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Abstract—We study the impact of random noise (queueing delay) on the
performance of a multicast session. With a simple analytical model, we
analyze the throughput degradation within a multicast (one-to-many) tree
under TCP-like congestion and flow control. We use the (max,plus) formal-
ism together with methods based on stochastic comparison (association and
convex ordering) and on the theory of extremes (Lai and Robbins’ notion
of maximal characteristics) to prove various properties of the throughput.

We first prove that the throughput obtained from Golestani’s determin-
istic model [1] is systematically optimistic. In presence of light tailed ran-
dom noise, we show that the throughput decreases like the inverse of the
logarithm of the number of receivers. We find analytically an upper and
a lower bound for the throughput degradation. Within these bounds, we
characterize the degradation which is obtained for various tree topologies.
In particular, we observe that a class of trees commonly found in IP multi-
cast sessions [9] (which we call umbrella trees) is significantly more sensitive
to network noise than other topologies.

I. INTRODUCTION

TCP-friendly congestion control has been advocated by the
IRTF Reliable Multicast Research Group in the past [13], where
a TCP-friendly flow is a flow that competes “fairly” with TCP-
connections. Several recent papers focused on a TCP-friendly
solution for the control of multicast [10], [11], [12]. In particu-
lar, Golestani has made some fundamental observations on mul-
ticast flow and congestion control in [1] using a deterministic
model.

The present paper goes a step forward from Golestani’s in
providing an understanding of further properties of TCP-like
congestion control in a network with random noise. This step
is of practical importance in that it establishes the dependence
of a multicast session throughput on the number of receivers,
and consequently refines observations realized with a deter-
ministic model. Since multicast deployment will most prob-
ably be pushed by single source applications with high band-
width requirements and a large number of receivers, it is im-
portant to check whether TCP-like congestion control does not
in fact force multicast sessions to suffer very low bandwidth.
Bhattacharyya, Towsley and Kurose [16] analyzed the impact
of TCP-like congestion control on the throughput of a multi-
cast session. They showed that for loss based additive-increase
multiplicative-decrease algorithms, there is a severe degradation
of throughput for large multicast groups.

We generalize the findings in [1] and [16] by showing that
even in the case of an ideal TCP control where the flow control
window size is kept equal to its maximal value, there is a se-
vere throughput degradation within a one-to-many multicast tree
when the group size grows. Intuitively, the session throughput
is expected to decrease when the number of receivers increases
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for the following two reasons:

« Due to the stochastic assumptions, when a new receiver joins,
it can add a new link whose bandwidth is less than that of any of
the links already present in the tree.

o Due to the fact that the congestion control mechanism is based
on informations stemming from all receivers, slow receivers will
”slow down” the sender.

In other words, the higher the number of receivers, the higher
the chance that one of them is slow enough to affect the global
performance.

The influence of the tree topology on throughput that we es-
tablish analytically is another key contribution of this work.

We have chosen to model a multicast session as follows:
packets are sent by a unique sender located at the root of a set
of routers organized as a tree to a set of receivers located at the
leaves of this tree. This tree will be referred to as the forward
tree.

The transmission is controlled by a “TCP-like” congestion
control mechanism where each receiver sends acknowledge-
ments back to the sender, and where the sender throughput is
controlled by a sliding window mechanism.

We have chosen to model a homogeneous tree, i.e. each re-
ceiver is equally distant from the source, and all routers with the
same level in the tree have the same service time distribution.
This assumption allows us to design a simpler model without
losing the properties we want to observe.

The model captures congestion via the queueing delay that
each packet experiences in each router it passes through. In
particular, the fluctuations due to the processing of packets of
other (unicast or multicast) connections sharing the same inter-
face of the router are represented by random service times for
packets of the reference multicast connection. Our random ser-
vice times are assumed to be independent in time and space, and
light-tailed (i.e. the tail decreases faster than a negative expo-
nential function). The queuing strategy is assumed to be FIFO.
Within this framework, the sender and the receivers are modeled
as routers, possibly with different mean delays and different dis-
tributions.

For reasons that have been already explained (i.e. we are not
interested in the effect of losses, but only in the effect of an ideal
flow control having reached its maximal window size), we will
assume that all routers have infinite buffers and consider that the
network is lossless and that the window size is fixed.

All the assumptions that we make about the network (homo-
geneity), about transmission control (no losses, window size al-
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ways equal to its maximal value) and about noise (light tailed)
have been carefully selected to provide an optimistic network
environment. We will show that even in this favorable context
there is a severe decrease of the throughput when the number of
receivers increases.

To the best of our knowledge, this work is the first to ad-
dress analytically the question of multicast session throughput
degradation due to network noise (queueing delay), for different
tree topologies, in a TCP-like (single-rate) control environment.
Although we limited this first study to some simple cases, we
believe that our mathematical methodology can be expanded to
analyze more general cases (e.g. adaptive window, heavy tailed
noise, non-homogeneous trees or windows) as discussed in the
conclusion.

The paper is structured as follows: in Section II, we build
our analytic model on the (max,plus) formalism [3], [4], [5]. In
Section III, an algebraic simulator is derived from the model.
Simulations show that the throughput obtained from Golestani’s
deterministic model [1] is systematically optimistic. We study
throughput degradation for a large number of receivers and for
different tree topologies. We further generalize our simulation
results with the help of the (max,plus) model. In Section IV,
we analyze the model using the notion of positive correlation
(also called association), as well as the notion of maximal char-
acteristics (Lai and Robbins). In the presence of a light tailed
random noise, the throughput is shown to be upper and lower
bounded by functions that decrease like the inverse of the loga-
rithm of the number of receivers. This qualitative result explains
the general shape obtained by simulation for throughput degra-
dation. Within these bounds, we characterize the fine structure
of degradation depending on the tree topology. We analyze three
different families of tree topologies. First, we analyze classical
binary trees. We then consider a class of trees commonly found
in IP multicast sessions, [9], [14], which we call umbrella trees.
We show that this class of trees is significantly more sensitive
to network noise than other topologies, and that in some cases,
these topologies reach the lower bound. We finally character-
ize the throughput degradation curve for a class of optimal trees
called “reverse-umbrella” trees. The theorem proofs that cannot
be found in this article are given in [17].

II. (MAX,PLUS) REPRESENTATION

We first introduce the (max,plus) algebra, show how it can be
used to represent a network on a simple example, and apply this
representation to multicast.

A. Introduction to the (max,plus) Algebra

We will first consider the scalar algebra, namely the set
Riax = R U {—00}, which we endow with two operations that
are different from the usual ones : the max operation (denoted
V) replaces the usual addition, and addition, with the convention
(Va € Rpax, —00 +a = —00), replaces the usual multiplication.

Note that this structure has all the properties required to make
a commutative semi-ring : associativity, commutativity, identity
elements', and distributivity (Va,b,c € Rpax,a + (b V ¢) =
(a+Db)V(a+c)).

Lfor VV, —oo that we will denote &, and for +, 0 that we will denote e.
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Since (Riax,V,+) is a semi-ring, we can construct matrix
operations as in the conventional algebra, with the addition of
matrices obtained by term by term maximization, and multipli-
cation defined by the rule : (AB); ; = maxy(A; ; + By ;). We
will denote € the matrix filled with € everywhere, and I the iden-
tity matrix (e on the diagonal and € everywhere else).

Norm Let ||.|| denote the matrix norm ||A|| = max; j(4A; ;).

B. (max,plus) Representation of a Network

We illustrate the (max,plus) modeling of a network via a sim-
ple example : a point-to-point end-to-end connection through L
routers (numbered 1 to L) with window flow control with a fixed
size window W (this model and its multicast extension were in-
troduced in [6]). The sender is incorporated into the first router,
and the receiver into the last router. The multicast model we will
present in section II-C is a simple extension of this preliminary
example.

Each router is represented as a FIFO queue with an infinite
buffer? and a random service time for each packet of the con-
nection. As explained below, the service time includes the delay
due to the processing of certain packets of other connections
present in the router. Assuming that the connection under con-
sideration stabilizes, it is natural to make the assumption that
the service times of our router are identically distributed. We
will also assume service time independence for the sake of sim-
plicity, i.e. service times for different routers in the network are
independent and the sequence of service times on a router is
made of independent and identically distributed random vari-
ables. This assumption will be critical for the type of degrada-
tion that will be established in the present paper; however it can
be significantly weakened for many other aspects like the rep-
resentation of the network via products of random matrices and
the subsequent characterization of throughput.

()

We will denote sy, the service time of the m-th packet of the

controlled connection on router ¢, and 1;5,? the time when router
1 has completed the processing and forwarding of packet m.

« Router ¢ > 1 starts processing packet m as soon as it has fin-
ished processing packet m — 1, and the upstream router has for-
warded packet m. After it has started processing this packet, s,(ﬁ)
units of time are still required for processing it. This process-
ing time actually includes the processing time of all the packets
of the other connections interleaved between packet n — 1 and

packet n of the reference connection. So we have fors > 1 :
V) = (a;i,ill vy 4 50,

o The sender (considered as router ¢ = 1) sends packet m as
soon as it has finished with packet m — 1, and provided that
the window control allows packet m to be sent (this translates
the assumption that the source is saturated, namely it always has
packets to send). So that we have :

37%) = (371(71)71 v xsquw) + Sg)-

2Note that buffers being of infinite size, no loss occurs. As a result, the win-
dow size is assumed to reach its maximal value and to remain constant. The
effect of congestion control is expressed by the variations of service times in
routers.
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Let X,,, be the vector of dimension L with entries (m%))lgig L
and Y, be the block-vector of dimension LW with blocks
Xy Xom—1,-++ , X;n—w+1. We can capture the dynamics of
the network by a (max,plus) linear recurrence

ey

Yy = the vector with all its coordinates equal to e
Yo =P,Y, 1 form >0,

where the matrix [P,,, has the following block structure (each
block is a square block of dimension L):

Sm. € ... € W,

I e ... & ¢
P, = | € 1 . i ],

: T

e ... g I g

S%) € € €

s#)%—sg,%) s%) € €
Sm =

s$)+...+s£f) 55,5)

o W,, represents the window control mechanism. In this case
we have (W,,,); ; equal to ¢ if j # L and to s%) + -+ 557?
i1=1,...,Landj = L.

e S,, represents the forwarding mechanism in the network, and
(Sim)s,; is more generally given by the maximum over all paths
leading from ¢ to 7 of the sum of service times for packet m on
the path from router 5 to router ¢ (including both ¢ and 7).

Note that if service times are independent and identically dis-
tributed, then the matrices (P,,),, are also independent and
identically distributed; we can then apply Corollary 1 (Appendix
A), which gives the existence of lim,, w = < both in
expectation and with probability 1. + is called the Lyapounov
exponent of this sequence of matrices. Since ||Y,,,|| represents
the epoch when packet m has arrived to its destination, % is
therefore the average throughput, i.e. the total amount of data
transmitted since the beginning of the session divided by the du-
ration of the session. In the following section, we extend this
model to multicast.

for

C. Representation of Multicast Flow Control

A single source broadcasts packets over a unidirectional tree
to NV receivers. Each node in the forward tree simultane-
ously duplicates and forwards each packet on the downstream
branches. Acknowledgements are forwarded back to the source
through a backward tree which is a mirror version of the for-
ward tree, which we assume to be functionally independent of
the forward tree. In the backward tree, the ack of a packet only
arrives in router ¢ when the latest of the acks of the same packet
have been sent by the routers upstream. It is then transmitted
by router ¢ after some queuing delay. The aggregation of ac-
knowledgements in each router of the backward tree allows one
to take care of the implosion problem (see [1]). The case of a
binary tree is shown in Figure 1.

The flow control is enforced by the sender; it is again based
on a sliding window mechanism, of constant size W: the sender
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only sends packet n + W when the ack of packet n has been
received from the final router of the backward tree.

We have chosen to model homogeneous trees only. Homo-
geneity means that the path from the sender to each receiver is
statistically the same for all receivers, i.e. there is the same num-
ber of router, and the service time distribution is the same for all
routers of the same level®.

We will still denote L the total number of routers in the net-
work, and D the depth of the forward tree. For receiver ¢, we
will denote f(1,%), f(2,3), ..., f(D,1) the different routers on
the path from the sender to this receiver in the forward tree,
and f(D + 1,7), f(D + 2,i), ..., f(2D,i) denote the dif-
ferent routers in the backward tree transmitting acknowledg-
ments from receiver ¢ to the sender. By definition, the path of
receiver i is the sequence f(1,i), f(2,4), ..., f(2D,). For
router f(d,i), we denote s%f (@9) the service time of the n-th
packet on this router.

With this notation

Sr(é) = S%(Li)) 4t S%(ZDJ)) )
is the (minimal) round trip time (RTT) of packet m on the path
that contains receiver .

Homogeneity is an important difference with the assump-
tions in Golestani’s model. Given his conclusion that receivers
should have a window size proportional to their distance from
the source, it makes sense to consider a homogeneous tree with
a single window.

Note that homogeneity allows for quite complex tree struc-
tures. Homogenous trees are complex enough to illustrate the
properties we want to stress. They also make the comparisons
between different topologies easier.

The network model described above can be written in a way
similar to that of Section II-B. Let X, be the R,,,, vector of
dimension L where entry ¢ is the departure time of packet m
from router <. The first entry corresponds to the router of level
0 in the tree (the source), and the last entry corresponds to the
router of the highest level (2D), at the end of the backward tree,
which can be seen as that of the final aggregation. Let Y,,, be the
block vector of dimension LW built on top of (X,;,)men and
which captures the history of X, in the same way as above. We
have the same (max,plus) linear system for Y,,, as in Equation
(1), though with different matrices.

P,, has exactly the same block structure as before. The
block W,,, is defined as follows: if f(d,) is router [, then
(Wi )i, = maxje,q) sy ) o 5D yhere r(l) is
the set of receivers whose path contains router [, and all other
TOWS are €.

The block S, is again the maximum over all paths from I’ to
[ of the sums of the different service times (of order m) along
the path (with the maximum over an empty set equal to € by
convention).

The sequence (P, )men is again i.i.d., which allows us to de-
duce from Corollary 1 the existence of the Lyapounov exponent,
which is given by lim,,, ”2”” and which represents the in-
verse of the averaged throughput of the connection.

3two routers in the graph have the same level if they are equally distant from
the sender.
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Fig. 1. The “forward and backward” graph

III. ALGEBRAIC SIMULATION

The algebraic simulator described below does the same job
as a discrete event simulator. Its advantages are twofold: (a)
since this type of simulation consists in products of matrices
and vectors, it is of low complexity, which is important when the
number of receivers becomes large, and (b) the same formalism
is used in the simulation and in the analytical sections.

A. Description of the Simulator

We can compute the Lyapounov exponent which is the in-
verse of the average throughput for the connection, and which
can be obtained from the simulator as the almost sure limit v =
lim,, 00 w In practice, we can estimate y by || Y|/ M for
a large enough value of M. The algebraic simulator samples
different random variables for service times in the routers, then
builds the matrix [P, and multiplies the current value of Y by P.
After M steps, we have Y}, and hence a reasonable approxi-
mation of y (if M is chosen properly). Preliminary convergence
studies that we made revealed that in most of the simulation
runs, we can limit ourselves to M = 400 steps in order to have
a good approximation of the Lyapounov exponent.

As far as the simulation is concerned, there is a natural com-
putational trade-off between the accuracy of the estimation of
the Lyapounov exponent and the simulation of multicast groups
with a large number of receivers. The accuracy of the throughput
estimator requires the simulation of a large number of packets,
or equivalently the computation of the product of a large num-
ber of matrices, whereas large groups implies the manipulation
of large matrices. In order to simulate large multicast groups,
we had to accept moderately accurate estimates (i.e. rather large
confidence intervals) for the Lyapounov exponents. This choice
results in rather non-smooth shapes for most of the simulation
curves produced below. However, as we see in the next section,
this is sufficient to estimate the general shape and the relative
ordering between the curves in question.
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A.1 Modeling the Topology

In addition to the homogeneity assumption that we stressed
in the last section, we will further assume that all service times
in the backward tree are zero (i.e. as soon soon as all copies
of packet m have reached their receivers, the sender instanta-
neously receives the acknowledgement of packet m).

Let us first consider a complete binary tree with height D and
with total number of leaves 20).

We need first to vary the number of receivers of a multicast
session to make it possible to study how the throughput varies
with the size of the group. For every binary tree of size 27, we
consider a set of IV ’active’ receivers which is a subset of the
leaves of the complete binary (forward) tree (N < 27). For
this we simply set the service times to be equal to zero in all
the routers that do not forward packets to an active receiver. So
we can use the general equations for the complete binary tree
with these special values of the service times to analyze the sub
binary tree corresponding to this subset of IV leaves.

CcL FO UL

Fan-Out Unicast Session at the end

Common links

Fig. 2. Trees generic topology

The tree topologies we study are represented Figure 2. These
topologies consist of three parts :
o A first set of C'L links which is common to all receivers.
« A Fan-Out whose total depth is F'O. The first step of this fan-
out is k-ary (degree* k for the first node of the fan out), all the

4The method to emulate a k-ary fan out in binary trees consists in starting the

binary expansion before the real fork and in using appropriate values for service
time ensuring that this represents the desired fork.
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other fan-outs are binary (degree 2 everywhere else).

o A unicast transmission of depth U L (unicast in the sense that
there is no duplication of the packet in this part of the tree, and
no link shared by different receivers).

Using this parametric representation of tree topologies, we sim-
ulate three types of trees represented on Figure 3. In addition to
complete binary trees, we consider :

o Umbrella Trees : these trees end with a long unicast transmis-
sion after a short fan-out (large value of U L). The limiting case
is that with one independent path from the source to each re-
ceiver. It is characteristic of a multicast tree where the receivers
only share few links. This kind of topology is identified in [9],
[14] as being often found in Mbone sessions.

« Reverse Umbrella Trees : packets are forwarded first along
a long common path, and then a short fan out ends the trans-
mission (large value of C'L). Intuitively this kind of topology is
optimal, as receivers behaviors differ only by few links.

These categories will be more precisely defined and analytically
studied in Section IV-C.

\ /

Umbrella Tree Complete binary tree Reverse Umbrella Tree

Fig. 3. Fundamental types of tree topologies observed

B. Average Throughput vs. Number of Receivers

This section focuses on the degradation of performance (i.e.
increase of the Lyapounov exponent) when increasing of num-
ber of receivers in a multicast group.

We start the simulation by taking one active receiver in a bi-
nary tree, and by computing the associated (max,plus) linear re-
currence on Y in order to estimate y. Then we pick another re-
ceiver in the tree, add it to the current tree and compute the same
simulation (which gives the value of +y for two receivers). Then
we progressively fill the tree with more and more receivers.

We simulate different ways of filling in the tree. “Best Fill-
ing” consists in starting from receiver 1 (numbers refer to Figure
1) and taking at each step the “next” receiver in the order sug-
gested by the numbering. We also consider "Random Filling”,
where each new receiver to join is chosen randomly.

Simulation results are shown on Figures 4 to 10. The service
times in the routers follow an exponential law with the same
parameter (A) for each router in the network, so that the homo-
geneity condition is satisfied. In each simulation, A is chosen in
such a way that the sum of the service times along a path from
the sender to any receiver has a mean value equal to 1 (A = D).

Note that for homogeneous trees with deterministic service
times, there is no dependency of the throughput on the num-
ber of receivers, as each receiver has the same round trip time
and behaves synchronously with other receivers in the multi-
cast group. For each plot, we have represented the value of
the throughput in the deterministic case as found by Golestani,
which will be equal to 1 for this choice of A.
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deterministic case

Tree : CL=0, FO=6, UL=0

09 Window =12 1

0.8 | 1

Throughput

0.7 Light Tailed Noise case

05 ! ! ! ! ! !
1 10 20 30 40 50 60

Number of Receivers

Fig. 4. Average throughput vs. number of receivers in a binary tree with light
noises.

Figure 4 is obtained by simulating a complete binary tree of
length 6 (CL = 0,FO = 6,UL = 0), with a window of size
12. Each router of the tree has an exponential service time with
mean value 1. The feedback tree has a null service time on all
routers.

The first important observation is that the average throughput
decreases like the inverse of the logarithm of the number of re-
ceivers. This is completely different from what is obtained with
a deterministic approach which seems to give a pretty optimistic
evaluation of the throughput (represented by the horizontal dot-
ted line). This observation will be verified analytically in the
next section.

The important throughput drop between 1 and 2 receivers can
be explained by the homogeneous nature of the tree that makes
that the second receiver joins the tree with a path of length
CL + FO + UL. Then the throughput keeps decreasing sig-
nificantly until 20 participants. Between 40 and 60 receivers,
the throughput stabilizes around 50% of the deterministic case.

Another important remark is that even when there is only 1
receiver, the throughput obtained by the stochastic model is sig-
nificantly less than that of the deterministic model. For a theo-
retical explanation based on convex ordering, see section IV-A
below.

The same kind of throughput degradation has also been ob-
served in [16] under different assumptions.

B.1 Influence of the Noise on the Throughput

Before further investigating the shape of the throughput
degradation, we have to verify that the shape of the degradation
is not a direct consequence of the nature of the network noise.

Figure 5 gives throughput as a function of the number of
receivers for service times belonging to the class of (bounded
support) truncated exponential distribution functions. Since the
mean values are not preserved by truncation of a given exponen-
tial density, the relative positions of the curves is not particularly
meaningful.

So, the most interesting remark to be made bears on the shape
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deterministic case

Tree : CL=0, FO=6, UL=0
Window = 12

Bounded Service Time Bound =2 -----—-

0.9 | Bounded Service Time Bound =3 -------- 1
Bounded Service Time Bound =5
Unbouded Service Time ———-
08 | I e N T U S

Throughput

0.6

05 I I I I I I

Number of Receivers

Fig. 5. Average throughput vs. number of receivers in a binary tree with
bounded and unbounded light noises.

of the curves. We observe the very same logarithmic decrease as
in the bounded case. This is particularly clear when looking at
the case where the truncation threshold is large (i.e. equal to 5),
which leads to throughputs that are quite close to the unbounded
case. Thus, we can conclude from these curves that the shape of
the degradation is not bound to the exponential assumption per
se. Our conjecture is rather that all distribution functions with a
tail bounded from above by a negative exponential function lead
to such a decrease provided variance is large enough. For heav-
ier tails, (e.g. Pareto tails) preliminary results seem to suggest
that the growth of the Lyapounov exponent is polynomial. So,
the bounded support and the light tail cases are qualitatively the
same, at least when variance is not too small, and this generic
case seems to be the most favorable one when compared to heav-
ier Pareto type tails.

In the following simulations, we use unbounded service
times.

B.2 Analysis of Various Network Parameters

In order to understand the impact of network parameters on
the throughput degradation, we have varied network parame-
ters. Figure 6 shows how the throughput decreases for vari-
ous tree depth values. Trees being homogeneous, and service
times being here all with the same distribution, tree depth in-
fluences the throughput by the fact that each receiver joins the
tree with a path whose length is the maximum tree depth (i.e.
CL+ FO 4+ UL). The deeper the tree, the faster the throughput
decrease. We have chosen a default size of 6, which allows us
to simulate a sufficiently high number of receivers.

Figure 7 focuses on the influence of the window size. We
have chosen 12 as default value; this value is sensible and it
keeps simulation times low enough.

We finally checked (Figure 8) the influence of the filling algo-
rithm on throughput degradation. As expected, randomly filled
trees suffer a more severe throughput decrease than best filling
trees. This difference is easy to explain. In the random filling
approach, adding a new receiver generally adds more network
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deterministic case

Tree : CL=0, UL=0

0.8 Window =12 1

Throughput

05 I I I I I I

Number of Receivers

Fig. 6. Throughput vs. number of receivers for different tree depths.

T T
deterministic case

08 Tree : CL=0, FO=6, UL=0 |
Window = 14 ————
Window = 12 ——————-
ooy Window =8 -------- i
Window = 4
Window =2 ——-~
5
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(=2
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=
\\
i
04 R |
| .,
\ ; .
! ’ ‘
0.3 \\\ i
02 : /'7"/‘_ B SN S 1o P P !
1 10 20 30 40 =0 pos

Number of Receivers

Fig. 7. Throughput vs. number of receivers with varying window size.

links than in the best filling approach, where a new receiver sys-
tematically adds the minimum possible number of links.

C. Analysis of the Tree Topology

We now simulate the tree topologies described in Section III-
A.1 with window size equal to 12 and with a random filling
technique. The total depth of the tree is always equal to 6. We
only vary the value of CL, FO, and U L with the sum being 6.
In a deterministic model, all trees of same length would have
the same performance (depending only on the round trip time).
Figure 9 plots various umbrella trees and Figure 10 plots various
reverse-umbrella trees. In both case, the binary tree case is given
as a reference.

First, varying the topology of the tree significantly influences
(up to 20%) the throughput. The second observation is that
reverse-umbrella trees perform systematically better than binary
trees, themselves performing better than umbrella trees.

We also observe that the closer the fan-out from the receivers,
the higher the throughput. Thus, trees where receivers share
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approaches.
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Fig. 9. Throughput vs. number of receivers in the case of umbrella trees.
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Fig. 10. Throughput vs. number of receivers in the case of reverse-umbrella
trees.
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few links are much more sensitive to the number of receivers in
the group. The throughput of an umbrella tree has already de-
creased to 78% of the case with one receiver for a group made
of 7 receivers, while a reverse-umbrella tree reaches the same
throughput for 19 receivers. A throughput decrease of 81% (still
compared to the case with one receiver) is reached with an um-
brella tree for 3 receivers; with a binary tree, the same rate in
obtained for 7 receivers and with a reverse umbrella tree for
10 receivers. For a group with three receivers, the throughput
degradation (still compared to the case with one receiver) is 36%
higher for an umbrella tree than for a binary tree. This observa-
tion is very important as the current Internet topology seems to
favor umbrella trees. Note that such trees were also shown to be
optimal in terms of network resource consumption [2].

IV. MATHEMATICAL ANALYSIS OF THROUGHPUT

In this section our goal is first to give mathematical arguments
substantiating the growth of the Lyapounov exponent in In(N)
that was observed in the simulations. Second, we give mathe-
matical arguments explaining why and how certain trees or cer-
tain situations should compare in a predictable way.

In order to characterize the throughput in our model, we use
a few basic notions of stochastic comparison : convex order-
ing which will help us to compare the deterministic case and
the random case; the notion of association of random variables
which will help us to express the correlation between differ-
ent receivers; lastly the notion of maximal characteristics which
comes from the theory of extremes, and which will allow us to
get explicit bounds on the performances.

A. Comparison with the Deterministic Case

Proposition 1: Let A and B be two random Ry, matrices.
Then forall i and j : (E[AB]); ; > (E[A]E[B]); ;, whichimplies
IE[AB])| > [E[AJE[B]|.

Proof: We just need to verify this formula for the two ba-
sic operations. This is clear for the addition; concerning the
max operation, for all random variables X and Y with value in
Rmax, we have E[max (X, Y")] > max(E[X], E[Y']) by a direct
convexity argument. |

Let now P, be the matrix describing the same network as
above but this time when replacing each random service time by
its mean value. We have P,,, = E[P,,] < E[P,,] and so

Yo =P .. .P1Yy < E[P,]...E[P]Yo
< EP,...P1Yo] =EY,], 3)
which implies ¥ < «y. Hence, Golestani’s deterministic model is
actually proven to give the best possible throughput within the
range of all stochastic models of the same class and with the
same means.

B. Bounding Throughput Degradation

We now analyze the way throughput decreases when new re-
ceivers join the group.

B.1 Upper Bound

Theorem 1: Consider a network with exponential service
times in routers; then « is bounded from above by a function
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that can be expanded as
RTTIn(N)(1 + o(1)) for N — +o0, “4)

where N is the number of receivers, RTT is the average mini-
mal round trip time of a receiver (RTT = E[S{l) ], where Sil)
is defined in (2)).
Proof: We have
Yol _ [P PrYoll o [Ponfl + -~ 4 [P ]|
m m - m

The strong law of large numbers shows that with probability 1,

PRl 4+ |P
v tim Pl I g

m——+00

We now use the interpretation we have on the elements of P;.
The largest element in [P; is the maximum of the sums of the
service times of packet 1 along paths from the source to the last

router, that is ||P ]| = maxi:l..,N(Sii)).
The random variables SY)’ i=1,...,N are associated [8],
so that

7 < B[Py ) = B[ max (5")] < B[, max (5,")

where the random variables Sfi) are independent, and for all

7, Sii) and Sfi) have the same law (for more details, see the
appendix of [17]).

Using the homogeneity assumption (II-C), we have
(ggf(lﬂ')) 4t §§f(D,i)))]

E[max SY)] = [E[max
(3 (3

(£(1,2))

< E[max 3 5P,

—|—---—l—IEI[m;c'xxs1
For every max we can apply Corollary 2, so that we have the
sum of D functions that can be expanded as In(N)(1 + o(1))
multiplied by E[s%f 1) l,.-. ,E[sgf (D)) ], respectively, so that
the sum can be expanded in the same way with a multiplicative
constant equal to E[s\/")] 4 ... 4 B[s{/ P = g5V m

This upper bound can be reached, this is the case when the
window size is W = 1 and when we have an umbrella tree (tree
made of very independent branches, which corresponds to the
least aggregation (see Section IV-C)).

B.2 Lower Bound

Theorem 2: Consider a network with exponential noise in
routers, and assume that receivers are distinct (ie. the last link
for every receiver is different); then  is bounded from below by
a function that can be expanded as

]E[s(D)]

In(N)(1+ o(1)) for N — +o0, ®)

where N is the number of receivers, W the window, and sP) a
typical service time in a router of level D (the last routers before
receivers), which is by assumption the same for all receivers.
Proof: Let us consider the packets W,2W, 3W,.... Since
window has a fixed size, packet kW cannot start until the ac-
knowledgements of packet (k — 1)WW have arrived from all re-
ceivers (which is the definition of [|Y(;_1)w||). Since we then
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need to forward packet kW from the sender to all receivers to
reach time || Yw ||), we have :

IViw | 2 Vgemnyw | + max SE.

So that we have, using 7 = lim;,—, 4 %,
V2 L lim maXizl"'N(SY(/Yl)) +--+ maXi:l_._N(ST(,?W)'
m—+00 m

Now, as (max; Sr(,?w)meN are i.i.d random variables, the law
of large number gives us the inequality :

E[maxi:L,,N(S{i))]
o ) (6)

If RTTs were independent for all receivers, we would be able
to conclude immediately that there is an asymptotic behavior in
In(V). But this is not true as the RTTs of two receivers are made
of a first common term which is the sum of the service times of
the common routers they use from the source and of a second
term, which is independent for each receiver.

Now for each receiver, there is at least a link that belongs only
to the path from the source (this is indeed the last link). These
links are supposed to have independent service times with the
same exponential law s so that, applying Corollary 2, Equation
(6) leads to the relation of the theorem. |

It is possible to have a better lower bound for  under some
additionnal assumptions on the tree as we will see in the next
subsection. Again this bound is reached by a category of trees,
the perfect reverse umbrella tree (all links shared except the last
one).

Y2

C. Tree Topology Dependence : Description of Aggregation

We have been able to bound ~, both from above and from
below, by In(/N) functions. We now give a finer grain classi-
fication of tree topologies within these two bounds. The per-
formance inside the interval defined by the bound found above
depends essentially on the nature of the tree. We show that it
is possible to create a partial order on the trees allowing one to
achieve all throughputs within the interval between the lower
and the upper bound. In this section, we consider trees with N
receivers, under the assumptions of homogeneity and indepen-
dence we described earlier.

C.1 Aggregation, Partial Order

In what follows we will assume that the service times on the
backward tree are all equal to zero.

Consider two receivers ¢ and j, with paths from the source to
every of these two receivers. Forevery [ = 1,... D, the service
times s,(f:(i’l)) and s%(j’l)) are either
« the same variable - when receivers i and j share their /-th link.
o two independent variables with the same law - when paths
from the source to ¢ and j are different at a given depth, and for
all the following links in the tree.

Definition : Aggregation Due to the last statement, we can
define aggregation of receivers ¢ and j, that we will write a(i, j),
by

a(i,j) =max{l = 1...D|s/D) = sJGDY  (7)
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The aggregation is exactly the number of common service times

in the two sums ST(,? and Sr(ﬂ;); all others terms of these sums are
independent.

Aggregation indeed measures the correlation between two re-
ceivers: receivers with large aggregation appear to have similar
performances. It is possible to show that a given aggregation
characterizes a tree >.

Definition : Aggregation order We will say that a tree T is
less aggregated than another tree 7" if their aggregation func-
tions @ and o' are such that a < a’. This is of course a partial
order relation on trees. This order is compatible with the perfor-
mance of the tree as shown in the next result.

Theorem 3: If T and T" are such that a < a’, then v, < 7,.

Proof: see the appendix of [17]. |

This theorem gives us another proof for the upper and lower
bounds of Section IV-B. The upper tree® (given by a(i,j) =
D — 1) provides the lower bound, the lower tree (given by
a(i, ) = 0) provides the upper bound.

C.2 Umbrella Trees

Definition : Umbrella Tree of Class | A tree (given by its
aggregation a) is said to be an umbrella tree of class [ if we have
a < D —1. It represents a tree that finishes for every receiver by
a unicast connection of length at least [.

Umbrella trees of class [ with [ large typically correspond to
a worst case situation, as receivers share few links. We have
observed via simulation that for this type of trees, the throughput
seems to degrade more severely when the number of receivers
increases. In an umbrella tree, the lower bound for v can be
reached.

Theorem 4: Assume all service times are exponential random
variables of parameter A\. Then the Lyapounov exponent of an
umbrella tree of class [ is bounded from below by a function that
can be expanded as:

%RZ(N)(I + o(1)) for N — +o0, 8)

where R;(NN) is the unique solution (in X) of the equation

-1

Ak Xk 1
exp(—AX) (Z X ) =N )

k=0

located in the interval (0, 1).

Proof: According to Theorem 3, we just need to verify this
formula for the tree (a = [). The formula established in the
proof of the lower bound, namely

> Emaxicn v (5)7)
- w

(10)

holds. Let us look at the performance of the tree (Vi, j, a(i,j) =
). For all i, We have SY) > sgf(l’DilH)) + -+ ng(“D)).
We can then apply Corollary 3 to this sum of random variables
which has a Gamma distribution of parameter (X, ). |

5a consequence from the study of the equivalence relation 4 ~ i <
a(i,i") > [ is that we can build the tree using only the aggregation function.

6when making the assumptions that the receivers are distinct.
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It is immediate to check that for all [ > 1, the upper bound
on the throughput based on R; (9) improves on that of Theo-
rem 2 (namely it is strictly smaller). However, as shown in the
proof of Corollary 3, we have the equivalence R;(N) ~ In(N)
as N tends to oo, so that these bounds are asymptotically equiv-
alent. At first glace, one may then think that there is no real
improvement. Numerical evidence shows that for the range of
the number of receivers considered in this paper, this improved
bound is always much sharper than the previous one. For in-
stance, for the umbrella tree (CL=0,FO=3,UL=3) of Figure 9,
and for 8 receivers, the new upper bound (0.95) is much closer
to the throughput provided by simulation (0.61) than the upper
bound of Theorem 2 (2.89).

As we can see, in spite of all the optimistic assumption we
made, an umbrella tree systematically results in a severe degra-
dation of the throughput. The results observed in the algebraic
simulation, as well as the intuition we had on tree topology im-
pact, are confirmed and generalized by analytical results. Ag-
gregation seems to be a key concept, as it gives us a parametric
representation of the tree topology which allows direct perfor-
mance comparison. An important result of this study is that um-
brella trees, that are frequently encountered in the internet [9]
suffer severe throughput degradation even in the case of light
tailed fluctuation of the delay.

V. CONCLUSION

In this paper, we studied the impact of randomness (i.e.
queueing delay) on the performance of a (one-to-many) multi-
cast session in the presence of a "TCP-like” congestion control
mechanism. With a simple analytical model, we analyzed the
degradation of throughput when the size of the multicast group
increases. In addition, we studied the impact of tree topology on
the throughput of the multicast session.

In presence of a light tailed random noise, we show that the
throughput decreases logarithmically when the number of re-
ceivers increases. We analytically find an upper and a lower
bound for the throughput. Within these bounds, we characterize
the degradation depending on the tree topology. A typical sit-
uation is that where the throughput severely decreases between
2 and 20 receivers; around 40 receivers, the throughput is only
50% of what it would be with a single receiver. In particular,
we have identified a class of trees commonly found in IP multi-
cast sessions [9], [14] as a worst case of throughput degradation.
This observation is quantified by simulation and then explained
analytically.

This work analytically proves that TCP-like congestion con-
trol might be harmful with reliable multicast transmission. Con-
sequently, applications may prefer multi-rate control mecha-
nisms to single rate reliable multicast transmission. This re-
sults extends to unreliable application that may find it difficult to
manage a 50% drop in the average throughput when the number
of receivers increases.

Multi-rate (layered) control mechanisms are best suited to
multicast sessions with a large number of receivers. Rubenstein
[11] has shown that multi-rate control can preserve TCP fair-
ness with regard to TCP flows sharing the same congested node,
while not penalizing all receivers in case of localized conges-
tion. Subcasting (single group with filtering in nodes) is another
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area of investigation.

Another contribution of our work is a new analytical frame-
work that can be used to study various problem related to flow
and congestion control (in multicast and unicast environements).

In future works, we will extend and generalize our analyti-
cal framework. Extension to adaptive window size is possible
based on a generalization of the (max,plus) representation of
TCP Tahoe and Reno known for unicast [15].

In this framework, we will also study various sub-grouping
approaches and try to define new classes of congestion control
mechanism that might be applicable to unicast transmission as
well. We will also analyze how TCP-like congestion control
affect shared trees.
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APPENDICES
A. Proof of the Main (max,plus) Representation Results

We start from the following result shown in [3].

Theorem 5: let (A, )nen be a sequence of random square ma-
trices in Ry, independent with same law and with coefficients
which are either e with probability 1, or with finite expectation;
then we have :

i lA Ayt - A
im =7

m—00 m

(1)
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in expectation and with probability 1, where 7 is a constant
called the (max,plus) Lyapounov exponent of this sequence of
matrices.

Corollary 1: Under the assumptions of §II, the multicat
model is such that

12)

in expectation and with probability 1, where + is the Lyapounov
exponent of the sequence {P,}.

Proof: The matrices P, are i.i.d. so that they admit a
Lyapounov exponent. In addition, here | X,,|| = ||Vl =
PPy .. Py ]

B. Maximal Characteristics

We need an analytical tool, giving us the behavior of
maxév X, as a function of NV and of the law of X;, when the
X;’s are independent and identically distributed. The maximal
characteristics theory of Lai Robbins (described in [7]) provides
such results, with a few assumptions on the law of X; (verified
by the exponential case and the Gamma law case).

Theorem 6 (Lai and Robbins maximal characteristics) Let
(Xm)meN be a sequence of R, -valued i.i.d. random variables.
Assume that their common distribution function F’ satisfies :

Vx>0, F(z) < 1)

. —Fl(cx 13
(Ve > 1, limg 5400 %((x)) =0) (3)

Let my=inf{z > 0,1 — F(z) < 1/ N}, then we have
E[ max X;] =mn(1+ o(1)), for N — 4oo0. (14)

i=1...N
Here are two corollaries (the first of which is immediate):

Corollary 2 (exponential case) Let (X,,)men be a sequence
of i.i.d exponential r.v.’s with parameter A, then

B[ 1%5@-] = E[X;]In(N)(1 + o(1)), for N = +o0. (15)
1=1...
Corollary 3 (Gamma case) Let (Xm)meN be a sequence of
i.i.d Gamma random variables with parameter (\,[) where A >

0 and [ an integer larger that or equal to 1; then for N — 400,

Elmax;—1 n X;] = Ri(N)(1+ o(1))

(16)
= %ln(N)(l + 0o(1)),
for R;(N) function defined by (9).
Proof: The distribution function is: F z — 1 -

( 2_:10 )‘I;j”k ) exp(—Ax). F verifies the conditions (13), so that
we can apply the previous result, and the formula for mpy gives
the definition of R. The fact that R(N) ~ + In(IV) is immediate

from (9) when taking the logarithm on both sides. |
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