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Definition

‘ A probability density in the exponential family has this form

p.x j �/ D h.x/ expf�>t .x/ � a.�/g; (1)

where

� � is the natural parameter
� t .x/ are sufficient statistics
� h.x/ is the “underlying measure”, ensures x is in the right space
� a.�/ is the log normalizer

Examples of exponential family distributions include Gaussian, gamma, Poisson, Bernoulli,
multinomial, Markov models.

Examples of distributions that are not in this family include student-t, mixtures, and hidden
Markov models. (We are considering these families as distributions of data. The latent
variables are implicitly marginalized out.)

‘ The statistic t .x/ is called sufficient because the probability of x under � only depends
on x through t .x/.

‘ The exponential family has fundamental connections to the world of graphical models.
For our purposes, we’ll use exponential families as components in directed graphical models,
e.g., in the mixtures of Gaussians.

‘ The log normalizer ensures that the density integrates to 1,

a.�/ D log
Z
h.x/ expf�>t .x/gdx (2)

This is the negative logarithm of the normalizing constant.

‘ Example: Bernoulli. As an example, let’s put the Bernoulli (in its usual form) into its
exponential family form. The Bernoulli you are used to seeing is

p.x j�/ D �x.1 � �/1�x x 2 f0; 1g (3)
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In exponential family form

p.x j�/ D exp
˚
log

�
�x.1 � �/1�x

�	
(4)

D expfx log� C .1 � x/ log.1 � �/g (5)
D expfx log� � x log.1 � �/C log.1 � �/g (6)
D expfx log.�=.1 � �//C log.1 � �/g (7)

This reveals the exponential family where

� D log.�=.1 � �// (8)
t .x/ D x (9)
a.�/ D � log.1 � �/ D log.1C e�/ (10)
h.x/ D 1 (11)

Note the relationship between � and � is invertible

� D 1=.1C e��/ (12)

This is the logistic function.

‘ Example: Gaussian. The familiar form of the univariate Gaussian is

p.x j�; �2/ D
1

p
2��2

exp
�
�
.x � �/2

2�2

�
(13)

We put it in exponential family form by expanding the square

p.x j�; �2/ D
1
p
2�

exp
�
�

�2
x �

1

2�2
x2 �

1

2�2
�2 � log �

�
(14)

We see that

� D Œ�=�2;�1=2�2� (15)

t .x/ D Œx; x2� (16)

a.�/ D �2=2�2 C log � (17)

D ��21=4�2 � .1=2/ log.�2�2/ (18)

h.x/ D 1=
p
2� (19)
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Moments of an exponential family

‘ Let’s go back to the general family. We are going to take derivatives of the log normalizer.
This gives us moments of the sufficient statistics,

r�a.�/ D r�flog
R

expf�>t .x/gh.x/dxg (20)

D
r�

R
expf�>t .x/gh.x/dxR

expf�>t .x/gh.x/dx
(21)

D

Z
t .x/

expf�>t .x/gh.x/R
expf�>t .x/gh.x/dx

dx (22)

D E�Œt .X/� (23)

‘ Check: Higher order derivatives give higher order moments. For example,

Cov.ti.X/; tj .X// D
@2a.�/

@�i@�j
(24)

‘ There is a 1-1 relationship between the mean of the sufficient statistics E Œt .X/� and
natural parameter �. In other words, the mean is an alternative parameterization of the
distribution. (Many of the forms of exponential families that you know are the mean
parameterization.)

‘ Consider again the Bernoulli. We saw this with the logistic function, where note that
� D E ŒX� (because X is an indicator).

‘ Now consider the Gaussian.

The derivative with respect to �1 is

da.�/

d�1
D �

�1

2�2
(25)

D � (26)
D E ŒX� (27)

The derivative with respect to �2 is

da.�/

d�2
D

�21
4�22
�

1

2�2
(28)

D �2 C �2 (29)

D E
�
X2
�

(30)
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This means that the variance is

Var.X/ D E
�
X2
�
� E ŒX�2 (31)

D �
1

2�2
(32)

D �2 (33)

‘ To see the 1 � 1 relationship between E Œt .X/� and �, note that

� Var.t.X// D r2a� is positive.
� ! a.�/ is convex.
� ! 1-1 relationship between its argument and first derivative

Here is some notation for later (when we discuss generalized linear models). Denote the
mean parameter as � D E Œt .X/�; denote the inverse map as  .�/, which gives the � such
that E Œt .X/� D �.

Maximum likelihood estimation of an exponential family.

‘ The data are x1Wn. We seek the value of � that maximizes the likelihood.

‘ The log likelihood is

L D

NX
nD1

logp.xn j �/ (34)

D

NX
nD1

.log h.xn/C �>t .xn/ � a.�// (35)

D
PN
nD1 log h.xn/C �>

PN
nD1 t .xn/ �N � a.�/ (36)

As a function of �, the log likelihood only depends on
PN
nD1 t .xn/. It has fixed dimension;

there is no need to store the data. (And note that it is sufficient for estimating �.)

‘ Take the gradient of the likelihood and set it to zero,

r�L D

NX
nD1

t .xn/ �Nr�a.�/: (37)

It’s now easy to solve for the mean parameter:

�ML D

PN
nD1 t .xn/

N
: (38)
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This is, as you might guess, the empirical mean of the sufficient statistics. The inverse map
gives us the natural parameter,

�ML D  .�ML/: (39)

‘ Consider the Bernoulli. The MLE of the mean parameter �ML is the sample mean; the
MLE of the natural parameter is the corresponding log odds.

‘ Consider the Gaussian. The MLE of the mean parameters are the sample mean and the
sample variance.

Conjugacy

‘ Consider the following set up:

� � F.� j�/ (40)
xi � G.� j �/ for i 2 f1; : : : ; ng: (41)

This is a classical Bayesian data analysis setting. And, this is used as a component in more
complicated models, e.g., in hierarchical models.

‘ The posterior distribution of � given the data x1Wn is

p.� j x1Wn; �/ / F.� j�/

nY
iD1

G.xi j �/: (42)

Suppose this distribution is in the same family as F , i.e., its parameters are in the space
indexed by �. Then F and G are a conjugate pair.

‘ For example,

� Gaussian likelihood with fixed variance; Gaussian prior on the mean
� Multinomial likelihood; Dirichlet prior on the probabilities
� Bernoulli likelihood; beta prior on the bias
� Poisson likelihood; gamma prior on the rate

In all these settings, the conditional distribution of the parameter given the data is in the
same family as the prior.

‘ Suppose the data come from an exponential family. Every exponential family has a
conjugate prior,

p.xi j �/ D h`.x/ expf�>t .xi/ � a`.�/g (43)

p.� j�/ D hc.�/ expf�>1 �C �2.�a`.�// � ac.�/g: (44)
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The natural parameter � D Œ�1; �2� has dimension dim.�/C 1. The sufficient statistics are
Œ�;�a.�/�.

The other terms hc.�/ and ac.�/ depend on the form of the exponential family. For example,
when � are multinomial parameters then the other terms help define a Dirichlet.

‘ Let’s compute the posterior in the general case,

p.� j x1Wn; �/ / p.� j�/

nY
iD1

p.xi j �/ (45)

D h.�/ expf�>1 �C �2.�a.�// � ac.�/g (46)

�
�Qn

iD1 h.xi/
�

expf�>
Pn
iD1 t .xi/ � na`.�/g

/ h.�/ expf.�1 C
Pn
iD1 t .xi//

>�C .�2 C n/.�a.�//g: (47)

This is the same exponential family as the prior, with parameters

O�1 D �1 C

nX
iD1

t .xi/ (48)

O�2 D �2 C n: (49)

Posterior predictive distribution

‘ Let’s compute the posterior predictive distribution. This comes up frequently in applica-
tions of models (i.e., when doing prediction) and in inference (i.e., when doing collapsed
Gibbs sampling).

‘ Consider a new data point xnew. Its posterior predictive is

p.xnew j x1Wn/ D

Z
p.xnew j �/p.� j x1Wn/d� (50)

/

Z
expf�>xnew � a.�/g expfO�>1 �C O�2.�a.�// � a. O�/gd� (51)

D

R
expf. O�1 C xnew/

>�C . O�2 C 1/.�a.�//d�

expfa. O�1; O�2/g
(52)

D expfa. O�1 C xnew; O�2 C 1/ � a. O�1; O�2/g (53)

‘ In other words, the posterior predictive density is a ratio of normalizing constants. In the
numerator is the posterior with the new data point added; in the denominator is the posterior
without the new data point.

‘ This is how we can derive collapsed Gibbs samplers.
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Canonical prior

‘ There is a variation on the form of the simple conjugate prior that is useful for under-
standing its properties. We set �1 D x0n0 and �2 D n0. (And, for convenience, we drop the
sufficient statistic so that t .x/ D x.)

‘ In this form the conjugate prior is

p.� j x0; n0/ / expfn0x>0 � � n0a.�/g: (54)

Here we can interpret x0 as our prior idea of the expectation of x, and n0 as the number of
“prior data points.”

Consider the predictive expectation of X , E ŒE ŒX j ���. The first expectation is with respect
to the prior; the second is respect to the data distribution. As an exercise, show that

E ŒE ŒX j ��� D x0: (55)

‘ Assume data x1Wn. The mean is

Nx D .1=n/

nX
iD1

xi (56)

Given the data and a prior, the posterior parameters are

Ox0 D
n0x0 C n Nx

nC n0
(57)

On D n0 C n (58)

This is easy to see from our previous derivation of O�1; O�2. Further, we see that the posterior
expectation of X is a convex combination of x0 (our prior idea) and Nx (the data mean).

Example: Data from a unit variance Gaussian

‘ Suppose the data xi come from a unit variance Gaussian

p.x j�/ D
1
p
2�

expf�.x � �/2=2g: (59)

This is a simpler exponential family than the previous Gaussian

p.x j�/ D
expf�x2=2g
p
2�

expf�x � �2=2g: (60)
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In this case

� D � (61)
t .x/ D x (62)

h.x/ D
expf�x2=2g
p
2�

(63)

a.�/ D �2=2 D �2=2: (64)

‘ What is the conjugate prior? It is

p.� j�/ D h.�/ expf�1�C �2.��2=2/ � ac.�/g (65)

This has sufficient statistics Œ�;��2=2�, which means it’s a Gaussian distribution.

‘ Put it in canonical form,

p.� jn0; x0/ D h.�/ expfn0x0� � n0.�2=2/ � ac.n0; x0/g: (66)

‘ The posterior parameters are

Ox0 D
n0x0 C n Nx

n0 C n
(67)

On0 D nC n0: (68)

This implies that the posterior mean and variance are

O� D Ox0 (69)

O�2 D 1=.n0 C n/: (70)

These are results that we asserted earlier.

‘ Intuitively, when we haven’t seen any data then our estimate of the mean is the prior
mean. As we see more data, our estimate of the mean moves towards the sample mean.

Before seeing data, our “confidence” about the estimate is the prior variance. As we see
more data, the confidence decreases.

Example: Data from a Bernoulli

‘ The Bernoulli likelihood is

p.x j�/ D �x.1 � �/1�x: (71)
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Above we have seen its form as a minimal exponential family. Let’s rewrite that, but keeping
the mean parameter in the picture,

p.x j�/ D expfx log.�=.1 � �// � log.1 � �/g (72)

‘ The canonical conjugate prior therefore looks like this,

p.� j x0; n0/ D expfn0x0 log.�=.1 � �//C n0 log.1 � �/ � a.n0; x0/g (73)

This simplifies to

p.� j x0; n0/ D expfn0x0 log.�/C n0.1 � x0/ log.1 � �// � a.n0; x0/g (74)

Putting this in non-exponential family form,

p.� j x0; n0/ / �
n0x0.1 � �/n0.1�x0/ (75)

which nearly looks like the familiar Beta distribution.

‘ To get the beta, we set ˛ , n0x0C 1 and ˇ , n0.1� x0/C 1. Bringing in the resulting
normalizer, we have

p.� j˛; ˇ/ D
�.˛ C ˇ/

�.˛/�.ˇ/
�˛�1.1 � �/ˇ�1: (76)

‘ The posterior distribution follows the usual recipe, from which we can derive that the
corresponding updates are

Ǫ D ˛ C

nX
iD1

xi (77)

Ǒ D ˇ C

nX
iD1

.1 � xi/ (78)

To see this, update Ox0 and On0 as above and compute Ǫ and Ǒ from the definitions.

The big picture

‘ Exponential families and conjugate priors can be used in many graphical models. Gibbs
sampling is straightforward when each complete conditional involves a conjugate “prior”
and likelihood pair.

‘ For example, we can now define an exponential family mixture model. The mixture
components are drawn from a conjugate prior; the data are drawn from the corresponding
exponential family.
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‘ Imagine a generic model p.x1Wn; z1Wn j˛/. Suppose each complete conditional is in the
exponential family,

p.zi j z�i ; x; ˛/ D h.zi/ expf�i.z�i ; x/>zi � a.�i.z�i;x//g: (79)

Notice that the natural parameter is a function of the variables we condition on. This is
called a conditionally conjugate model. Provided we can compute the natural parameter,
Gibbs sampling is immediate.

‘ Many models from the machine learning research literature are conditionally conjugate.
Examples include HMMs, mixture models, hierarchical linear regression, probit regression,
factorial models, and others.

‘ Consider the HMM, for example, but with its parameters unknown,

[ graphical model ]

Notice that this is like a mixture model, but where the mixture components are embedded in
a Markov chain.

Each row of the transition matrix is a point on the .K � 1/-simplex; each set of emission
probabilities is a point on the .V � 1/-simplex. We can place Dirichlet priors on these com-
ponents. (We will talk about the Dirichlet later. It is a multivariate generalization of the beta
distribution, and is the conjugate prior to the categorical/multinomial distribution.)

We can easily obtain the complete conditional of zi . The complete conditionals of the
transitions & emissions follow from our discussion of conjugacy.

Collapsed Gibbs sampling is possible, but is quite expensive. One needs to run forward-
backward at each sampling of a zi .
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