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Probabilistic modeling is a mainstay of modern machine learning and statistics
research, providing essential tools for analyzing the vast amount of data that have
become available in science, government, industry, and everyday life. This course
will cover the mathematical and algorithmic foundations of this field, as well as
methods underlying the current state of the art.

[ What kinds of problems with data do you care about? ]

Over the last century, many problems that have been solved (at least partially) with
probabilistic models. Here are some examples:

� Group genes into clusters
� Filter email that is likely to be spam
� Transcribe speech from a recorded signal
� Identify recurring patterns in gene sequences
� Uncover hidden topics in collections of texts
� Predict what someone will purchase based on his or her purchase history
� Track an object’s position via radar measurements
� Determine the structure of the evolutionary tree of a set of species
� Identify the ancestral populations embedded in the human population.
� Diagnose a disease from its symptoms
� Decode an original message from a noisy transmission
� Understand the phase transitions in a physical system of electrons
� Find the communities embedded in a massive social network
� Locate politicians on the political spectrum based on their voting records

For each of these applications of probabilistic modeling, someone determined a
statistical model, fit that model to observed data, and used the fitted model to solve the
task at hand. As one might expect from the diversity of applications listed above, each
model was developed and studied within a different intellectual community.
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Over the past two decades, scholars working in the field of machine learning have
sought to unify such data analysis activities. Their focus has been on developing tools
for devising, analyzing, and implementing probabilistic models in generality. These
efforts have lead to the body of work on probabilistic graphical models, a marriage
of graph theory and probability theory. Graphical models provide a language for
expressing assumptions about data, and a suite of efficient algorithms for reasoning
and computing with those assumptions.

As a consequence, graphical models research has forged connections between signal
processing, coding theory, computational biology, natural language processing, com-
puter vision, and many other fields. Knowledge of graphical models is essential to
academics working in machine learning and statistics, and is of increased importance
to those in the other scientific and engineering fields to which these methods have
been applied.

Example: Latent Dirichlet allocation

To give you an idea of what applied probabilistic modeling is, I will quickly descrbe
latent Dirichlet allocation (LDA) (Blei et al., 2003), which is a kind of probabilistic
topic model. (If you have seen me speak, you have probably heard about LDA.)

Basically, LDA is a model of large document collections that can be used to automat-
ically extract the hidden topics that pervade them and how each document expresses
those topics. It has become a widely-used method for modeling digital content, and
is an example of a successfully deployed probabilistic model. (I developed LDA with
Andrew Ng and Michel Jordan in the late nineties. Note it was my final project in a
class like this. Andrew Ng was the TA; Michael Jordan was the professor.)

[ Slides about LDA and projects from my research group. ]

Box’s Loop

[ This text was taken, largely unchanged, from Blei (2014). ]

Our perspective is that building and using probabilistic models is part of an iterative
process for solving data analysis problems. First, formulate a simple model based
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Build model

Mixtures and mixed-membership;
Time series; Generalized linear models;
Factor models; Bayesian nonparametrics

Infer hidden quantities

Markov chain Monte Carlo;
Variational inference;
Laplace approximation

Criticize model

Performance on a task;
Prediction on unseen data;
Posterior predictive checks

DATA

Revise Model

Apply model

Predictive systems;
Data exploration;
Data summarization

Figure 1: Building and computing with models is part of an iterative process for
solving data analysis problems. This is Box’s loop, an adaptation of the perspective
of Box (1976).

on the kinds of hidden structure that you believe exists in the data. Then, given a
data set, use an inference algorithm to approximate the posterior—the conditional
distribution of the hidden variables given the data—which points to the particular
hidden pattens that your data exhibits. Finally, use the posterior to test the model
against the data, identifying the important ways that it succeeds and fails. If satisfied,
use the model to solve the problem; if not satisfied, revise the model according to the
results of the criticism and repeat the cycle. Figure 1 illustrates this process.

We call this process “Box’s loop”. It is an adaptation—an attempt at revival, really—
of the ideas of George Box and collaborators in their papers from the 1960s and
1970s (Box and Hunter, 1962, 1965; Box and Hill, 1967; Box, 1976, 1980). Box
focused on the scientific method, understanding nature by iterative experimental
design, data collection, model formulation, and model criticism. But his general
approach just as easily applies to other applications of probabilistic modeling. It
applies to engineering, where the goal is to use a model to build a system that
performs a task, such as information retrieval or item recommendation. And it
applies to exploratory data analysis, where the goal is to summarize, visualize, and
hypothesize about observational data, i.e., data that we observe but that are not part
of a designed experiment.

Why revive this perspective now? The future of data analysis lies in close collab-
orations between domain experts and modelers. Box’s loop cleanly separates the
tasks of articulating domain assumptions into a probability model, conditioning on
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data and computing with that model, evaluating it in realistic settings, and using the
evaluation to revise it. It is a powerful methodology for guiding collaborative efforts
in solving data analysis problems.

As machine learning researchers and statisticians, our research goal is to make
Box’s loop easy to implement, and modern research has radically changed each
component in the half-century since Box’s inception. We have developed intuitive
grammars for building models, scalable algorithms for computing with a wide variety
of models, and general methods for understanding the performance of a model to
guide its revision. This course gives a curated view of the state-of-the-art research
for implementing Box’s loop.

In the first step of the loop, we build (or revise) a probability model. Probabilistic
graphical models (Pearl, 1988; Dawid and Lauritzen, 1993; Jordan, 2004) is a field
of research that connects graph theory to probability theory, and provides an elegant
language for building models. With graphical models, we can clearly articulate what
kinds of hidden structures are governing the data and construct complex models from
simpler components—like clusters, sequences, hierarchies, and others—to tailor our
models to the data at hand. This language gives us a palette with which to posit and
revise our models.

The observed data enters the picture in the second step of Box’s loop. Here we
compute the posterior distribution, the conditional distribution of the hidden patterns
given the obervations, to understand how the hidden structures we assumed are
manifested in the data. Most useful models are difficult to compute with, however,
and researchers have developed powerful approximate posterior inference algorithms
for approximating these conditionals. Techniques like Markov chain Monte Carlo
(MCMC) (Metropolis et al., 1953; Hastings, 1970; Geman and Geman, 1984) and
variational inference (Jordan et al., 1999; Wainwright and Jordan, 2008) make it pos-
sible for us to examine large data sets with sophisticated statistical models. Moreover,
these algorithms are modular—recurring components in a graphical model lead to
recurring subroutines in their corresponding inference algorithms. This has led to
more recent work in efficient generic algorithms, which can be easily applied to a
wide class of models (Gelfand and Smith, 1990; Bishop et al., 2003).

Finally we close the loop, studying how our models succeed and fail to guide the
process of revision. Here again is an opportunity for a revival. With new methods for
quickly building and computing with sophisticated models, we can make better use
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of techniques like predictive sample reuse (Geisser, 1975) and posterior predictive
checks (Box, 1980; Rubin, 1984; Gelman et al., 1996). These are general techniques
for assessing model fitness, contrasting the predictions that a model makes against
the observed data. Understanding a model’s performance in the ways the matter to
the task at hand—an activity called model criticism—is essential to solving modern
data analysis problems.

Aside: Bayesian statistics. In a way, we take a Bayesian perspective because we
treat all hidden quantities as random variables and investigate them through their
conditional distribution given observations. However, we prefer the more general
langauge of latent variables, which can be either parameters to the whole data set or
local hidden structure to individual data points (or something in between). Further,
in performing model criticism we will step out of the Bayesian framework to ask
whether the model we assumed has good properties in the sampling sense.

Course Topics

See the syllabus for a week-by-week description what we will cover. Note the readings
will often go beyond what we can cover in lecture.

[ Go over the syllabus ]

What are some topics that are important to you?

Additional Discussion

Programming languages. There will be a handful of programming assignments.
However, we expect that you already know a good programming language (or
two).

For prototyping and developing algorithms, I like the programming language R and
embellishments like RStudio. This is not the only choice—I know that many like to
use Python, Julia, and probably others I do not know about. (Matlab seems to have
fallen out of favor.)
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On the backend, to make things fast, I use C. But it seems that my collaborators
mostly use C++.

Stan is a probabilistic programming language that is actively developed here at
Columbia by Andrew Gelman, Bob Carpenter, and colleagues. It lets you specify a
probabilistic model programmatically and then “compile” it down to an inference
algorithm, an executable that takes data as input and returns estimates of the posterior
distribution.

Our TA is Dustin Tran, who has been spearheading an open-source software project
called Edward (http://edwardlib.org), named after George Edward Pelham Box.
Edward is a Python library for implementing all of the components of Box’s loop.
We plan to use Edward throughout the semester and, hopefully, to develop it into a
tool that we can easily use in this class. Please don’t hesitate to talk to Dustin about
it.

Solving real problems involves many hours of “data wrangling”, working with online
APIs and otherwise cleaning and manipulating data so that it is easy to analyze.
For this important activity, you will need to be fluent in a scripting language. I
recommend Python.

Applications. In lecture we focus on methods. We will mention applications,
especially as motivating concrete examples, but there will not be readings about
specific applications.

That said, most of you will be doing a project connected to an application, and
we expect you to come up to speed on the state of the art of that application. A
student doing a project about recommendation systems should read about probabilistic
recommendation systems; a student doing a project about population genetics should
read about the probabilistic perspective on their field.

Building and using models. This course is about how to build and compute with
probabilistic models that are tailored to the problem at hand. (Note that it is not a
course that gives a “cookbook” of methods and when to use them.) Returning to the
figure about Box’s loop, we are going to focus on the model building piece and the
inference piece. What components are in my toolbox with which to build models?
How do I compose them together? What algorithms are available to compute with
the resulting model and what are their properties? How do I derive an algorithm for
the model I want to work with?
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Two of the other pieces of the picture—getting the right data and using the results of
inference—are equally important, but are specific to the problems that you will be
individually working on. The final piece—revising models (and building them in the
first place)—is a fuzzy and difficult problem. We will discuss it toward the end of
the semester. Building and diagnosing models is more of a craft at this point, one
learned through experience.
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