

isotopic
isotopic composition

depth

co2
carbon

carbon dioxide
methane

water
energy

gas
fuel

production
organic matter

earthquake
earthquakes

fault
images

data
observations

features
venus

surface
faults

ancient
found
impact

million years ago
africa
site

bones
years ago

date
rock

climate
ocean

ice
changes

climate change
north atlantic

record
warming

temperature
past

genetic
population
populations
differences

variation
evolution

loci
mtdna
data

evolutionary

males
male

females
female
sperm

sex
offspring

eggs
species

egg

fossil record
birds

fossils
dinosaurs

fossil
evolution

taxa
species

specimens
evolutionary

synapses
ltp

glutamate
synaptic
neurons

long term potentiation ltp
synaptic transmission

postsynaptic
nmda receptors
hippocampus

ca2
calcium
release

ca2 release
concentration

ip3
intracellular calcium

intracellular
intracellular ca2

ca2 i

ras
atp

camp
gtp

adenylyl cyclase
cftr

adenosine triphosphate atp
guanosine triphosphate gtp

gap
gdp

neurons
stimulus
motor
visual

cortical
axons
stimuli

movement
cortex
eye

ozone
atmospheric

measurements
stratosphere

concentrations
atmosphere

air
aerosols

troposphere
measured

brain
memory
subjects

left
task

brains
cognitive
language

human brain
learning

Figure 2: A portion of the topic graph learned from 16,351 OCR articles fromScience.
Each node represents a topic, and is labeled with the five most probable phrases from its
distribution (phrases are found by the “turbo topics” method [3]). The interested reader can
browse the full model athttp://www.cs.cmu.edu/˜lemur/science/ .

Given a model{β1:K , µ,Σ} and a documentw1:N , the variational inference algorithm op-
timizes equation (4) with respect to the variational parameters{λ1:K , ν1:K , φ1:N , ζ}. We
use coordinate ascent, repeatedly optimizing with respect to each parameter while holding
the others fixed. In variational inference for LDA, each coordinate can be optimized ana-
lytically. However, iterative methods are required for the CTM when optimizing forλi and
ν2

i . The details are given in Appendix A.

Given a collection of documents, we carry out parameter estimation in the correlated topic
model by attempting to maximize the likelihood of a corpus of documents as a function
of the topicsβ1:K and the multivariate Gaussian parameters{µ,Σ}. We use variational
expectation-maximization (EM), where we maximize the bound on the log probability of a
collection given by summing equation (4) over the documents.

In the E-step, we maximize the bound with respect to the variational parameters by per-
forming variational inference for each document. In the M-step, we maximize the bound
with respect to the model parameters. This is maximum likelihood estimation of the top-
ics and multivariate Gaussian using expected sufficient statistics, where the expectation
is taken with respect to the variational distributions computed in the E-step. The E-step
and M-step are repeated until the bound on the likelihood converges. In the experiments
reported below, we run variational inference until the relative change in the probability
bound of equation (4) is less than10−6, and run variational EM until the relative change in
the likelihood bound is less than10−5.

3 Examples and Empirical Results: ModelingScience

In order to test and illustrate the correlated topic model, we estimated a 100-topic CTM
on 16,351Sciencearticles spanning 1990 to 1999. We constructed a graph of the la-
tent topics and the connections among them by examining the most probable words from
each topic and the between-topic correlations. Part of this graph is illustrated in Fig-
ure 2. In this subgraph, there are three densely connected collections of topics: material
science, geology, and cell biology. Furthermore, an estimated CTM can be used to ex-
plore otherwise unstructured observed documents. In Figure 4, we list articles that are
assigned to the cognitive science topic and articles that are assigned to both the cog-
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Figure 3: (L) The average held-out probability; CTM supports more topics than LDA. See
figure at right for the standard error of the difference. (R) The log odds ratio of the held-out
probability. Positive numbers indicate a better fit by the correlated topic model.

nitive science and visual neuroscience topics. The interested reader is invited to visit
http://www.cs.cmu.edu/˜lemur/science/ to interactively explore this model, in-
cluding the topics, their connections, and the articles that exhibit them.

We compared the CTM to LDA by fitting a smaller collection of articles to models of vary-
ing numbers of topics. This collection contains the 1,452 documents from 1960; we used
a vocabulary of 5,612 words after pruning common function words and terms that occur
once in the collection. Using ten-fold cross validation, we computed the log probability of
the held-out data given a model estimated from the remaining data. A better model of the
document collection will assign higher probability to the held out data. To avoid comparing
bounds, we used importance sampling to compute the log probability of a document where
the fitted variational distribution is the proposal.

Figure 3 illustrates the average held out log probability for each model and the average
difference between them. The CTM provides a better fit than LDA and supports more
topics; the likelihood for LDA peaks near 30 topics while the likelihood for the CTM peaks
close to 90 topics. The means and standard errors of thedifferencein log-likelihood of the
models is shown at right; this indicates that the CTM always gives a better fit.

Another quantitative evaluation of the relative strengths of LDA and the CTM is how well
the models predict the remaining words after observing a portion of the document. Sup-
pose we observe wordsw1:P from a document and are interested in which model provides
a better predictive distributionp(w |w1:P ) of the remaining words. To compare these dis-
tributions, we useperplexity, which can be thought of as the effective number of equally
likely words according to the model. Mathematically, the perplexity of a word distribu-
tion is defined as the inverse of the per-word geometric average of the probability of the
observations,

Perp(Φ) =
(∏D

d=1

∏Nd

i=P+1 p(wi |Φ, w1:P )
) −1PD

d=1(Nd−P ) ,

whereΦ denotes the model parameters of an LDA or CTM model. Note that lower numbers
denote more predictive power.

The plot in Figure 4 compares the predictive perplexity under LDA and the CTM. When a
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Figure 4: (Left) Exploring a collection through its topics. (Right) Predictive perplexity for
partially observed held-out documents from the 1960Sciencecorpus.

small number of words have been observed, there is less uncertainty about the remaining
words under the CTM than under LDA—the perplexity is reduced by nearly 200 words, or
roughly 10%. The reason is that after seeing a few words in one topic, the CTM uses topic
correlation to infer that words in a related topic may also be probable. In contrast, LDA
cannot predict the remaining words as well until a large portion of the document as been
observed so that all of its topics are represented.
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A Variational Inference
We describe a coordinate ascent optimization algorithm for the likelihood bound in equa-
tion (4) with respect to the variational parameters.

The first term of equation (4) is
Eq [log p(η |µ,Σ)] = (1/2) log |Σ−1| − (K/2) log 2π− (1/2)Eq

[
(η − µ)T Σ−1(η − µ)

]
,

(8)
where

Eq

[
(η − µ)T Σ−1(η − µ)

]
= Tr(diag(ν2)Σ−1) + (λ− µ)T Σ−1(λ− µ). (9)

The second term of equation (4), using the additional bound in equation (7), is

Eq [log p(zn | η)] =
∑K

i=1 λiφn,i − ζ−1
(∑K

i=1 exp{λi + ν2
i /2}

)
+ 1− log ζ. (10)

The third term of equation (4) is

Eq [log p(wn | zn, β)] =
∑K

i=1 φn,i log βi,wn . (11)

Finally, the fourth term is the entropy of the variational distribution:∑K
i=1

1
2 (log ν2

i + log 2π + 1)−
∑N

n=1

∑k
i=1 φn,i log φn,i. (12)

We maximize the bound in equation (4) with respect to the variational parametersλ1:K ,
ν1:K , φ1:N , andζ. We use a coordinate ascent algorithm, iteratively maximizing the bound
with respect to each parameter.

First, we maximize equation (4) with respect toζ, using the second bound in equation (7).
The derivative with respect toζ is

f ′(ζ) = N
(
ζ−2

(∑K
i=1 exp{λi + ν2

i /2}
)
− ζ−1

)
, (13)

which has a maximum at
ζ̂ =

∑K
i=1 exp{λi + ν2

i /2}. (14)
Second, we maximize with respect toφn. This yields a maximum at

φ̂n,i ∝ exp{λi}βi,wn , i ∈ {1, . . . ,K}. (15)
Third, we maximize with respect toλi. Since equation (4) is not amenable to analytic
maximization, we use a conjugate gradient algorithm with derivative

dL/dλ = −Σ−1(λ− µ) +
∑N

n=1 φn,1:K − (N/ζ) exp{λ + ν2/2} . (16)

Finally, we maximize with respect toν2
i . Again, there is no analytic solution. We use

Newton’s method for each coordinate, constrained such thatνi > 0:
dL/dν2

i = −Σ−1
ii /2−N/2ζ exp{λ + ν2

i /2}+ 1/(2ν2
i ). (17)

Iterating between these optimizations defines a coordinate ascent algorithm on equa-
tion (4).


