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Today’s lecture

� What is this course about?

� Latent Dirichlet allocation: An example of a graphical model

� Other examples of applied probabilistic modeling

� Box’s loop

� What will we cover?

� Prerequisites, requirements, and grades



Announcements

� Go to the course website and fill out the survey.

� Sign up for Piazza



What is this course about?



Latent Dirichlet Allocation
(An example of a model that I know well)



Documents exhibit multiple topics.
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LDA as a graphical model

� Nodes are random variables; edges indicate dependence.

� Shaded nodes are observed; unshaded nodes are hidden.

� Plates indicate replicated variables.
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LDA as a graphical model

� Encodes independence assumptions

� Defines a factorization of the joint distribution

� Connects to algorithms for computing with data
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� The joint defines a posterior, p.�; z; ˇ jw/.

� From a collection of documents, infer

� Per-word topic assignment zd;n

� Per-document topic proportions �d

� Per-corpus topic distributions ˇk

� Then use posterior expectations to perform the task at hand:
information retrieval, document similarity, exploration, and others.



� Data: The OCR’ed collection of Science from 1990–2000

� 17K documents
� 11M words
� 20K unique terms (stop words and rare words removed)

� Model: 100-topic LDA model using variational inference.
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Figure 5
Topics found in a corpus of 1.8 million articles from the New York Times. Modified from Hoffman et al. (2013).

a particular movie), our prediction of the rating depends on a linear combination of the user’s
embedding and the movie’s embedding. We can also use these inferred representations to find
groups of users that have similar tastes and groups of movies that are enjoyed by the same kinds
of users.

Figure 4c illustrates the graphical model. This model is closely related to a linear factor model,
except that each cell’s distribution is determined by hidden variables that depend on the cell’s row
and column. The overlapping plates show how the observations at the nth row share its embedding
wn but use different variables γm for each column. Similarly, the observations in the mth column
share its embedding γm but use different variables wn for each row. Casting matrix factorization
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Topics found in 1.8M articles from the New York Times



by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution φt, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
θt over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell

V
(b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)
or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution γ
(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)

ij |γ(b)
gigj

∼ Binomial(γ(b)
gigj

)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables φ determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n

(m)
· ∼ NB(

�
k bmkφk, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length πk according to Eq. 1.
(b) Sample the relative mass φk ∼ Gamma(γ, 1).
(c) Draw the topic distribution over words,

βk ∼ Dirichlet(η).

2. for m = 1, . . . ,M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n
(m)
· ∼ NB(

�
k bmkφk, 1/2).

(c) Sample the distribution over topics,
θm ∼ Dirichlet(bm · φ).

(d) For each word wmi, i = 1, . . . , n
(m)
· ,

i. Draw the topic index zmi ∼ Discrete(θm).
ii. Draw the word wmi ∼ Discrete(βzmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, θm, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters φ separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n
(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n

(m)
· =

P
k n

(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmjγ + τδi,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(Θ,Z|γ,Φ) =
�

d [qθ(θd|γd)
�

n qz(zd,n|φd,n)] , (3)

where γ is a set of Dirichlet parameters, one for each doc-

ument, and Φ is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2

|zd1
,zd2

,η, ν)]+
�

d

�
n Eq [log p(wd,n|β1:K , zd,n)]+�

d

�
n Eq [log p(zd,n|θd)]+�

d Eq [log p(θd|α)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2
= 1 whenever a link is ob-

served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2 = 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document θ,
and the node’s parent’s successor weights π. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)

βj,k,w|βi,k,w, s ∼ N
�
βi,k,w, v∆sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to suffer from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is different: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for different items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is difficult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and efficiently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very different types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, effectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
θloc

d,v and a distribution defining preference for local topics
versus global topics πd,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution ψs. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(γ) for the distribution
ψs permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics ϕgl

z from a Dirichlet prior
Dir(βgl) and Kloc word distributions for local topics ϕloc

z′
from Dir(βloc). Then, for each document d:

• Choose a distribution of global topics θgl
d ∼ Dir(αgl).

• For each sentence s choose a distribution ψd,s(v) ∼
Dir(γ).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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� LDA is a simple building block that enables many applications.
Topic modeling is an active field of research.

� Graphical models are a composable language for probability models.

� Each model connects to a set of assumptions
and an algorithm for computing under them.



Edward: A library for probabilistic modeling, inference, and criticism

github.com/blei-lab/edward

(lead by Dustin Tran)

github.com/blei-lab/edward


Other examples of applied probabilistic modeling
(from my research group and others)



Communities discovered in a 3.7M node network of U.S. Patents



Neuroscience analysis of 220 million fMRI measurements
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Population analysis of 2 billion genetic measurements



Figure 3: Six di↵erent styles of art discovered on Etsy. Each column contains high-ranking items from a
topic. Note that all items come from unique sellers.

or behavior from another user that the feed owner is “follow-
ing”. These stories flow from the top to the bottom of the
screen in the order in which the activity took place. Some
examples include: “User X started following member Y” or
“User X has favorited item Z”, where X is a user that the
feed owner follows.

More specifically, the “following” mechanism can be de-
scribed as follows: Users can “follow” each other on Etsy in
the same way that users can follow other users on Twitter.
When user A follows user B, user B’s activity (for example:
products or shops that user B favorites, or even other users
that user B follows) will be shown on user A’s activity feed
in the form of story cards (Figure 5). The idea is that a user
will want to follow another user who has similar interests, so
that it is more likely that user B’s activity will interest user
A. Before the deployment of our recommendation system,
Etsy users found other users to follow by either 1) knowing
the user in person, or 2) stumbling upon them while brows-

ing the site. Thus, the purpose of the user recommendation
system was to make the process of finding users with similar
interests less arbitrary and more intentional.

4.1.1 Algorithm & Implementation
Once we obtain each user’s interest profile (as described

in section 3.2), we conduct a nearest neighbor search across
all eligible users on Etsy (i.e. those active users who do not
have private settings turned on) to find the top 100 users
with the most similar ✓’s, which we recommend. These are
users, presumably, with the most similar styles and interests.

The problem of the nearest neighbor search, of course, is
that examining every pair of users to determine the distance
between them (the “brute force” approach) is unfeasible due
to the large number of users. Therefore, we experimented
with two di↵erent hashing methods, both of which center
around the idea of hashing the interest profiles ✓ into buck-
ets, and then computing distances only between users that
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Patterns of preferences found at Etsy.com (Hu et al., 2014)



Supreme Court Ideology over time (Martin and Quinn, 2001)



Breaking the Nazi code (Turing and Good, 194?)
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Figure S2: Population structure inferred from the TGP data set using the TeraStructure algorithm
at three values for the number of populations K. The visualization of the ✓’s in the Figure shows
patterns consistent with the major geographical regions. Some of the clusters identify a specific
region (e.g. red for Africa) while others represent admixture between regions (e.g. green for Eu-
ropeans and Central/South Americans). The presence of clusters that are shared between different
regions demonstrates the more continuous nature of the structure. The new cluster from K = 7 to
K = 8 matches structure differentiating between American groups. For K = 9, the new cluster is
unpopulated.
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Why we like this picture:

� Customized data analysis is important to many fields.

� This pipeline separates assumptions, computation, application.

� It facilitates solving data science problems.
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What we need:

� Expressive components from which to build models

� Scalable and generic inference algorithms

� Stretch probabilistic modeling into new areas
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What will we cover?



The basics of graphical models

1. Probability: Basic concepts and review

2. Semantics of graphical models

3. D-separation and conditional independence

4. The elimination algorithm

5. Tree propagation and hidden Markov models



Latent variable models

1. Models, data, and statistical concepts

2. Bayesian mixtures of Gaussians and the Gibbs sampler

3. Exponential families, conjugacy, and mixtures of exponential families

4. Mixed-membership, topic models, and variational inference

5. Matrix factorization and recommendation systems



Conditional models

1. Regression: Linear and logistic

2. Generalized linear models

3. Regularized linear models

4. Hierarchical models, robust models, and empirical Bayes



Advanced ideas

1. Advanced Markov chain Monte Carlo

2. Advanced variational inference

3. An brief introduction to Bayesian nonparametrics



Some additional discussion

� Programming languages

� Applications

� Note: We will usually be at the board.



Prerequisites, Requirements, Grades, Etc.

� http://www.cs.columbia.edu/�blei/fogm/

� Office hours: Tuesday 3:00-4:00PM, 912 SSW (but check the web!)

� Prerequisites

� Probability and Statistics
� Optimization
� Programming

� Requirements

� Weekly paper about the reading (� 1 page)
� Occasional homework
� Final project

� Your grade: Mostly the final project


