
Foundations of Graphical Models

David M. Blei

Columbia University



Today’s lecture

� What is this course about?

� Latent Dirichlet allocation: An example of a graphical model

� Other examples of applied probabilistic modeling

� Box’s loop

� What will we cover?

� Prerequisites, requirements, and grades



What is this course about?



Latent Dirichlet Allocation
(An example of a model that I know well)



Documents exhibit multiple topics.
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LDA as a graphical model

� Nodes are random variables; edges indicate dependence.

� Shaded nodes are observed; unshaded nodes are hidden.

� Plates indicate replicated variables.
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LDA as a graphical model

� Encodes independence assumptions

� Defines a factorization of the joint distribution

� Connects to algorithms for computing with data
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� The joint defines a posterior, p.�; z; ˇ jw/.

� From a collection of documents, infer

� Per-word topic assignment zd;n

� Per-document topic proportions �d

� Per-corpus topic distributions ˇk

� Then use posterior expectations to perform the task at hand:
information retrieval, document similarity, exploration, and others.



� Data: The OCR’ed collection of Science from 1990–2000

� 17K documents
� 11M words
� 20K unique terms (stop words and rare words removed)

� Model: 100-topic LDA model using variational inference.
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“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



docs <- read.documents("mult.dat")
K <- 20
alpha <- 1/20
eta <- 0.001
model <- lda.collapsed.gibbs.sampler(documents, K, vocab, 1000, alpha, eta)

245 1897:1 1467:1 1351:1 731:2 800:5 682:1 315:6 3668:1 14:1 
260 4261:2 518:1 271:6 2734:1 2662:1 2432:1 683:2 1631:7
279 2724:1 107:3 518:1 141:3 3208:1 32:1 2444:1 182:1 250:1 
266 2552:1 1993:1 116:1 539:1 1630:1 855:1 1422:1 182:3 2432:1
233 1372:1 1351:1 261:1 501:1 1938:1 32:1 14:1 4067:1 98:2
148 4384:1 1339:1 32:1 4107:1 2300:1 229:1 529:1 521:1 2231:1
193 569:1 3617:1 3781:2 14:1 98:1 3596:1 3037:1 1482:12 665:2

....

perspective identifying tumor suppressor genes in human...
letters global warming report leslie roberts article global....
research news a small revolution gets under way the 1990s....
a continuing series the reign of trial and error draws to a close...
making deep earthquakes in the laboratory lab experimenters...
quick fix for freeways thanks to a team of fast working...
feathers fly in grouse population dispute researchers...

....

LDA in R
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Figure 5
Topics found in a corpus of 1.8 million articles from the New York Times. Modified from Hoffman et al. (2013).

a particular movie), our prediction of the rating depends on a linear combination of the user’s
embedding and the movie’s embedding. We can also use these inferred representations to find
groups of users that have similar tastes and groups of movies that are enjoyed by the same kinds
of users.

Figure 4c illustrates the graphical model. This model is closely related to a linear factor model,
except that each cell’s distribution is determined by hidden variables that depend on the cell’s row
and column. The overlapping plates show how the observations at the nth row share its embedding
wn but use different variables γm for each column. Similarly, the observations in the mth column
share its embedding γm but use different variables wn for each row. Casting matrix factorization
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Topics found in 1.8M articles from the New York Times



Other examples of applied probabilistic modeling
(from my research group and others)



Communities discovered in a 3.7M node network of U.S. Patents



Neuroscience analysis of 220 million fMRI measurements



Adygei BalochiBantuKenyaBantuSouthAfricaBasque Bedouin BiakaPygmy Brahui BurushoCambodianColombianDai Daur Druze French Han Han−NChinaHazaraHezhenItalian Japanese Kalash KaritianaLahu Makrani Mandenka MayaMbutiPygmyMelanesianMiaoMongola Mozabite NaxiOrcadianOroqen Palestinian Papuan Pathan Pima Russian San Sardinian She Sindhi Surui Tu TujiaTuscanUygurXibo Yakut Yi Yoruba

pr
ob

pops
1
2
3
4
5
6
7

Adygei BalochiBantuKenyaBantuSouthAfricaBasque Bedouin BiakaPygmy Brahui BurushoCambodianColombianDai Daur Druze French Han Han−NChinaHazaraHezhenItalian Japanese Kalash KaritianaLahu Makrani Mandenka MayaMbutiPygmyMelanesianMiaoMongola Mozabite NaxiOrcadianOroqen Palestinian Papuan Pathan Pima Russian San Sardinian She Sindhi Surui Tu TujiaTuscanUygurXibo Yakut Yi Yoruba

pr
ob

pops
1
2
3
4
5
6
7

Population analysis of 2 billion genetic measurements



Figure 3: Six di↵erent styles of art discovered on Etsy. Each column contains high-ranking items from a
topic. Note that all items come from unique sellers.

or behavior from another user that the feed owner is “follow-
ing”. These stories flow from the top to the bottom of the
screen in the order in which the activity took place. Some
examples include: “User X started following member Y” or
“User X has favorited item Z”, where X is a user that the
feed owner follows.

More specifically, the “following” mechanism can be de-
scribed as follows: Users can “follow” each other on Etsy in
the same way that users can follow other users on Twitter.
When user A follows user B, user B’s activity (for example:
products or shops that user B favorites, or even other users
that user B follows) will be shown on user A’s activity feed
in the form of story cards (Figure 5). The idea is that a user
will want to follow another user who has similar interests, so
that it is more likely that user B’s activity will interest user
A. Before the deployment of our recommendation system,
Etsy users found other users to follow by either 1) knowing
the user in person, or 2) stumbling upon them while brows-

ing the site. Thus, the purpose of the user recommendation
system was to make the process of finding users with similar
interests less arbitrary and more intentional.

4.1.1 Algorithm & Implementation
Once we obtain each user’s interest profile (as described

in section 3.2), we conduct a nearest neighbor search across
all eligible users on Etsy (i.e. those active users who do not
have private settings turned on) to find the top 100 users
with the most similar ✓’s, which we recommend. These are
users, presumably, with the most similar styles and interests.

The problem of the nearest neighbor search, of course, is
that examining every pair of users to determine the distance
between them (the “brute force” approach) is unfeasible due
to the large number of users. Therefore, we experimented
with two di↵erent hashing methods, both of which center
around the idea of hashing the interest profiles ✓ into buck-
ets, and then computing distances only between users that

1643

Patterns of preferences found at Etsy.com (Hu et al., 2014)



Supreme Court Ideology over time (Martin and Quinn, 2001)



Breaking the Nazi code (Turing and Good, 194?)



Box’s Loop
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Massive data
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Why we like this picture:

� Customized data analysis is important to many fields.

� This pipeline separates assumptions, computation, application.

� It facilitates solving data science problems.
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What we need:

� Expressive components from which to build models

� Scalable and generic inference algorithms

� Stretch probabilistic modeling into new areas
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Make assumptions Discover patterns

Massive data

Predict & Explore

Criticize model
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What will we cover?



The basics of graphical models

1. Probability: Basic concepts and review

2. Semantics of graphical models

3. D-separation and conditional independence

4. The elimination algorithm

5. Tree propagation and hidden Markov models I

6. Tree propagation and hidden Markov models II



Latent variable models

1. Models, data, and statistical concepts I

2. Models, data, and statistical concepts II

3. Bayesian mixtures of Gaussians and the Gibbs sampler I

4. Bayesian mixtures of Gaussians and the Gibbs sampler II

5. Exponential families, conjugacy, and mixtures of exponential families I

6. Exponential families, conjugacy, and mixtures of exponential families II

7. Mixed-membership, topic models, and variational inference I

8. Mixed-membership, topic models, and variational inference II

9. Matrix factorization and recommendation systems I

10. Matrix factorization and recommendation systems II



Conditional models

1. Regression: Linear and logistic

2. Generalized linear models

3. Hierarchical models, robust models, and empirical Bayes I

4. Hierarchical models, robust models, and empirical Bayes II



Advanced ideas in approximate posterior inference

1. Markov chain Monte Carlo I

2. Markov chain Monte Carlo II

3. Variational inference I

4. Variational inference II



Other topics and summary

1. An brief introduction to Bayesian nonparametrics

2. Summary (and wiggle room)



Some additional discussion

� Programming languages

� Applications

� Box’s loop, again

� Note: We will usually be at the board.



Prerequisites, Requirements, Grades, Etc.

� http://www.cs.columbia.edu/�blei/fogm/

� Office hours: Wednesdays 2:30-4:30, 703 CEPSR

� Prerequisites

� Probability and Statistics
� Optimization
� Programming

� Requirements

� Weekly paper about the reading (< 1 page)
� Occasional homework
� Final project

� Your grade: Mostly the final project


