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Modern regression problems are high dimensional, which means that the number of co-
variates p is large. In practice statisticians regularize their models, veering away from the
MLE solution to one where the coefficients have smaller magnitude. This lecture is about
regularization. It draws on the ideas and treatment in Hastie et al. (2009) (referred to below
as ESL).

1 The bias-variance trade off

We first discuss an important concept, the bias-variance trade off. In this discussion we will
take a frequentist perspective.

Consider a set of random responses drawn from a linear regression with “true” parameter
ˇ�,

Yn j xn; ˇ
�
� N.ˇ�xn; �

2/: (1)

The data are D D f.xn; Yn/g. Note that we are holding the covariates xn fixed; only the
responses are random. (We are also assuming xn is a single covariate; in general, it is
p-dimensional and we replace ˇ�xn with ˇ�>xn.)

With this data set, the maximum likelihood estimate is a random variable whose distribution
is governed by the distribution of the data Ǒ.D/. Recall that ˇ� is the true parameter that
generated the responses. How close to we expect Ǒ.D/ to be to ˇ�?

We can answer this question in a couple of ways. First, suppose we observe a new data
input x. We consider the mean squared error of our estimate of E Ǒ Œy j x� D Ǒx. This is the
difference between our predicted expectation of the response and the true expectation of the
response,

MSE D Eˇ�

h
. Ǒ.D/>x � ˇ�>x/2

i
: (2)

It is important to keep track of which variables are random. The coefficient ˇ� is not random;
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it is the true parameter that generated the data. The coefficient Ǒ.D/ is random; it depends
on the randomly generated data set D. The expectation in this equation is with respect to
the randomly generated data set. (For simplicity, we will sometimes supress this notation
below.)

The MSE decomposes in an interesting way,
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The second term is the squared bias,

bias D E
h
Ǒx
i
� ˇ�x: (4)

An estimate for which this term is zero is an unbiased estimate. The first term is the variance,

variance D E
h
. Ǒx/2

i
� E

h
Ǒx
i2
: (5)

This reflects the spread of the estimates we might find on account of the randomness
inherent in the data. Note that the decomposition holds for any linear function of the
coefficients.

A famous result in statistics is the Gauss-Markov theorem. Recall that the MLE Ǒ is an
unbiased estimate. The theorem states that the MLE is the unbiased estimate with the
smallest variance. If you insist on unbiasedness, and you care about the MSE, then you can
do no better than the MLE.

Often we care about expected prediction error. Suppose we observe a new input x. How
wrong will we be on average when we predict the true y j x with E Œy j x� from a fitted
regression?

The expected squared prediction error is

ED

h
EY

h
. Ǒx � Y /2

ii
The first expectation is taken for the randomness of Ǒ, which is a function of the data. The
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second is taken for the randomness of Y given x, which comes from the true model. This
decomposes as follows,

ED

h
EY

h
. Ǒx � Y /2

ii
D Var.Y /CMSE. Ǒx/ (6)

D �2 C Bias2. Ǒx/C Var. Ǒx/: (7)

The first term is the inherent uncertainty around the true mean; the second two terms are
the bias variance decomposition of the estimator. We cannot do anything about the inherent
uncertainty; thus reducing the MSE also reduces expected prediction error.

Classical statistics cared only about unbiased estimators. Modern statistics has explored the
trade-off, where it may be worth accepting some bias for a reduction in variance. This can
reduce the MSE and, consequently, the expected prediction error on future data.

Here a simple picture to illustrate why:
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It may be that the MSE is smaller for the biased estimator, because it nevers veers as far
away from the truth as the unbiased estimator does.

2 Ridge regression

Regularization. In regression, we can make this trade-off with regularization, which
means placing constraints on the coefficients ˇ. Here is a picture from ESL for our first
example.
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

In this picture, contours represent values of ˇ with equal RSS (or, equivalently, likelihood).
Our procedure finds the best value that is within the blue circle.

This reduces the variance because it limits the space that the parameter vector ˇ can live
in. If the true MLE of ˇ lives outside that space, then the resulting estimate must be biased
because of the Gauss-Markov theorem.

The picture also shows how regularization encourages smaller and perhaps “simpler” models.
Simpler models are more robust to overfitting, generalizing pooly because of a close match
to the training data. Simpler models can also be more interpretable, which is another goal
of regression. (This is particularly true for the lasso, which we will talk about later.)

Ridge regression. Let’s discuss the details of ridge regression. We optimize the RSS
subject to a constraint on the sum of squares of the coefficients,

minimize
PN
nD1

1
2
.yn � ˇxn/

2

subject to
Pp
iD1 ˇ

2
i � s

(8)

This constrains the coefficients to live within a sphere of radius s. (See the picture.) Question:
What happens as the radius increases? Answer: Variance goes up; bias goes down.

With some calculus, the ridge regression estimate can also be expressed as

Ǒridge
D arg min

ˇ

NX
nD1

1

2
.yn � ˇxn/

2
C �

pX
iD1

ˇ2i (9)

This is nice because the problem is convex. Further, it has an analytic solution. (See the
reading.) Question: Is it sensitive to scaling? Answer: Yes, in practice we center and scale
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the covariates.

There is a 1-1 mapping between the radius s and complexity parameter �. Either of these
parameters trades off an increase in bias for a decrease in variance.

From ESL:
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How do we choose �? As we see, the value of the complexity parameter affects our
estimate. Question: What would happen if we used training error as the criterion? (Look at
the picture to see the answer.)

In practice, we choose � by cross validation. This is an attempt to minimize expected test
error. (But later on we will discuss hierarchical models. This can be another way to choose
the regularization parameter.)

Here is how it works:

� Divide the data into K folds (e.g., K D 10).
� Decide on candidate values of � (e.g., a grid between 0 and 1)
� For each fold k and value of �,

– Estimate Ǒridge
k

on the out-of-fold samples.
– For each xn assigned to fold k, compute its squared error

�n D . Oyn � yn/
2; (10)
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where Oyn D E Ǒ ridge
k

ŒY j xn�. Note that this estimate of the coefficients did not use
.xn; yn/ as part of its training data.

� We now aggregate the individual errors. The score for � is

MSE.�/ D
1

N

NX
nD1

�n: (11)

This is an estimate of the test error. Choose � that minimizes this score.

Aside: Connection to Bayesian statistics. We have motivated regularized regression
via frequentist thinking, i.e., the bias-variance trade-off and an appeal to the true model.
Regularized regression, in general, has connections to Bayesian modeling.

We have discussed two common ways of using the posterior to obtain an estimate. The first
is maximum a posteriori (MAP) estimation,

�MAP
D arg max

�
p.� jy1; : : : ; yN ; ˛/ (12)

The second is the posterior mean,

�mean
D E Œ� jy1; : : : ; yN ; ˛� (13)

Question: How are these different from the MLE?

Ridge regression and Bayesian methods. Ridge regression corresponds to MAP estima-
tion in the following model:

ˇi � N.0; 1=�/ (14)

yn j xn; ˇ � N.ˇ>xn; �
2/ (15)

Here is the corresponding graphical model

Xn Yn β
N

λ

[ This isn’t quite right; � should be a small dot. ]
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We will derive the relationship. First, note that

p.ˇi j�/ D
1p

2�.1=�/
expf�ˇ2i g (16)

We now compute the MAP estimate of ˇ,

max
ˇ

p.ˇ jD;�/ D max
ˇ

logp.ˇ jy1WN ; x1WN ; �/ (17)

D max
ˇ

logp.ˇ; y1WN j x1WN ; �/ (18)

D max
ˇ

log

 
p.y1WN j x1WN ; ˇ/

pY
iD1

p.ˇi j�/

!
(19)

D max
ˇ
�RSS.ˇID/ �

pX
iD1

�ˇ2i : (20)

Ridge regression is equivalent to MAP estimation in the model.

Observe that the hyperparameter � controls how far away the estimate will be from the MLE.
A small hyperparameter (large variance) will choose the MLE; the data totally determine the
estimate. As the hyperparameter gets larger, the estimate moves further from the MLE; the
prior (E Œˇ� D 0) becomes more influential. This matches our recurring theme in Bayesian
estimation; both the data and the prior influence the answer.

Finally, note that a “true” Bayesian would not set the hyperparameter by cross-validation.
This uses the data to set the prior. However, I think it is a good idea. It is an instance of a
more general principle called “Empirical Bayes”.

Summary of ridge regression.

1. We constrain ˇ to be in a hypersphere around 0.

2. This is equivalent to minimizing the RSS plus a regularization term.

3. We no longer find the Ǒ that minimizes the RSS. (Contours illustrate constant RSS.)

4. Ridge regression is a kind of shrinkage, so called because it reduces the components
to be close to 0 and close to each other.
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5. Ridge estimates trade off bias for variance.

3 The lasso

A closely related regularization method is called the lasso. The lasso optimizes the RSS
subject to a different constraint,

minimize
PN
nD1

1
2
.yn � ˇxn/

2

subject to
Pp
iD1 jˇi j � s

(21)

This small change yields very different estimates. Here is the picture of the constraint:

From ESL:

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3

!
^

!
^2

. .!

1

! 2

!
1

!

Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

Question: What happens as s increases? Question: Where is the solution going to lie with s
fixed?

It’s a fact: unless it chooses Ǒ, the lasso (with p large) will set some of the coefficients to
exactly zero. The intuitions come from ESL: “Unlike the disk, the diamond has corners; if
the solution occurs at a corner, then it has one parameter ǰ equal to zero. When p > 2, the
diamond becomes a rhomboid, and has many corners, flat edges and faces; there are many
more opporunities for the estimated parameters to be zero.” (p 90).

In a sense, the lasso is a form of feature selection, identifying a relevant subset of the
covariates with which to predict. Like ridge regression, it trades off an increase in bias with a
decrease in variance. Further, by zeroing out some of the covariates, it provides interpretable
(as in, sparse) models.
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Sparse models can also be important in real systems that might depend on many inputs.
Once the sparse solution is found, we need only measure a few of the inputs in order to
make predictions. This speeds up the performance of the system.

The lasso is equivalent to

Ǒlasso
D arg min

ˇ

NX
nD1

1

2
.yn � ˇxn/

2
C �

pX
iD1

jˇi j (22)

Again, there is a 1-1 mapping between � and s. This objective, though it does not have an
analytic solution, is still convex.

Why is the lasso exciting? Prior to the lasso, the only “sparse” method was subset selection,
finding the best subset of features with which to model the data. But subset selection has
problems: searching over all subsets (of a fixed size) is computationally expensive. In
contrast, the lasso efficiently finds a sparse solution by using convex optimization. In a
sense, it is akin to a “smooth version” of subset selection. Note the lasso won’t consider all
possible subsets.

From ESL:
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The Bayesian interpretation of the lasso. Like ridge regression, lasso regression corre-
sponds to MAP estimation in a Bayesian model. For the lasso, the model is:

ˇi � Laplace.�/ (23)

Yn j xn; ˇ � N.ˇ>xn; �
2/: (24)

Here the coefficients come from a Laplace distribution,

p.ˇi j�/ D
1

2
expf��jˇi jg: (25)

The lasso, and the general idea of L1 penalized models, has become a cottage industry in
modern statistics and machine learning. The reason is that we often want sparse solutions
to high-dimensional problems, and we want convex objective functions when analyzing
data. L1 penalized methods give us both. Recent research indicates that they have good
theoretical properties to boot.

4 (Optional) Generalized regularization

In general, regularization can be seen as minimizing the RSS with a constraint on a q-
norm,

minimize
PN
nD1

1
2
.yn � ˇxn/

2

subject to jjˇjjq � s

, where the penalty is

jjˇjjq D

 
pX
iD1

jˇi j
q

!1=q

The methods we discussed so far are

� q D 2 : ridge regression
� q D 1 : lasso
� q D 0 : subset selection

Here is the picture from ESL:

10



Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3

q = 4 q = 2 q = 1 q = 0.5 q = 0.1

Figure 3.13: Contours of constant value of
∑

j |βj |q
for given values of q.� This brings us away from the minimum RSS solution, but might provide better test

prediction via the bias/variance trade-off.

� Complex models have less bias; simpler models have less variance. Regularization
encourages simpler models.

Note that each of these methods correspond to a Bayesian solution with a different choice of
prior.

Ǒridge
D arg min

ˇ

NX
nD1

1

2
.yn � ˇxn/

2
C �jjˇjjq

The complexity parameter � can be chosen with cross validation.

Lasso (q D 1) is the only norm that provides sparsity and convexity.

And there are other variants, useful in the literature. Of note:

� The elastic net is a convex combination of L1 and L2.
� The grouped lasso finds sparse groups of covariates to include.

Finally, the glmnet package in R is amazing. It efficiently computes models for a reg-
ularization path using L2 or L1 penalization. It uses the same model syntax as lm or
glm.
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