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ABSTRACT

Protecting Commodity Operating Systems
through Strong Kernel Isolation

Vasileios P. Kemerlis

Today’s operating systems are large, complex, and plagued with vulnerabilities that allow

perpetrators to exploit them for profit. The constant rise in the number of software weak-

nesses, coupled with the sophistication of modern adversaries, make the need for effective

and adaptive defenses more critical than ever. In this dissertation, we develop a set of novel

protection mechanisms, and introduce new concepts and techniques to secure commodity

operating systems against attacks that exploit vulnerabilities in kernel code.

Modern OSes opt for a shared process/kernel model to minimize the overhead of opera-

tions that cross protection domains. However, this design choice provides a unique vantage

point to local attackers, as it allows them to control—both in terms of permissions and

contents—part of the memory that is accessible by the kernel, easily circumventing protec-

tions like kernel-space ASLR and WˆX. Attacks that leverage the weak separation between

user and kernel space, characterized as return-to-user (ret2usr) attacks, have been the de

facto kernel exploitation technique in virtually every major OS, while they are not limited

to the x86 platform, but have also targeted ARM and others.

Given the multi-OS and cross-architecture nature of ret2usr threats, we propose kGuard:

a kernel protection mechanism, realized as a cross-platform compiler extension, which can

safeguard any 32- or 64-bit OS kernel from ret2usr attacks. kGuard enforces strong address

space segregation by instrumenting exploitable control transfers with dynamic Control-

Flow Assertions (CFAs). CFAs, a new confinement (inline monitoring) concept that we

introduce, act as guards that prevent the unconstrained transition of privileged execution

paths to user space. To thwart attacks against itself, kGuard also incorporates two novel

code diversification techniques: code inflation and CFA motion. Both countermeasures



randomize the location of the inline guards, creating a moving target for an attacker that

tries to pinpoint their exact placement to evade kGuard. Evaluation results indicate that

kGuard provides comprehensive ret2usr protection with negligible overhead (∼1%).

Furthermore, we expose a set of additional kernel design practices that trade stronger

isolation for performance, all of which can be harnessed to deconstruct kernel isolation. To

demonstrate the significance of the problem, we introduce a new kernel exploitation tech-

nique, dubbed return-to-direct-mapped memory (ret2dir), which relies on inherent properties

of the memory management (sub)system of modern OSes to bypass every ret2usr defense

to date. To illustrate the effectiveness of ret2dir, we outline a principled methodology for

constructing reliable exploits against hardened targets. We further apply it on real-world

kernel exploits for x86, x86-64, and ARM Linux, transforming them into ret2dir-equivalents

that bypass deployed ret2usr protections, like Intel SMEP and ARM PXN.

Finally, we introduce the concept of eXclusive Page Frame Ownership (XPFO): a mem-

ory management approach that prevents the implicit sharing of page frames among user

processes and the kernel, ensuring that user-controlled content can no longer be injected

into kernel space using ret2dir. We built XPFO on Linux and implemented a set of opti-

mizations, related to TLB handling and page frame content sanitization, to minimize its

performance penalty. Evaluation results show that our proposed defense offers effective

protection against ret2dir attacks with low runtime overhead (<3%).
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Chapter 1

Introduction

The security of a computer system can only be as good as that of the underlying Operating

System (OS) kernel [120]. By compromising the kernel, attackers can escape isolation

and confinement mechanisms, bypass access control and policy enforcement, and elevate

privileges. Nevertheless, until recently, attackers focused mostly on the exploitation of

vulnerabilities in server and client applications, which often run with administrative rights,

as they are (for the most part) less complex to analyze and easier to compromise [201, 4].

During the past few years, however, the kernel has become an equally attractive target.

Continuing the increasing trend of the previous years, in 2013 there were 355 reported kernel

vulnerabilities according to the National Vulnerability Database (NVD) [155], 140 more than

in 2012, as shown in Figure 1.1. Admittedly, the exploitation of user-level software has

become much harder, as recent versions of popular OSes come with numerous protections

and exploit mitigations [7]: the principle of least privilege [185] is better enforced in user

accounts and system services [134, 177, 176, 216], compilers offer more protections against

common software flaws [55, 146, 160], and highly targeted applications, such as browsers

and document viewers, have started to employ sandboxing [149, 154, 21, 19, 20, 136].

On the other hand, the kernel has a huge codebase and an attack surface that keeps

increasing due to the constant addition of new features [123]. Indicatively, the size of

the Linux kernel in terms of lines of code has more than doubled, from 6.6 MLOC in

v2.6.11 to 16.9 MLOC in v3.10 [53]. Naturally, instead of putting significant effort to

exploit applications fortified with numerous protections and sandboxes, attackers often turn
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Figure 1.1: Kernel vulnerabilities (per-year) according to NVD [155].

their attention to the kernel [211]. For instance, in recent exploits against Chrome and

Adobe Reader, after successfully gaining code execution, the attackers exploited kernel

vulnerabilities to break out of the respective sandboxed processes [157, 98].

Opportunities for kernel exploitation are abundant. As an example consider the Linux

kernel, which has been plagued by common software flaws, such as stack and heap buffer

overflows [40, 29, 43], NULL pointer and pointer arithmetic errors [26, 22], use-after-free and

format string bugs [44, 42], memory disclosure vulnerabilities [35, 28], integer overflows [32,

22], signedness errors [41, 33], race conditions [31, 23], as well as missing authorization

checks and argument sanitization vulnerabilities [38, 34, 39, 37].
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The exploitation of these bugs is particularly effective, despite the existence of kernel

protection mechanisms (e.g., kernel-space ASLR [66] and WˆX [208, 127]), due to the weak

separation between user and kernel space. Although user programs cannot access directly

kernel code or data, the opposite is not true, as the kernel is mapped inside the address

space of each process for performance reasons. This design allows an attacker to execute

code in privileged mode, or tamper-with critical kernel data structures, by exploiting a

kernel vulnerability and redirecting the control or data flow of the kernel to code or data in

user space. Attacks of this kind, known as return-to-user (ret2usr) [115], affect all major

OSes, like Linux [24, 27], Windows [191], and the BSDs [30, 190, 193], while they are not

limited to the x86/x86-64 architecture [36], but also impact ARM [70], DEC Alpha [76],

and PowerPC [179].

1.1 Hypothesis

Empirical evidence [68, 78, 79, 77, 73, 71, 75, 72, 75, 72, 69, 76, 74, 158, 70] suggests

that the execution model imposed by a virtual memory layout that weakly separates the

kernel from user processes makes kernel exploitation a fundamentally different craft from the

exploitation of userland software [201, 173]. To that end, we hypothesize that the security

posture of modern OSes can be improved by employing a synergy of defenses and exploit

prevention techniques, which guarantee the strong isolation between user and kernel space.

1.2 Thesis Statement

This thesis argues that compiler-assisted control-flow confinement and code diversification,

coupled with a physical memory management approach that enforces the explicit use of

page frames by different security contexts (user vs. kernel), can efficiently and effectively

protect the OS kernel against attacks that leverage the weak segregation of address spaces.
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1.3 Contributions

1. We present the design and implementation of kGuard: a compiler plugin that protects

commodity OS kernels from ret2usr attacks. kGuard operates by instrumenting ex-

ploitable control flow transfers with dynamic Control-Flow Assertions (CFAs). CFAs,

a new confinement (inline monitoring) concept that we introduced, act as “guards”

that prevent (at runtime) the unconstrained transition of privileged execution paths

to user space. Our approach does not entail additional software (e.g., hypervisor or

VMM) or special hardware.

2. We introduce two novel code diversification techniques: (a.) code inflation and (b.)

CFA motion. Both of them randomize the location of CFA-protected branches, during

compilation and at run time, creating a moving target for an attacker that tries to

pinpoint the exact placement of the fine-grained inline guards and bypass them to

evade kGuard.

3. We implement kGuard as a GCC extension, which is publicly available. Its main-

tenance cost is low and can successfully compile functional x86/x86-64 Linux and

BSD kernels. More importantly, it can be easily combined with other compiler-based

protection mechanisms.

4. We assess the effectiveness of kGuard using real privilege escalation attacks against

32- and 64-bit Linux kernels. In all cases, kGuard was able to successfully detect and

prevent the respective exploitation attempt.

5. We evaluate the performance of kGuard using a set of macro- and micro-benchmarks.

Our technique incurs minimal runtime overhead on both x86 and x86-64 Linux. Specif-

ically, we show negligible impact on real-life applications, and moderate overhead on

system call and I/O latency.

6. We expose a fundamental design weakness in the memory management (sub)system of

modern OSes, by introducing the concept of return-to-direct-mapped memory (ret2dir)

attacks. ret2dir attacks exploit the kernel’s direct-mapped RAM region(s) to bypass

existing ret2usr protection (i.e., SMEP, SMAP, PXN, PAN, KERNEXEC, UDEREF).
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7. We introduce a detailed methodology for mounting reliable ret2dir attacks against x86,

x86-64, AArch32, and AArch64 Linux systems, along with two techniques for forcing

user-space exploit payloads to “emerge” within the kernel’s direct-mapped physical

memory area and accurately pinpointing their location.

8. We experimentally evaluate the effectiveness of ret2dir attacks using a set of nine (eight

real-world and one artificial) exploits against different Linux kernel configurations and

protection mechanisms. In all cases, our transformed exploits bypass the deployed

ret2usr protections.

9. We present the design, implementation, and evaluation of an exclusive page frame

ownership (XPFO) scheme for the Linux kernel, which protects against ret2dir attacks

with negligible (in most cases) runtime overhead.

10. We make publicly available: (i) our prototype implementation of XPFO, and (ii) the

complete set of our ret2dir exploits. The latter can be used to educate the community

regarding ret2dir attacks and evaluate the effectiveness of future ret2dir defenses.

1.4 Dissertation Roadmap

Chapter 2 provides background information on virtual memory organization and kernel

exploitation, and surveys the (state-of-the-art) kernel protection mechanisms in modern

OSes. Chapter 3 covers the design, implementation, and evaluation of kGuard. Chapter 4

introduces the concept of ret2dir attacks along with a detailed methodology for mounting

such attacks in a plethora of different systems and configurations. Chapter 5 presents the

design, implementation, and evaluation of XPFO, which provides protection against attacks

that (ab)use the implicit sharing of physical memory between user processes and the kernel.

Finally, this dissertation concludes in Chapter 6.



CHAPTER 2. BACKGROUND AND RELATED WORK 6

Chapter 2

Background and Related Work

2.1 Virtual Memory Organization

Private virtual address spaces are the standard OS abstraction for separating and confining

user processes. Programs, however, cannot run in absolute isolation as they need to interact

with the OS to perform I/O, acquire or share memory, request device access, communicate

with other processes, etc. Designs for safely combining different protection domains (e.g.,

the OS kernel and user programs) range between two extremes. At one extreme, exper-

imental OSes, like Microsoft’s Singularity [101], follow a single address space design, by

placing the kernel and all user processes into a single, privileged address space and estab-

lishing boundaries using software isolation. At the other extreme, OSes that build upon

microkernel-based designs [2], such as MINIX [99] and L4 [129], confine user process and

kernel components into separate, hardware-enforced address spaces.

Commodity OSes, such as Linux and Linux-derived spin-offs (Android [94], Chrome

OS [95], Firefox OS [153], Tizen [132], Sailfish OS [105]), the BSDs (FreeBSD [203], NetBSD

[205], OpenBSD [206]), Oracle Solaris [163], and Microsoft Windows [145], adopt a more

coarse-grained variant of the latter design approach, and divide the virtual address space

into two parts; kernel and user space. The first part is assigned to kernel code and data,

kernel modules, and dynamic kernel memory, while the second to user processes (e.g.,

program code and data, heap and stack memory, shared libraries).
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In most platforms, the separation between the two parts (i.e., the user/kernel split) is

enforced by a combination of two hardware features: (i) a set of CPU modes (protection

rings) [106, 186]; and (ii) a memory management unit (MMU). The x86/x86-64 architecture

supports four basic protection rings, with the kernel running in the most privileged one (ring

0) and user applications in the least privileged (ring 3). Similarly, PowerPC and MIPS have

two basic CPU modes, SPARC has three, and ARM seven.1 The MMU, programmed using

privileged, special-purpose instructions, implements hierarchical memory protection and

ensures that memory assigned to a certain ring is not accessible by code executing in less

privileged rings. The net effect of the above is the complete isolation of kernel space from

user programs (i.e., code running in user mode cannot access the kernel directly).

Although some platforms support fully separate kernel and user address spaces, like

Oracle Solaris on UltraSPARC [139], contemporary OSes running on popular CPUs (e.g.,

x86 and ARM), employ a shared layout, in which the kernel is mapped inside the address

space of every user process. For example, in the x86 and 32-bit ARM (AArch32) architec-

tures, the Linux kernel is typically mapped to the upper 1GB part of the virtual address

space, a split also known as “3G/1G” [45, 117].2 In x86-64 and 64-bit ARM (AArch64)

the Linux kernel is placed in the upper canonical half ([0xFFFF800000000000 : 264 − 1]

in x86-64 [119] and [0xFFFFFF8000000000 : 264 − 1] in AArch64 [138]). Similar splits

are used in BSD [141], Oracle Solaris (x86) [139], and Microsoft Windows [150, 148]. This

design minimizes the overhead of crossing protection domains and facilitates fast user-kernel

interactions: when servicing a system call, or handling an exception, the kernel is running

within the context of a preempted process; flushing the TLB is not necessary [152], while

the kernel can access user space directly to read user data or write the result of a system

call.

1Modern CPUs support additional modes (rings): x86/x86-64 offers two more, colloquially known as ring

-1 (hardware-assisted virtualization) and -2 (system management mode). SPARC has up to four additional

modes (reset, error, debug, hyper-privileged), MIPS two (debug, supervisor), and PowerPC one (hypervisor).

2Linux also supports 2G/2G and 1G/3G splits. A patch for a 4G/4G split in x86 exists [152], but it was

never included in the mainline kernel for performance reasons (it requires a full TLB flush per system call).
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2.2 Kernel Exploitation

Despite the fact that both kernel code and userland software are plagued by common types of

vulnerabilities, such as stack and heap buffer overflows [43, 40, 29], NULL pointer and pointer

arithmetic errors [26], memory disclosure vulnerabilities [35, 28], use-after-free and format

string bugs [44, 42], signedness errors [41, 33], integer overflows [32, 22], race conditions [31,

23], as well as missing authorization checks and poor argument sanitization bugs [38, 34,

39, 37] (interested readers are referred to the studies of Chen et al. [17], Chou et al. [18],

and Palix et al. [166], for a detailed analysis of kernel bugs in Linux and OpenBSD), the

execution model imposed by the shared virtual memory layout, between the kernel and user

programs, makes kernel exploitation (in commodity OSes) a fundamentally different craft

from the exploitation of userland software.

In particular, the shared address space provides a unique vantage point to local attackers

(i.e., attackers with the ability to execute programs on the OS), as it enables them to

control—both in terms of contents and permissions—part of the memory accessible by the

kernel [201]. Simply put, attackers can execute shellcode with kernel rights by hijacking a

(privileged) kernel control path and redirecting it to user space, effectively invalidating the

protection(s) offered by standard defenses, like kernel-space ASLR [66] and WˆX [127, 208].

Attacks of this kind, known as return-to-user (ret2usr), can be traced back to the early

1970’s, as demonstrated by the PDP-10 “address wraparound” fault [175]. Over the past

decade, however, ret2usr has been promoted to the de facto kernel exploitation technique

in modern OSes [218, 4, 108, 68, 67].

In a ret2usr attack, kernel data is overwritten with user-space addresses, usually after

the exploitation of memory corruption bugs in kernel code [173]. Attackers primarily aim

for control data, such as return addresses [192], dispatch tables [78, 68], and function point-

ers [79, 77, 76, 73], because they directly facilitate arbitrary code execution [200]. Pointers

to critical data structures stored in the kernel’s heap [71] or the global data section [78] are

also common targets, since they allow attackers to tamper with critical data contained in

these structures by mapping fake copies in user space [75, 72, 71].
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Figure 2.1: Operation of ret2usr attacks. Kernel code or data pointers are hijacked and

redirected to controlled code or data in user space (tampered-with data structures may

further contain pointers to code).

Typically, the targeted data structures contain function pointers or data that affect the

control flow of the kernel, so as to diverge execution to arbitrary locations. The culmination

of all ret2usr attacks, as illustrated in Figure 2.1, is the following: the control/data flow of

the kernel is hijacked and redirected to user space code/data [115].

Most ret2usr exploits use a multi-stage shellcode, with a first stage that lies in user

space and “glues” together kernel functions (i.e., the second stage) to perform privilege

escalation. Technically, ret2usr expects the kernel to run within the context of a process

controlled by the attacker for exploitation to be reliable. However, kernel bugs have been

identified and exploited in interrupt service routines [151]. In such cases, where the kernel is

either running in interrupt context or in a process context beyond the attacker’s control [184,

69], the respective shellcode has to be injected in kernel space or constructed using code

gadgets from the kernel’s executable segments using Return-/Jump-Oriented Programming

(ROP/JOP) [16, 100, 195]. The latter approach is gaining popularity in real-world exploits,

due to the increased adoption of kernel hardening techniques [137, 49, 220, 127, 209, 208].
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Figure 2.2: ret2usr protection mechanisms. KERNEXEC/UDEREF, SMEP/SMAP, and

PXN/PAN prevent arbitrary kernel-to-user control transfers and pointer dereferences.

Interestingly, software bugs that are only a source of instability in user programs, like NULL

pointer dereferences, can have more dire effects when found in an OS kernel that weakly

(asymmetrically) separates kernel from user space. Brad Spengler [198] demonstrated how

a NULL pointer dereference bug, triggered by invoking a system call with specially-crafted

parameters, can be (ab)used to perform a ret2usr attack.

Earlier, it was generally thought that such flaws could only be used to perform denial-

of-service (DoS) attacks [65], but Spengler’s exploit showed how mapping asymmetrically-

separated code segments (i.e., kernel code and data are inaccessible from code running in

user mode, but the kernel has complete and unrestricted access to the whole address space,

which includes user code and data), with different rights, inside the same scope can be

exploited to execute arbitrary user code with kernel privilege. A detailed analysis of the

kernel bug exploited by Spengler, along with a step-by-step walk-through of a NULL function

pointer vulnerability [25] that affected all Linux kernel versions released between May 2001

and August 2009 (v2.4.4/v2.6.0 – v2.4.37/v2.6.30.4), can be found in Appendix A.
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2.3 Kernel Protection

Return-to-user attacks are yet another incarnation of the confused deputy problem [97].

Due to the weak virtual address space separation, a user cheats the kernel (deputy) to

misuse its ambient authority and execute (or access) arbitrary, non-kernel code (or data)

with elevated privilege. Given the multi-architecture [76, 179] and multi-OS [67, 193, 191,

190, 30, 58] nature of the problem, several defense mechanisms exist for it. In the remainder

of this section, we discuss ret2usr defenses that are available in modern OSes and considered

standard practice in kernel protection, with the help of Figure 2.2.

2.3.1 mmap

The first ret2usr mitigation strategy adopted by Linux [61, 180], {Free, Open}BSD [204],

and Microsoft Windows [144], is based on restricting the ability to memory-map the first

pages of the virtual address space (typically 4KB – 64KB). This is achieved by modifying the

mmap system call (or VirtualAlloc in Windows [147]) to apply the respective restrictions

and preventing binaries from requesting low address mappings.

Unfortunately, this approach has several limitations. First and foremost, it does not

solve the actual problem, which is the weak separation of spaces. Disallowing access to

lower logical addresses is a protection scheme only against exploits that rely on NULL pointer

bugs [200, 179], as it does not defend against exploits where the control, or data, flow is

hijacked and redirected to memory pages above the forbidden region (e.g., by nullifying

one or two bytes of a kernel pointer, or overwriting a branch target with an arbitrary

value) [78, 74]. Second, if an attacker bypasses the restriction imposed by mmap, she can

still orchestrate a ret2usr attack [207]. Third, it breaks compatibility with applications that

demand access to low logical addresses [8, 217, 64, 81].

2.3.2 KERNEXEC and UDEREF

KERNEXEC and UDEREF are two features of the PaX [168] Linux hardening patch set,

which prevent control transfers and pointer dereferences from kernel to user space.
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In x86, KERNEXEC and UDEREF rely on memory segmentation3 to map kernel space into

a 1GB segment (assuming a 3G/1G split) that returns a memory fault whenever privileged

code tries to dereference pointers to, or fetch instructions from, non-kernel addresses [169].

In x86-64, due to the lack of segmentation support, UDEREF/amd64 [170] remaps user

space memory into a different, non-executable (shadow) area when execution enters the

kernel (and restores it on exit), to prevent user-space pointer dereferences. Additionally,

the shadow area is marked as non-executable to disallow control-flow transfers to user code.

As the overhead of remapping memory is significant, an alternative for x86-64 systems is

to enable KERNEXEC/amd64 [171], which has much lower overhead, but offers protection

against only control-flow hijacking attacks. KERNEXEC/amd64 is implemented as a GCC

plugin that instruments kernel code with small snippets that confine exploitable control

transfers (i.e., indirect call and ret instructions) to the upper canonical half of the vir-

tual address space. Overall, KERNEXEC and UDEREF provide comprehensive protection

against ret2usr attacks, but they are platform-specific (available only in Linux and mainly

in x86/x86-64), and require kernel patching. Yet, ret2usr attacks have been demonstrated

in non-x86 Linux architectures, including DEC Alpha [76] and PowerPC [179]. Recently,

both features were ported to the ARM architecture [199], but the respective patches added

support only for AArch32.

2.3.3 SMEP/PXN and SMAP/PAN

Supervisor Mode Execute Protection (SMEP) [87] and Supervisor Mode Access Prevention

(SMAP) [54] are two recent features of Intel processors that facilitate stronger (symmet-

ric) address space separation (latest Linux kernels support both features [220, 49]). Once

enabled, by setting CR4.SMEP and CR4.SMAP, they result into a page fault whenever an

instruction fetch (or data access) is attempted from a linear address whose entry in the

page table has the User/Supervisor bit asserted (i.e., marked as user mode page).

SMEP provides analogous protection to KERNEXEC, without relying on segmentation or

code instrumentation, whereas SMAP operates similarly to UDEREF, in absence of the

performance penalty of page table manipulation upon kernel entry and exit [152].

3In x86, UDEREF restricts SS, DS, and ES. CS is taken care by KERNEXEC.
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However, both hardware features are vendor-specific—AMD and other x86-compatible

CPU vendors have not yet announced similar extensions—and do not protect legacy systems.

Specifically, SMEP/SMAP is available only on Intel Ivy Bridge/Haswell (and later) CPUs,

and support for it was added in Linux kernel v3.5/v3.7 [220, 49], OpenBSD v5.3 [161],

FreeBSD v9 (SMEP only) [9], and Microsoft Windows v8 (SMEP only) [202]. NetBSD

and Oracle Solaris have yet to add support for both SMEP and SMAP. Likewise, ARM

introduced Privileged Execute-Never (PXN) [130] and Privileged Access-Never (PAN) [13],

two features that operate similarly to SMEP and SMAP.

2.4 Other Work

2.4.1 Control-flow Confinement

Program Shepherding [118], Strata [188], and Control-Flow Integrity (CFI) [1], employ dy-

namic binary instrumentation and binary rewriting for retrofitting control-flow confinement

capabilities into unmodified binaries. Specifically, they rewrite programs so that branch

targets are given labels, and every indirect branch instruction is prepended with a check,

which ensures that the target’s label is in accordance with a precomputed control-flow

graph (CFG). Regardless of the large performance overhead that these approaches typically

incur—Program Shepherding exhibits ∼100% overhead on the SPEC benchmark, while CFI

has an average overhead of 16% (21% when a shadow stack is used), and a maximum of

45%, on the same test suite—CFI-based techniques are not effective against ret2usr attacks.

The integrity of a label-based CFI mechanism is guaranteed as long as the attacker

cannot overwrite the code of the protected binary or execute user-provided data. However,

during a ret2usr attack, the attacker completely controls user space memory, both in terms

of contents and rights (see Section 2.2), and thereby can subvert CFI by prepending user-

provided shellcode with the respective label. As an example consider Listing A.1 and

assume that the attacker has managed to overwrite the function pointer sendpage with a

user space address. CFI will prepend the instruction that invokes sendpage with an inline

check that fetches a label ID (placed right before the first instruction of every function that

sendpage can point to) and compares it with the allowed label ID(s). If the two labels
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match, the control transfer will be authorized. As the attacker controls the contents and

rights of the memory that sendpage points at in user space, she can prepend her code

with the label ID that will authorize the control transfer.

More importantly, coarse-grained CFI schemes that rely on an imprecise CGF (e.g.,

CCFIR [221], binCFI [222], kBouncer [167]) have recently shown to be vulnerable to code-

reuse attacks [92, 15, 57, 93], and, as Petroni and Hicks [174] observed, computing in advance

a precise CFG for a modern kernel is a nontrivial task, due to the rich control structure

and the several levels of interrupt handling and concurrency of kernel code.

2.4.2 Hypervisor-based Protection

Garfinkel and Rosenblum proposed Livewire [83], which was one of the first systems to

use a virtual machine monitor (VMM) for implementing invariant-based kernel protection.

Similarly, Grizzard used a VMM for monitoring kernel execution and validating control

flow [96]. For LMBench, Grizzard reported an average overhead of 30%, and a maximum

of 74%, atop VMM’s performance penalty. SecVisor [194] is a tiny hypervisor that ensures

the integrity of commodity OS kernels. SecVisor relies on physical memory virtualization

for protecting against code injection attacks and kernel rootkits, by allowing only approved

code to execute in kernel mode and ensuring that such code cannot be modified. However, it

requires a modern CPU that supports hardware virtualization, as well as kernel patching to

add the respective hypercalls that authorize module loading. NICKLE [181] offers similar

guarantees, without requiring any OS modification, by relying on an innovative memory

shadowing scheme and real-time kernel code authentication via VMM introspection. Petroni

and Hicks proposed state-based CFI (SBCFI) [174], which reports violations of the kernel’s

control flow due to the presence of rootkits. Similarly, Lares [172] and HookSafe [215] protect

kernel hooks (including function pointers) from being manipulated by kernel malware.
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Chapter 3

kGuard

3.1 Overview

It is our belief that compiler-assisted control-flow confinement and code diversification can

effectively, and efficiently, protect commodity OS kernels against ret2usr attacks. In sup-

port of this claim, in this chapter, we present the design, implementation, and evaluation

of kGuard: a cross-platform (i.e., multi-OS and many-architecture), compiler-based solu-

tion that enforces strong address space segregation, without relying on special hardware

features [169, 87, 137] or custom hypervisors [194, 181].

kGuard instruments, at compile time, exploitable control transfers with dynamic control-

flow assertions (CFAs) that, at runtime, prevent the unconstrained transition of privileged

control paths to user space. The injected CFAs perform a small runtime check to verify

that the target address of every (privileged) indirect branch instruction is always in kernel

space, as shown in Figure 3.1. If the assertion is true, execution continues normally, while

if it fails because of a violation, execution is transferred to a handler that was inserted

during compilation. The default handler appends a warning message to the kernel log and

halts the system. We choose to coerce assertion failures into a kernel fail-stop to prevent

unsafe conditions, such as leaving the OS into an inconsistent state (e.g., by aborting an

in-flight kernel thread that holds locks or other resources). In Section 3.5, we discuss how

kGuard can be extended to support custom handlers for facilitating forensic analyses, error

virtualization [196], selective confinement, and protection against persistent attacks.
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Figure 3.1: CFA-based control-flow confinement. The inserted CFAs perform a small run-

time check to verify that the target address of every (privileged) indirect branch instruction

is always in kernel space.

After compiling a kernel with kGuard, its execution is confined to the privileged address

space segment (e.g., addresses higher than 0xC0000000 in x86 Linux and {Free, Net}BSD;

see Section 2.1). However, note that kGuard does not rely on any mapping restriction; the

previously-disallowed low virtual memory addresses can be dispensed to processes, lifting

the compatibility issues with various applications [8, 81, 217, 64]. Furthermore, the inserted

CFAs cannot be bypassed using mmap tricks [207], nor can they be circumvented by elabo-

rate exploits that jump to memory pages above the forbidden low memory region [78, 74].

More importantly, the kernel can still read and write user memory, so its functionality

remains unaffected.

3.1.1 Threat Model

We ascertain an adversary that is able to completely overwrite, partially corrupt (e.g.,

zero out only certain bytes), or nullify control data stored inside the address space of the

kernel. Note that overwriting certain data (i.e., code pointers) with arbitrary values, differs

significantly from overwriting arbitrary kernel memory. kGuard does not deal with such an

adversary. In addition, we assume that the attacker can tamper-with whole data structures

(e.g., by mangling data pointers; see Figure 2.1), which in turn may contain control data.
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Our technique is straightforward and guarantees that ret2usr attacks are prevented.

However, it is not a panacea that protects the kernel from all types control-flow hijacking

attacks. For instance, kGuard does not address direct code-injection in kernel space, nor

does it thwart code-reuse attacks that utilize ROP/JOP [100, 16]. Nevertheless, note the

following. First and foremost, our approach is orthogonal to many solutions that do protect

against such threats [126, 6, 194, 169, 107, 55]. Second, the unique nature of address space

sharing casts many protection schemes, for the aforementioned problems, as ineffective. As

an example, consider again the case of ROP/JOP or code-injection in the kernel setting.

No matter what anti-ROP [1, 126, 159], ASLR [66], or WˆX [127, 208] techniques have been

utilized, the attacker can still execute arbitrary code, as long as there is no strict user/-

kernel separation, by mapping her code to user space and transferring control to it (e.g.,

after hijacking a privileged control path).

Finally, in order to protect kGuard from being subverted, we utilize two lightweight

diversification techniques for the .text segment of the kernel/modules, which can also

mitigate kernel-level attacks that use code “gadgets” in a ROP/JOP fashion (see Sec-

tion 3.2.2.2). Nevertheless, the aim of kGuard is not to provide strict control-flow integrity

for the kernel, but rather protect against attacks that leverage the weak segregation of

address spaces.

3.2 Design

In this section, we discuss the fundamental aspects of kGuard using examples based on x86

Linux. However, note that kGuard is by no means restricted to 32-bit systems or Linux; it

can protect any OS kernel that suffers from ret2usr attacks, running both on 32- and 64-bit

CPUs. kGuard “guards” indirect control transfers from exploitation. In the x86 instruction

set architecture (ISA), such control transfers are performed using the call/jmp instruction

with a register or memory operand, and the ret instruction, which always takes an implicit

memory operand (i.e., the saved return address). kGuard injects CFAs in all such cases to

assert that the branch target is located in kernel space.



CHAPTER 3. KGUARD 18

81 fb 00 00 00 c0 ; cmp $0xc0000000 ,%ebx

73 05 ; j a e c a l l l b l

bb f1 f8 5a c0 ; mov $0xc05af8f1 ,%ebx

f f d3 ; c a l l l b l : c a l l ∗%ebx

Listing 3.1: CFAR applied on an indirect call in x86 Linux (drivers/cpufreq/cpufreq.c). The

call instruction is instrumented with 3 additional instructions (cmp, jae, mov).

register void ∗ t a r g e t add r e s s ;

. . .

i f ( t a r g e t add r e s s < 0xC0000000 )

t a r g e t add r e s s = &v i o l a t i o n h and l e r ;

c a l l ∗ t a r g e t add r e s s ;

Listing 3.2: CFAR in C-like code (x86).

Specifically, kGuard uses two different CFA types, namely CFAR and CFAM, depending

on whether the instruction that we want to confine uses a register or memory operand.

Listing 3.1 shows a CFAR example. The code is from the show() routine of the cpufreq

driver. kGuard instruments the indirect call (call *%ebx) with 3 additional instruc-

tions. First, the cmp instruction compares the %ebx register with the lowest kernel address

0xC0000000.1 If the assertion is true, the control transfer is authorized by jumping to the

call instruction. Otherwise, the mov instruction loads the address of the violation handler

(0xC05AF8F1; kguard panic()) into the branch register and proceeds to execute call,

which will result into invoking our violation handler. In C-like code, this is equivalent to

injecting the statements shown in Listing 3.2.

Similarly, a CFAM confines indirect branches that use memory operands. Listing 3.3

illustrates how kGuard instruments an indirect control transfer in sock sendpage().

The indirect call (call *0x50(%ebx)) is prepended by a sequence of 10 instructions

that perform two distinct assertions. CFAM not only asserts that the branch target is within

1The same is true for x86 FreeBSD/NetBSD, whereas for x86-64 Linux the check should be with address

0xFFFF800000000000. OpenBSD maps the kernel to the upper 512MB of the virtual address space, and

hence, its base address in x86 CPUs is 0xD0000000.
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57 ; push %ed i

8d 7b 50 ; l e a 0x50(%ebx) ,% ed i

81 f f 00 00 00 c0 ; cmp $0xc0000000 ,% ed i

73 06 ; j a e kmem lbl

5 f ; pop %ed i

e8 99 e2 0 f 00 ; c a l l 0 xc05a f8 f1

5 f ; kmem lbl : pop %ed i

81 7b 50 00 00 00 c0 ; cmpl $0xc0000000 , 0 x50(%ebx )

73 05 ; j a e c a l l l b l

c7 43 50 f1 f8 5a c0 ; movl $0xc05af8f1 , 0 x50(%ebx )

f f 53 50 ; c a l l l b l : c a l l ∗0x50(%ebx )

Listing 3.3: CFAM applied on an indirect call in x86 Linux (net/socket.c). The call instruction

is prepended with a sequence of 10 instructions (push – movl).

register void ∗ t a r g e t ad d r e s s l o c ;

void ∗ t a r g e t add r e s s ;

. . .

t a r g e t ad d r e s s l o c = &targe t addr ;

i f ( t a r g e t ad d r e s s l o c < 0xC0000000 )

c a l l v i o l a t i o n h and l e r ;

i f ( t a r g e t add r e s s < 0xC0000000 )

t a r g e t add r e s s = &v i o l a t i o n h and l e r ;

c a l l ∗ t a r g e t add r e s s ;

Listing 3.4: CFAM in C-like code (x86).

the kernel address space, but also ensures that the memory address where the branch target

is loaded from is also in kernel space. The latter is necessary for protecting against cases

where the attacker has managed to hijack a data pointer to a structure that contains

code pointers (see Figure 2.1). Listing 3.4 illustrates how this can be represented in C-

like code. In order to perform this dual check, we first need to spill one of the registers

in use, unless the basic block where the CFA is injected has spare registers, so that we

can use it as a temporary variable (%edi in our example). The address of the memory

location that stores the branch target (%ebx + 0x50), is dynamically resolved via an
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81 7b 50 00 00 00 c0 ; cmpl $0xc0000000 , 0 xc123beef

73 05 ; j a e c a l l l b l

c7 43 50 f1 f8 5a c0 ; movl $0xc05af8f1 , 0 xc123beef

f f 53 50 ; c a l l l b l : c a l l ∗0 xc123beef

Listing 3.5: Optimized CFAM. The operand of the call instruction is loaded from the .data

segment of the kernel.

arithmetic expression entailing registers and constant offsets. We load its effective address

into %edi (lea 0x50(%ebx),%edi), and proceed to verify that it points in kernel space.

If a violation is detected, the spilled register is restored and control is transferred to the

runtime violation handler (call 0xc05af8f1). Otherwise, we proceed with restoring the

spilled register and confine the indirect branch instruction similarly to the CFAR case.

3.2.1 Optimizations

In certain cases, we can statically determine if the address of the memory location that

holds a branch target is always mapped in kernel space. Examples include a branch operand

read from the kernel stack (assuming that the attacker has not seized control of the stack

pointer), or taken from a global data structure mapped at a fixed address inside the .data

or .rodata segment of the kernel. In such cases, the first assertion of a CFAM guard will

always be true, since the branch operand is kernel memory. We optimize such scenarios by

removing the redundant assertion, effectively reducing the size of the CFA to 3 instructions,

as shown in Listing 3.5.

3.2.2 Mechanism Protection

CFAs, as presented thus far, provide reliable protection against ret2usr attacks, only if the

attacker exploits a vulnerability that allows her to partially control a computed branch

target. However, vulnerabilities that allow overwriting kernel code pointers with arbitrary

values do exist [34]. When such flaws are present, ret2usr exploits could attempt to bypass

kGuard. This section discusses how kGuard defends itself against such threats.
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Figure 3.2: Subverting kGuard using bypass trampolines. CFA1 succeeds since the address

of the second branch (trampoline) is located in kernel space. CFA2 is completely bypassed

by jumping directly to the branch instruction.

3.2.2.1 Bypass Trampolines

To subvert kGuard, an attacker has to be able to determine the address of an indirect

branch instruction inside the .text segment of the kernel/modules. Moreover, she should

also be able to reliably control the value of its operand (branch target). We refer to that

branch instruction as bypass trampoline. Note that in ISAs with overlapping variable-length

instructions it is possible to find an embedded opcode sequence that translates directly to

a branch in user space [100]. By overwriting the target of a protected branch instruction

with the address of a bypass trampoline the attacker can successfully execute a jump to user

space, as illustrated in Figure 3.2. CFA1, corresponding to the initially exploited branch, will

succeed, since the address of the trampoline remains inside the privileged memory segment,

while CFA2, which guards the bypass trampoline, is completely bypassed by jumping directly

to the branch instruction.
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sleds of random length at the beginning of each CFA.

3.2.2.2 Code Diversification against Bypasses

kGuard implements two code diversification techniques that aid in thwarting attacks ex-

ploiting bypass trampolines.

1 Code Inflation. This technique reshapes the .text area of the kernel/modules,

as shown in Figure 3.3. We begin with randomizing the starting address of the .text

segment. This is achieved by inserting a NOP sled of random length at its beginning, which

effectively shifts all executable instructions by an arbitrary offset. Next, we continue with

inserting NOP sleds of random length at the beginning of each CFA. The end result is that

the location of every indirect control transfer instruction is randomized, forcing the attacker

to guess the (exact) address of a confined branch to use as a bypass trampoline. The effects

of the sleds are cumulative because each one pushes all instructions and NOP sleds following,

further to higher memory addresses. The size of the initial sled is chosen by kGuard based

on the target architecture. In Linux and {Free, Net}BSD the kernel space is at least 1GB,

and hence, we can achieve ≥ 20-bit of entropy without notably consuming address space.
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The size of the per-CFA NOP sled is randomly selected from a user-configured range. By

specifying the range, users can trade higher overhead (both in terms of space and speed), for

a smaller probability that an attacker can reliably obtain the address of a bypass trampoline.

An important assumption of the aforementioned technique is the secrecy of the kernel’s

image and symbols. If the attacker has access to the binary image of the protected kernel

or is armed with a kernel-level memory disclosure vulnerability [72, 197], the probability of

successfully guessing the address of a bypass trampoline increases. We posit that assigning

safe file permissions to the kernel’s image, modules, and debugging symbols is not a limiting

factor.2 In fact, this is considered standard practice in OS hardening, and is automatically

enabled in PaX and similar patches, as well as the latest Ubuntu Linux releases. Also note

that the kernel should harden access to the system message buffer (dmesg), in order to

prevent the leakage of kernel addresses.3

2This can be trivially achieved by changing the permissions in the file system to disallow reads, from

non-administrative users, in /boot and /lib/modules in Linux/FreeBSD, /bsd in OpenBSD, etc.

3In Linux this can be performed by asserting the kptr restrict [183] sysctl option, which hides exposed

kernel pointer addresses in /proc interfaces.
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2 CFA Motion. The basic idea behind this technique is the “continuous” relocation

of the protected branch instructions and injected guards, by rewriting the .text segment

of the kernel/modules. Figure 3.4 illustrates the concept. During compilation, kGuard

emits information regarding each injected CFA, which can be used later for relocating the

respective code snippets. Specifically, kGuard logs the exact location of the CFA inside

.text, the type and size of the guard, the length of the prepended NOP sled, as well as the

size of the branch instruction. Armed with that information, we can migrate every CFA

and indirect branch instruction separately, by moving them to a random location inside the

following window: sizeof(nop sled) + sizeof(cfa) + sizeof(branch).

Currently, our prototype implementation supports CFA motion during kernel bootstrap

only. In Linux, we perform the relocation at the end of the decompress kernel() rou-

tine [11], right before jumping to the main entry point of the (decompressed) ELF image.

In the BSDs, we do it after the boot program has been executed and right before transfer-

ring control to the machine-dependent initialization routines (mi startup() in FreeBSD;

main() in {Net, Open}BSD) [142]. Lastly, note that CFA motion can be performed at

runtime, on a live system, by trading runtime overhead for safety. In Section 3.6.1, we dis-

cuss how we can expand our current implementation, with moderate engineering effort, to

support real-time CFA migration, effectively creating a moving target for the attacker [125].

To further protect against evasion, kGuard can be combined with techniques that secure

kernel code against code-injection [128] and code-reuse attacks [1, 126, 159, 56]. That said,

note that ret2usr violations are detected at runtime. Hence, one failed attempt is enough to

identify the attacker and restrict her capabilities. In Section 3.5.2, we discuss how kGuard

can deal with persistent threats.

3.3 Implementation

We implemented kGuard as a set of modifications to the pipeline of a C compiler. Specifi-

cally, we instrument the intermediate representation (IR) used during the translation pro-

cess, in order to perform the CFA-based confinement discussed in Section 3.2. Our imple-

mentation consists of a plugin for the GNU Compiler Collection (GCC).
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Figure 3.5: Architectural overview of GCC. The compilation process involves 3 distinct

translators (frond-end, middle-end, back-end), and more than 250 optimization passes.

kGuard is implemented as a back-end optimization pass.

Starting with v4.5.1, GCC has been re-designed for facilitating better isolation between

its components, and allowing the use of plugins for dynamically adding features to transla-

tors without modifying them. Figure 3.5 illustrates the internal architecture of GCC. The

compilation pipeline consists of 3 distinct components, namely the front-end, middle-end,

and back-end, which transform the input into various IRs (i.e., GENERIC, GIMPLE, and

RTL). The kGuard plugin consists of ∼1000 lines of code in C and builds into a position-

independent (PIC) dynamic shared object that is loaded by GCC. Upon initializing kGuard,

the plugin manager of GCC invokes plugin init() (i.e., the initialization callback as-

sumed to be exported by every plugin), which parses the plugin arguments (if any) and

registers pass branchprot as a new “optimization” pass.4 Specifically, we chain our in-

strumentation callback, namely branchprot instrument(), after the vartrack RTL

optimization pass, by calling GCC’s register callback() function and requesting to

hook with the pass manager (see Figure 3.5).

4Currently, kGuard accepts 3 parameters: stub, nop, and log. stub provides the name of the runtime

violation handler, nop stores the maximum size of the random NOP sled inserted before each CFA, and log

is used to define an instrumentation logfile for CFA motion.
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The reasons for choosing to implement the instrumentation logic at the RTL level, and

not as annotations to the GENERIC or GIMPLE IR, are mainly the following. First,

by applying our assertions after most of the important optimizations have been performed,

which may result into moving or transforming instructions, we guarantee that we instrument

only relevant code. For instance, we do not inject CFAs for dead code or control-flow

transfers that, due to optimization transformations like inline expansion, do not need to

be confined. Second, we secure implicit control transfers that are exposed later in the

translation (e.g., after the High-GIMPLE IR has been “lowered”). Third, we tightly couple

the CFAs with the corresponding unsafe control-flow transfers. This way, we protect the

guards from being removed or shifted from the respective points of check, due to subsequent

optimization passes (e.g., code motion). For more information regarding the internals of

RTL instrumentation, interested readers are referred to Appendix B.

3.4 Evaluation

In this section, we present the results from the evaluation of kGuard both in terms of perfor-

mance and effectiveness. Our testbed consisted of a single host, equipped with two 2.66GHz

quad-core Intel Xeon X5500 CPUs and 24GB of RAM, running Debian GNU/Linux v6

(“squeeze” with kernel v2.6.32). Note that while conducting our performance measure-

ments, the host was idle with no other user processes running apart from the evaluation

suite. Moreover, the results presented here are mean values, calculated after running 10

iterations of each experiment; the error bars correspond to 95% confidence intervals.

kGuard and the corresponding Linux kernels were compiled with GCC v4.5.1, and unless

otherwise noted, we used Debian’s default configuration that results into a complete build

of the kernel, including all modules and device drivers. Finally, we configured kGuard to use

a random NOP sled of maximum 32 (average 16) instructions. Note that we also measured

the effect of various NOP sled sizes, which was insignificant for the range 0 – 32.
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x86 kernel x86-64 kernel

call jmp ret call jmp ret

CFAM 20767 1803 17740 1732

CFAM(opt) 2253 12 113053 1789 0 105895

CFAR 6325 0 8780 0

Total 29345 1815 113053 28309 1732 105895

Table 3.2: Number of indirect branches instrumented by kGuard (Linux kernel v2.6.32.39).

3.4.1 Effectiveness

The main goal of the effectiveness evaluation is to apply kGuard on commodity OSes, and

determine whether it can detect and prevent real-life ret2usr attacks. Table 3.1 summarizes

our test suite, which consisted of a collection of 8 exploits from the Exploit Database

(EDB) [158] that cover a broad spectrum of different flaws, including direct NULL pointer

dereferences, control hijacking via tampered-with data structures (data pointer corruption),

function and data pointer overwrites, arbitrary kernel-memory (data) nullification, and

ret2usr via kernel stack-smashing.

We instrumented 10 different vanilla Linux kernels, ranging from v2.6.18 up to v2.6.34,

both in x86 and x86-64 architectures. Additionally, in this experiment, we used a home-

grown violation handler for demonstrating the customization features of kGuard. Upon the

detection of a ret2usr attack, the handler takes a snapshot of the memory that contains the

user-provided code for analyzing the behavior of the offending process. Such a feature could

be useful in a honeypot setup for performing malware analysis and studying new ret2usr

exploitation vectors. All kernels were compiled with and without kGuard, and tested against

the respective set of exploits. In every case, we were able to successfully detect and prevent

the corresponding exploitation attempt. Also note that the tested exploits circumvented

the page mapping restriction(s) that we discussed in Section 2.3.1 [207].
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3.4.2 Translation Overhead

We first quantify the additional time needed to inspect the RTL IR and emit the CFAs

(see Section 3.3). Specifically, we used the Unix time utility to measure the total build

time when compiling Linux kernel v2.6.32.39 natively and with kGuard. On average, we

observed a 0.3% increase on total build time on the x86 architecture, and 0.05% on x86-64.

Moreover, the size of the kernel image/modules increased by 3.5%/0.43% on the x86, and

5.6%/0.56% on the x86-64.

Table 3.2 shows the number of exploitable branches instrumented by kGuard, catego-

rized by architecture, and confinement and instruction type. As expected, ret instructions

dominate the computed branches. Note that both in x86 and x86-64 scenarios, we were

able to optimize approximately 10% of the total indirect calls via memory locations, using

the optimization scheme presented in Section 3.2.1. Overall, the drivers/ subsystem was

the one with the most instrumentations, followed by fs/, net/, and kernel/. Addition-

ally, a significant amount of instrumented branches was due to architecture-dependent code

(arch/) and “inlined” C functions (include/).

3.4.3 Performance Overhead

The injected CFAs introduce runtime latency. We evaluated kGuard to quantify this

overhead and establish a set of performance bounds for different types of system ser-

vices. Moreover, we used the overhead imposed by PaX (i.e., UDEREF [169, 170] and

KERNEXEC [171]) as reference. Recall that on x86, PaX offers protection against ret2usr

attacks by utilizing the segmentation unit for isolating the kernel from user space. In x86-64

CPUs, where segmentation is not supported by the hardware, it temporarily remaps user

space into a different (shadow) location with non-execute permissions.

3.4.3.1 Macro-Benchmarks

We begin with a set of real-life applications that represent different workloads. In particular,

we used a kernel build and two popular server applications: the Apache web server, which

performs mainly I/O; and the MySQL RDBMS that is both I/O driven and CPU intensive.
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We run all the respective tests over a vanilla Linux kernel (v2.6.32.39), and the same kernel

patched with PaX and instrumented with kGuard.

First, we measured the time taken to build a vanilla Linux kernel (v2.6.32.39), using the

Unix time utility. On the x86, the PaX-protected kernel incurs a 1.26% runtime overhead,

while on the x86-64 the overhead is 2.89%. In contrast, kGuard ranges between 0.93% on

x86-64, and 1.03% on x86. Next, we evaluated MySQL v5.1.49 using its own benchmark

suite (sql-bench). The suite consists of four different tests, which assess the completion

time of various DB operations, like table creation and modification, data selection and

insertion, etc. On average, the slowdown of kGuard ranges from 0.85% (x86-64) to 0.93%

(x86), while PaX lies between 1.16% (x86) and 2.67% (x86-64). Finally, we measured

Apache’s performance using its own utility ab and static HTML files of different size. We

used Apache v2.2.16 and configured it to pre-fork all the worker processes (pre-forking is a

standard multiprocessing module), in order to avoid high fluctuations in performance, due

to Apache spawning extra processes for handling the incoming requests at the beginning of

our experiments. We chose files with sizes of 1KB, 10KB, 100KB, and 1MB, and measured

the average throughput in requests per second (req/sec). All other options were left to

their default setting. The kernel patched with PaX incurs an average slowdown that ranges

between 0.01% and 0.09% on x86, and 0.01% and 1.07% on x86-64. In antithesis, kGuard

lies between 0.001% and 0.01%. Overall, our results indicate that in both x86 and x86-64

Linux the impact of kGuard on real-life applications is negligible (∼1%).

3.4.3.2 Micro-Benchmarks

We used the LMbench [143] microbenchmark suite to measure the impact of kGuard on

the performance of core kernel system calls and facilities. We focus on both latency and

bandwidth. For the first, we measured the latency of entering the OS, by investigating the

NULL system call (syscall) and the most frequently used I/O-related calls: read, write,

fstat, select, open/close. Additionally, we measured the time needed to install a

signal handler with sigaction, inter-process communication (IPC) latency with socket

and pipe, and process creation latency with fork+{exit, execve, /bin/sh}.
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Figure 3.6: Latency overhead incurred by kGuard and PaX on essential system calls

(x86 Linux).

Figure 3.6 and Figure 3.7 summarize the latency overhead of kGuard in contrast to

the vanilla Linux kernel, and a kernel with the PaX patch applied and enabled. Note that

the time is measured in microseconds (µsec). kGuard ranges from 2.7% to 23.5% in x86

(average 11.4%), and 2.9% to 19.1% in x86-64 (average 10.3%). In contrast, the PaX-

protected kernel exhibits a latency ranging between 5.6% and 257% (average 84.5%) on

the x86, whereas on x86-64, the latency overhead ranges between 19% and 531% (average

172.2%). Additionally, the overhead of kGuard for process creation (in both architectures)

lies between 7.1% and 9.7%, whereas PaX ranges from 8.1% to 56.3%.

As far as bandwidth is concerned, we measured the degradation imposed by kGuard

and PaX in the maximum achieved bandwidth of popular IPC facilities, such as sockets

and pipes. Figure 3.8 shows our results (bandwidth is measured in MB/s). The slowdown

of kGuard ranges between 3.2% – 10% on x86 (average 6%), and 5.25% – 9.27% on x86-64

(average 6.6%). PaX lies between 19.9% – 58.8% on x86 (average 37%), and 21.7% – 78%

on x86-64 (average 42.8%).
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Figure 3.7: Latency overhead incurred by kGuard and PaX on essential system calls

(x86-64 Linux).

Overall, kGuard exhibits lower overhead on x86-64, due to the fewer CFAM guards (see

Table 3.2)—CFAR confinement can be performed with just 3 additional instructions, and

hence incurs less runtime overhead; CFAM might need up to 10 instructions (e.g., when we

cannot optimize). However, the same is not true for PaX, as the lack of segmentation in

x86-64 results in higher performance penalty due to frequent page table manipulations.

3.5 Discussion

3.5.1 Custom Violation Handlers

The default violation handler of kGuard appends a message to the system log and halts the

OS. We coerce assertion violations into a kernel fail-stop to prevent brute-force attempts

against our code diversification schemes (code inflation, CFA motion; see Section 3.2.2.2),

and avoid leaving the OS in an inconsistent state (e.g., by aborting an in-flight kernel thread

that holds locks). Nonetheless, kGuard can be configured to use custom handlers.
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Figure 3.8: IPC bandwidth achieved by kGuard and PaX, using TCP (PF INET), Unix

sockets (PF UNIX), and pipes.

Upon enabling this option, our confinement instrumentation becomes slightly different.

Instead of overwriting the computed branch target with the address of the default handler,

when a violation occurs, we push the offending target address to the stack and invoke the

custom handler directly. In the case of a CFAR this means that the mov instruction (see

Listing 3.1) is replaced by a push and call, as shown in Listing 3.6; CFAM guards are

modified accordingly. This instrumentation increases slightly the size of our guards, but

does not incur additional overhead, as the extra instruction is on the error path.

81 fb 00 00 00 c0 ; cmp $0xc0000000 ,%ebx

73 06 ; j a e c a l l l b l

53 ; push %ebx

e8 81 e6 0 f 00 ; c a l l 0 xc05a f8 f1

f f d3 ; c a l l l b l : c a l l ∗%ebx

Listing 3.6: Alternative CFAR applied on an indirect call in x86 Linux.
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The custom violation handler has access to the location where the violation occurred

(i.e., the failed CFA), by reading the return address of the callee (pushed to the stack from

call), as well as to the offending branch target (explicitly pushed to the stack by push).

Armed with that information, one can customize kGuard’s violation-handling policy and

implement adaptive defense mechanisms [86], like selective confinement (e.g., deal with

VMware’s I/O backdoor that needs to “violate” protection domains) and error virtualiza-

tion [196], or even perform forensic analyses (e.g., dump the exploit shellcode). The latter

can be useful in honeypot setups for studying new ret2usr exploitation vectors.

3.5.2 Persistent Threats

The violation-handling policy of kGuard can be tailored to need, by leveraging its ability

to support custom handlers. To that end, we developed a handler that actively responds

to persistent threats (e.g., users that try to brute-force the code diversification schemes of

kGuard by repeatedly attempting the bypass presented in Section 3.2.2.1).

Once invoked, due to a violation, this handler performs the following. First, it checks

the execution context of the kernel to identify if it runs inside a user-level process or an

interrupt handler. If the violation occurred while executing an interrupt service routine, or

if the current execution path is holding locks5, then it fail-stops the kernel. Else, if the kernel

is preemptible, it terminates all processes with the same uid with the offending process, and

prevents the user from logging in again (i.e., by disabling the respective account). Other

possible approaches include inserting an exponentially-increasing delay to user logins (i.e.,

make the brute-force attack slow and impractical), activate CFA motion, etc.

3.6 Future Work

3.6.1 Live CFA Motion

Currently, we investigate ways to apply the CFA motion technique (see Section 3.2.2.2),

while a kernel is running and the OS is live. To that end, we have crafted an early prototype,

5In Linux, we can easily check if a kernel control path is holding locks by looking at the value of the

preempt count variable [135].
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Figure 3.9: Low-latency code inflation inserts “skip branches” before every NOP sled to

avoid executing the NOP instructions and directly transfer control to the CFA that follows.

which upon certain conditions, freezes the kernel and performs code (.text) rewriting.

Thus far, we have achieved CFA relocation in a coarse-grained manner, by exploiting the

stop machine facility of the Linux kernel [5]. Specifically, we bring the system to pre-

suspend state, preventing any kernel code from being invoked during the relocation phase.

Possible events to initiate live CFA motion are the number of executed system calls or

interrupts (i.e., diversify the kernel every N invocation events), CFA violations, or external

intrusion events (e.g., a ret2usr violation alert generated from a different system inside the

same security domain or “application community”) [133].

However, our end goal is to be able to perform CFA motion in a more fine-grained,

non-interruptible and efficient manner, without “locking” the whole OS. The Linux kernel

recently gained support for live kernel patching [52], through the kpatch [50] and kGraft [51]

projects. In the future, we plan to investigate whether mechanisms like the ones above can

provide the foundation for implementing dynamic code diversification schemes, such as live

CFA motion, without interrupting the normal operation of the kernel at all.
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3.6.2 Low-latency Code Inflation

In Section 3.4, among other things, we investigated the impact of code inflation on kernel

performance. Specifically, we measured the effect of different NOP sled sizes on system

latency, and observed negligible increase for the range 0 – 32. However, recall that the

maximum size of the NOP sleds is tunable (see Section 3.3; nop parameter). Hence, if

(significantly) larger sleds are used (e.g., 0 – 1024 or 0 – 4096), the overhead of code

inflation becomes noticeable, as the extra NOP instructions consume CPU cycles and their

impact on latency cannot be “masked” by the subsequent CFAs. Figure 3.9 sketches a

potential solution to this problem, which we plan to explore in the future. The main idea

is to prepend every NOP sled with a “skip branch” (i.e., a direct branch instruction) that

directly transfers control to the respective CFA and avoids executing the NOPs.

Availability

Our prototype implementation of kGuard is freely available, under the GNU General Public

License (v3) [80], at: https://www.cs.columbia.edu/˜vpk/research/kguard/.

Interested readers are referred to Appendix C for more information on how to use it.

https://www.cs.columbia.edu/~vpk/research/kguard/
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Chapter 4

ret2dir

4.1 Overview

Commodity OSes follow a design that weakly (asymmetrically) separates kernel from user

space, in favor of faster interactions between user processes and the kernel, as we discussed

in Chapter 2. The ret2usr protections outlined in Section 2.3, along with kGuard, aim to

alleviate this design weakness, and fortify kernel isolation with minimal overhead. In this

chapter, we seek to assess the security offered by these protections and investigate whether

certain performance-oriented design choices can render them ineffective.

Our findings indicate that there exist fundamental decisions, deeply rooted into the

architecture of the memory management (sub)system (mm) of modern OSes, which can

be abused for weakening the isolation between kernel and user space. We introduce a

novel kernel exploitation technique, named return-to-direct-mapped memory (ret2dir), which

allows an attacker to perform the equivalent of a ret2usr attack on a hardened system.

4.1.1 Threat Model

We assume a kernel hardened against ret2usr attacks using one (or a combination) of the

protection mechanisms discussed in Section 2.3, including kGuard. Moreover, we assume

an unprivileged attacker with local access to the OS, who seeks to elevate privileges by

exploiting a kernel-memory corruption vulnerability [35, 28, 40, 29, 43, 26, 22, 44, 42, 41,

33, 32, 31, 23, 38, 34, 39, 37] (see Section 2.2).
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We do not make any assumptions regarding the type of corrupted data; code and data

pointers are both possible targets [192, 78, 68, 79, 77, 76, 73]. Overall, the adversarial

capabilities we presume are identical to those needed for carrying out a ret2usr attack.

4.1.2 Attack Strategy

In a kernel hardened against ret2usr attacks, the hijacked control or data flow can no longer

be redirected to user space in a direct manner—the respective ret2usr protection scheme(s)

will block any such attempt, as shown in Figure 2.2. However, the implicit physical memory

sharing between user processes and the kernel allows an attacker to deconstruct the isolation

guarantees offered by ret2usr protection mechanisms, and redirect the kernel’s control or

data flow to user-controlled code or data.

A key facility that enables the implicit sharing of physical memory is physmap: a large,

contiguous virtual memory region inside kernel address space that contains a direct mapping

of part or all (depending on the architecture) physical memory. This region plays a crucial

role in enabling the kernel to allocate and manage dynamic memory, as fast as possible (we

discuss the structure of physmap in Section 4.2). We should stress that although in this

study we focus on Linux—one of the most widely used OSes—direct-mapped RAM regions

exist (in some form) in many OSes, as they are considered standard practice in physical

memory management. For instance, OpenBSD and Oracle Solaris use the seg kpm and

pmapmapping facility, respectively, to provide a direct mapping of the whole RAM in 64-bit

architectures [140, 162].

As physical memory is allotted to user processes and the kernel, the existence of physmap

results in address aliasing. Virtual address aliases, or synonyms [122], occur when two (or

more) different virtual addresses map to the same physical memory address. Given that

physmap maps a large part (or all) of physical memory within the kernel, the memory of

an attacker-controlled user process is accessible through its kernel-resident synonyms.

The first step in mounting a ret2dir attack is to map, in user space, the exploit pay-

load. Depending on whether the exploited vulnerability enables the corruption of a code

pointer [192, 78, 68, 79, 77, 76, 73] or a data pointer [75, 72, 71], the payload will consist of

either shellcode, or controlled (tampered-with) data structures, as shown in Figure 4.1.
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Figure 4.1: Overall ret2dir operation. The physmap (direct-mapped RAM) area enables

a hijacked kernel code or data pointer to access user-controlled data, without crossing the

user-kernel space boundary.

Whenever the mm (sub)system allocates (dynamic) memory to user space, it defers giving

page frames until the very last moment. Specifically, physical memory is granted to user

processes in a lazy manner, using the demand paging and copy-on-write methods [12],

which both rely on page faults to actually allocate RAM. When the content of the payload

is initialized, the MMU generates a page fault, and the kernel allocates a page frame to the

attacking process. Page frames are typically managed by mm using a buddy allocator [121].

Given the existence of physmap, the moment the buddy allocator provides a page frame

to be mapped in user space, mm effectively creates an alias of the exploit payload in kernel

space, as shown in Figure 4.1. Although the kernel never uses such synonyms directly, mm

keeps the whole RAM pre-mapped in order to boost page frame reclamation. This allows

newly deallocated page frames to be made available to the kernel instantly, without the

need to alter page tables (see Section 4.2.1 for more details).
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Overall, ret2dir takes advantage of the implicit data sharing between user and kernel

space (due to physmap) to redirect a hijacked kernel control or data flow to a set of kernel-

resident synonym pages, effectively performing the equivalent of a ret2usr attack without

reaching out to user space. It is important to note that the malicious payload “emerges”

in kernel space the moment a page frame is given to the attacking process. The attacker

does not have to explicitly “push” (copy) the payload to kernel space (e.g., via pipes or

message queues), as physmap makes it readily available. The use of such methods is also

much less flexible, as the system imposes strict limits to the amount of memory that can

be allocated for kernel-resident buffers, while the exploit payload will (most likely) have to

be encapsulated in certain kernel data objects that can affect its structure.

4.2 Demystifying physmap

A critical first step in understanding the mechanics of ret2dir attacks is to take a look at

how kernel address space is organized internally; we use the Linux x86/x86-64 platform as

reference. The x86-64 architecture uses 48-bit virtual addresses that are sign-extended to

64 bits (i.e., bits [48:63] are copies of bit [47]). This scheme natively splits the 64-bit

virtual address space in two canonical halves of 128TB each. As shown in Figure 4.2a, kernel

space occupies the upper half (0xFFFF800000000000 – 0xFFFFFFFFFFFFFFFF), and is

further divided into six regions [119]: the fixmap area, modules, kernel image, vmemmap

space, vmalloc arena, and physmap. In x86, on the other hand, the kernel space can be

assigned to the upper 1GB, 2GB, or 3GB part of the address space, with the first option

being the default. As kernel virtual address space is limited, it can become a scarce resource,

and certain regions collide to prevent its waste (e.g., modules and vmalloc arena, kernel

image and physmap; see Figure 4.2b).1 For the purposes of ret2dir, in the following, we

focus only on the direct-mapped region.

1To access the contents of a page frame, the kernel must first map that frame in kernel space. In x86,

however, the kernel has only 1GB – 3GB virtual addresses available for managing (up to) 64GB of RAM.
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(a) x86-64 (b) x86

Figure 4.2: The internal layout of Linux kernel space in (a) x86-64 and (b) x86 (as of kernel

version 3.12). In x86-64, the kernel space is further divided in six distinct regions, namely

fixmap, modules, kernel image, vmemmap space, vmalloc arena, and physmap. In x86,

where kernel addresses are a scarce resource, the distinct regions are only four; some of

them collide to reduce space waste (i.e., modules and vmalloc arena, kernel image and

physmap). What is important to note, however, is that in both architectures there exists a

direct mapping of all (or part of) RAM inside kernel space at a fixed location (values shown

for the default 3G/1G user/kernel split).

4.2.1 Functionality

The physmap area is a mapping of paramount importance to the performance of the kernel,

as it facilitates dynamic kernel memory allocation. At a high level, mm offers two main

methods for requesting memory: vmalloc and kmalloc. With the vmalloc family of

routines, memory can only be allocated in multiples of page size and is guaranteed to be

virtually contiguous but not physically contiguous. In contrast, with the kmalloc family

of routines, memory can be allocated in byte-level chunks, and is guaranteed to be both

virtually and physically contiguous.
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As it offers memory only in page multiples, vmalloc leads to higher internal memory

fragmentation and often poor cache performance. More importantly, vmalloc needs to

alter the page tables of the kernel every time memory is (de)allocated to map or unmap

the respective page frames to or from the vmalloc arena. (see Figure 4.2). This not

only incurs additional overhead, but results in increased TLB thrashing [135]. For these

reasons, the majority of kernel components use kmalloc; the use of vmalloc is limited to

performance-insensitive tasks, such as module loading. However, given that kmalloc can

be invoked from any context, including that of interrupt service routines, which have strict

timing constraints, it must satisfy a multitude of different (and contradicting) requirements.

In certain contexts, the allocator should never sleep (e.g., when locks are held). In other

cases, it should never fail, or it should return memory that is guaranteed to be physically

contiguous (e.g., when a device driver reserves memory for DMA).

Given constraints like the above, physmap is a necessity, as the main facilitator of

optimal performance. The mm developers opted for a design that lays kmalloc over a

region2 that pre-maps the entire RAM (or part of it) for the following reasons [12]. First,

kmalloc (de)allocates memory without touching the page table(s) of the kernel. This

not only reduces TLB pressure significantly, but also removes high-latency operations, like

page table manipulation and TLB shootdowns [140], from the fast path. Second, the linear

mapping of page frames results in virtual memory that is guaranteed, by design, to be always

physically contiguous. This leads to increased cache performance, and has the added benefit

of allowing drivers to directly assign kmalloc’ed regions to DMA devices that can only

operate on physically contiguous memory (e.g., when there is no IOMMU support). Finally,

page frame accounting is greatly simplified, as address translations (virtual-to-physical and

vice versa) can be performed using solely arithmetic operations [124].

2kmalloc is not directly layered over physmap. It is instead implemented as a collection of geometrically

distributed (32B–4KB) slabs, which are in turn placed over physmap. The slab layer is a hierarchical, type-

based data structure caching scheme. By taking into account certain factors, such as page and object sizes,

cache line information, and memory access times (in NUMA systems), it can perform intelligent allocation

choices that minimize memory fragmentation and make the best use of a system’s cache hierarchy. Linux

adopted the slab allocator of SunOS [10], and as of kernel v3.12, it supports three variants: SLAB, SLUB

(default), and SLOB.
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Architecture PHYS OFFSET Size Prot.

x86 (3G/1G) 0xC0000000 891MB RW

(2G/2G) 0x80000000 1915MB RW

(1G/3G) 0x40000000 2939MB RW

AArch32 (3G/1G) 0xC0000000 760MB RWX

(2G/2G) 0x80000000 1784MB RWX

(1G/3G) 0x40000000 2808MB RWX

x86-64 0xFFFF880000000000 64TB RW(X)

AArch64 0xFFFFFFC000000000 256GB RWX

Table 4.1: The characteristics of physmap in Linux (x86, x86-64, AArch32, AArch64).

4.2.2 Location and Size

The physmap region is an architecture-independent feature (this should come as no surprise

given the reasons we outlined above) that exists in all popular Linux platforms. Depending

on the memory addressing characteristics of each ISA, the size of physmap and its exact

location may differ. Nonetheless, in all cases: (i) there exists a direct mapping of part or

all physical memory in kernel space, and (ii) the mapping starts at a fixed, known location.

The latter is true even in the case where kernel-space ASLR (KASLR) [66] is employed.

Table 4.1 lists the properties of physmap for the platforms we consider. In x86-64

systems, physmapmaps directly, in a 1:1 manner, starting from page frame zero, the entire

RAM of the system into a 64TB region. AArch64 systems use a 256GB region for the same

purpose [138]. Conversely, in x86 systems, the kernel directly maps only a portion of RAM.
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The size of physmap on 32-bit architectures depends on two factors: (i) the user/kernel

split used (3G/1G, 2G/2G, or 1G/3G), and (ii) the size of the vmalloc arena. Under

the default setting, in which 1GB is assigned to kernel space and the vmalloc arena

occupies 120MB, the size of physmap is 891MB (1GB - sizeof(vmalloc + pkmap +

fixmap + unused)) and starts at 0xC0000000. Likewise, under a 2G/2G (1G/3G)

split, physmap starts at 0x80000000 (0x40000000) and spawns 1915MB (2939MB).

The situation in AArch32 is quite similar [117], with the only difference being the default

size of the vmalloc arena (240MB).

Overall, in 32-bit systems, the amount of directly mapped physical memory depends on

the size of RAM and physmap. If sizeof(physmap) ≥ sizeof(RAM), then the entire

RAM is direct-mapped—a common case for 32-bit mobile devices with up to 1GB of RAM.

Otherwise, only sizeof(physmap)/sizeof(PAGE SZ) pages are mapped directly.

4.2.3 Access Rights

A crucial aspect for mounting a ret2dir attack is the memory access rights of physmap. To

get the protection bits of the kernel pages that correspond to the direct-mapped memory

region, we built kptdump:3 a utility in the form of a kernel module that exports page

tables through the debugfs pseudo-filesystem [46]. The tool traverses the kernel page

table, available via the global symbols swapper pg dir (x86/AArch32/AArch64) and

init level4 pgt (x86-64), and dumps the flags (U/S, R/W, XD) of every kernel page that

falls within the physmap region.

In x86, physmap is mapped as “readable and writeable” (RW) in all kernel versions

we tried (the oldest one was v2.6.32, released on Dec. 2009). In x86-64, however, the

permissions of physmap are not in sane state. Kernels up to v3.8.13 violate the WˆX

property by mapping the entire region as “readable, writeable, and executable” (RWX)—

only very recent kernels (≥ v3.9) use the conservative RW mapping. AArch32 and AArch64

map physmap with RWX permissions in every kernel version we tested (up to v3.12).

3
kptdump resembles the functionality of Arjan van de Ven’s patch [210]; we had to resort to a custom

solution, as that patch is only available for x86/x86-64 and cannot be used “as-is” in any other architecture.
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4.3 Locating Synonyms

The final piece for mounting a ret2dir exploit is finding a way to reliably pinpoint the

location of a synonym address in the physmap area, given its user-space counterpart. For

legacy environments, in which physmap maps only part of the system’s physical memory,

such as a 32-bit system with 8GB of RAM, an additional requirement is to ensure that the

synonym of a user-space address of interest exists.

We have developed two techniques for achieving both goals. The first relies on page

frame information available through the pagemap interface of the /proc filesystem, which

is currently accessible by non-privileged users in all Linux distributions we studied. As

the danger of ret2dir attacks will (hopefully) encourage system administrators and Linux

distributions to disable access to pagemap, we have developed a second technique that does

not rely on any kernel information leakage.

4.3.1 Leaking PFNs (via /proc)

The procfs pseudo-filesystem [116] has a long history of leaking information that is

security-sensitive [165, 102, 189]. Starting with kernel v2.6.25 (Apr. 2008), a set of pseudo-

files, including /proc/<pid>/pagemap, were added in /proc to enable the examination

of page tables for debugging purposes. To assess the prevalence of this facility, we tested

the latest releases of the most popular distributions according to DistroWatch [63] (i.e.,

Debian, Ubuntu, Fedora, and CentOS). In all cases, pagemap was enabled by default.

For every user-space page, pagemap provides a 64-bit value, indexed by (virtual) page

number, which contains information regarding the presence of the page in RAM [131]. If

a page is present in RAM, then bit [63] is set and bits [0:54] encode its page frame

number (PFN). That being so, the PFN of a given user-space virtual address uaddr, can

be located by opening /proc/<pid>/pagemap and reading eight bytes from file offset

(uaddr/PAGE SZ) * sizeof(uint64 t) (assuming PAGE SZ = 4KB).
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Armed with the PFN of a given uaddr, denoted as PFN(uaddr), its synonym in

physmap, SYN(uaddr), can be located using the following formula:

SYN(uaddr) = PHYS OFFSET + PAGE SZ * (PFN(uaddr) - PFN MIN) (4.1)

PHYS OFFSET corresponds to the known, fixed starting virtual address of physmap

(values for different configurations are shown in Table 4.1), and PFN MIN is the first page

frame number—in many architectures, including ARM, physical memory starts from a

non-zero offset (e.g., 0x60000000 in Versatile Express ARM boards, which corresponds

to PFN MIN = 0x60000). To prevent SYN(uaddr) from being reclaimed (e.g., after

swapping out uaddr), the respective user page(s) can be “pinned” to RAM using mlock.

4.3.1.1 sizeof(RAM) > sizeof(physmap)

For systems in which part of RAM is direct-mapped, only a subset of PFNs is accessible

through physmap. For instance, in an x86 system with 4GB of RAM, the PFN range is

0x0–0x100000. However, under the default 3G/1G split, the physmap region maps only

the first 891MB of RAM (see Table 4.1 for alternative configurations), which means PFNs

from 0x0 up to 0x37B00 (PFN MAX). If the PFN of a user-space address is greater than

PFN MAX (the PFN of the last direct-mapped page), then physmap does not contain a

synonym for that address. Naturally, the question that arises is whether we can force the

buddy allocator to provide page frames with PFNs less than PFN MAX.

For compatibility reasons, mm splits physical memory into several zones. In particular,

DMA processors of older ISA buses can only address the first 16MB of RAM, while some PCI

DMA peripherals can access only the first 4GB. To cope with such limitations, mm supports

the following zones: ZONE DMA, ZONE DMA32, ZONE NORMAL, and ZONE HIGHMEM. The

latter is available in 32-bit platforms and contains the page frames that cannot be directly

addressed by the kernel (i.e., those that are not mapped in physmap). ZONE NORMAL

contains page frames above ZONE DMA (and ZONE DMA32, in 64-bit systems) and below

ZONE HIGHMEM. When only part of RAM is direct-mapped, mm orders the zones as follows:

ZONE HIGHMEM > ZONE NORMAL > ZONE DMA.
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Given a page frame request, mm will try to satisfy it starting with the highest zone that

complies with the request (e.g., the direct-mapped memory of ZONE NORMAL is preferred for

kmalloc), moving towards lower zones as long as there are no free page frames available.

From the attacker’s perspective, user processes get their page frames from ZONE HIGH-

MEM first, as mm tries to preserve the page frames that are direct-mapped for dynamic

memory requests from the kernel. However, when the page frames of ZONE HIGHMEM are

depleted, due to increased memory pressure, mm inevitably starts providing page frames from

ZONE NORMAL or ZONE DMA. Based on this, our strategy is as follows.

The attacking process repeatedly uses mmap to request memory. For each page in the

requested memory region, the process causes a page fault by accessing a single byte, forcing

mm to allocate a page frame (alternatively, the MAP POPULATE flag in mmap can be used

to pre-allocate all the respective page frames). The process then checks the PFN of every

allocated page, and the same procedure is repeated until a PFN less than PFN MAX is

obtained. The synonym of such a page is then guaranteed to be present in physmap, and

its exact address can be calculated using formula 4.1. Note that depending on the size of

physical memory and the user/kernel split used, we may have to spawn additional processes

to completely deplete ZONE HIGHMEM. For example, on an x86 machine with 8GB of RAM

and the default 3G/1G split, up to three processes might be necessary to guarantee that

a page frame that falls within physmap will be acquired. Interestingly, the more benign

processes are running on the system, the easier it is for an attacker to acquire a page

with a synonym in physmap. The additional tasks create memory pressure, “pushing” the

allocations of the attacker to the desired zones.

4.3.1.2 Contiguous synonyms

Certain exploits require more than a single page for their payload(s). Pages that are virtually

contiguous in user space, however, do not necessarily map to page frames that are physically

contiguous, which means that their synonyms will not be contiguous either. Yet, given

physmap’s linear mapping, two pages with consecutive synonyms have PFNs that are

sequential. Therefore, if 0xBEEF000 and 0xFEEB000 have PFNs 0x2E7C2 and 0x2E7C3,

respectively, then they are contiguous in physmap despite being ∼64MB apart in user space.
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To identify consecutive synonyms, we proceed as follows. Using the same methodology

as above, we compute the synonym of a random user page. We then repeatedly obtain more

synonyms, each time comparing the PFN of the newly acquired synonym with the PFNs

of those previously retrieved. The process continues until any two (or more, depending

on the exploit) synonyms have sequential PFNs. The exploit payload can then be split

appropriately across the user pages that correspond to synonyms with sequential PFNs.

4.3.2 physmap Spraying

As eliminating access to /proc/<pid>/pagemap is a rather simple task, we also consider

the case in which PFN information is not available. In such a setting, given a user page that

is present in RAM, there is no direct way of determining the location of its synonym inside

physmap. Recall that our goal is to identify a kernel-resident page in the physmap area

that “mirrors” a user-resident exploit payload. Although we cannot pinpoint the synonym

of a given user address, it is still possible to proceed in the opposite direction: pick an

arbitrary physmap address, and ensure (to the extent possible) that its corresponding page

frame is mapped by a user page that contains the exploit payload.

This can be achieved by exhausting the address space of the attacking process with

(aligned) copies of the exploit payload, in a way similar to heap spraying [62]. The base

address and length of the physmap area is known in advance (Table 4.1). The latter

corresponds to PFN MAX− PFN MIN page frames, shared among all user processes and the

kernel. If the attacking process manages to copy the exploit payload into Nmemory-resident

pages (in the physical memory range mapped by physmap), then the probability (Psucc)

that an arbitrarily chosen, page-aligned physmap address will map the exploit payload is:

Psucc =
N

PFN MAX− PFN MIN
(4.2)

Our goal is to maximize Psucc.

4.3.2.1 Spraying

Maximizing N is straightforward and boils down to acquiring as many page frames as pos-

sible. The technique we use is similar to the one presented in Section 4.3.1.
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The attacking process repeatedly acquires memory using mmap and “sprays” the ex-

ploit payload into the returned regions. We prefer using mmap, over ways that involve

shmget, brk, and remap file pages, due to system limits typically imposed on the lat-

ter. MAP ANONYMOUS allocations are also preferred, as existing file-backed mappings (from

competing processes) will be swapped out with higher priority compared to anonymous

mappings. The copying of the payload causes page faults that result in page frame alloca-

tions by mm (alternatively MAP POPULATE can be used). If the virtual address space is not

enough for depleting the entire RAM, as is the case with certain 32-bit configurations, the

attacking process must spawn additional child processes to assist with the allocations.

The procedure continues until mm starts swapping “sprayed” pages to disk. To pinpoint

the exact moment that swapping occurs, each attacking process checks periodically if its

sprayed pages are still resident in physical memory, by calling the getrusage system

call every few mmap invocations. At the same time, all attacking processes start a set

of background threads that repeatedly write-access the already allocated pages, emulating

the behavior of mlock, and preventing (to the extent possible) sprayed pages from being

swapped out—mm swaps page frames to disk using the LRU policy. Hence, by accessing

pages repeatedly, mm is tricked to believe that they correspond to fresh content. When the

number of memory-resident pages begins to drop (i.e., the resident-set size (RSS) of the

attacking process(es) starts decreasing), the maximum allowable physical memory footprint

has been reached. Of course, the size of this footprint also depends on the memory load

inflicted by other processes, which compete with the attacking processes for RAM.

4.3.2.2 Signatures

As far as PFN MAX− PFN MIN is concerned, we can reduce the set of potential target pages

in the physmap region, by excluding certain pages that correspond to frames that the

buddy allocator will never provide to user space. For example, in x86 and x86-64, the

BIOS typically stores the hardware configuration detected during POST at page frame

zero. Likewise, the physical address range 0xA0000–0xFFFFF is reserved for mapping the

internal memory of certain graphics cards.
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In addition, the ELF sections of the kernel image that correspond to kernel code and

global data are loaded at known, fixed locations in RAM (e.g., 0x1000000 in x86). Based

on these and other predetermined allocations, we have generated physmap signatures of

reserved page frame ranges for each configuration we consider. If a signature is not available,

then all page frames are potential targets. By combining physmap spraying and signatures,

we can maximize the probability that our informed selection of an arbitrary page from

physmap will point to the exploit payload. Specifically, the results of our experimental

security evaluation (Section 4.6.2) show that, depending on the configuration, Psucc can be

as high as 96%.

4.4 Putting Everything Together

4.4.1 Bypassing SMAP, PAN, and UDEREF

We begin with an example of a ret2dir attack against an x86 system hardened with SMAP

or UDEREF (PAN operates similarly to UDEREF). We assume an exploit for a kernel

vulnerability that allows us to corrupt a kernel data pointer, named kdptr, and overwrite it

with an arbitrary value [75, 72, 71]. On a system with an unhardened kernel, an attacker can

overwrite kdptrwith a user-space address, and force the kernel to dereference it by invoking

the appropriate interface (e.g., a buggy system call). However, the presence of SMAP

or UDEREF will cause a memory access violation, effectively blocking the exploitation

attempt. To overcome this, a ret2dir attack can be mounted as follows.

First, an attacker-controlled user process reserves a single page (4KB), say at address

0xBEEF000. Next, the process moves on to initialize the newly allocated memory with the

exploit payload (e.g., a tampered-with data structure). This payload initialization phase

will cause a page fault, triggering mm to request a free page frame from the buddy allocator

and map it at address 0xBEEF000. Suppose that the buddy system picks page frame 1904

(0x770). In x86, under the default 3G/1G split, physmap starts at 0xC0000000, which

means that the page frame has been pre-mapped at address 0xC0000000 + (4096 ∗

0x770) = 0xC0770000 (according to formula 4.1).
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At this point, 0xBEEF000 and 0xC0770000 are synonyms; they both map to the

physical page that contains the attacker’s payload. Consequently, any data in the area

0xBEEF000–0xBEEFFFFF is readily accessible by the kernel through the synonym ad-

dresses 0xC0770000–0xC0770FFF. To make matters worse, given that physmap is pri-

marily used for implementing dynamic memory, the kernel cannot distinguish whether the

kernel data structure located at address 0xC0770000 is fake or legitimate (i.e., properly

allocated using kmalloc). Therefore, by overwriting kdptr with 0xC0770000 (instead of

0xBEEF000), the attacker can bypass SMAP and UDEREF, as both protections consider

benign any dereference of memory addresses above 0xC0000000.

4.4.2 Bypassing SMEP, PXN, KERNEXEC, and kGuard

We use a running example from the x86-64 architecture to demonstrate how a ret2dir attack

can bypass KERNEXEC, kGuard, and SMEP (PXN operates almost identically to SMEP).

We assume the exploitation of a kernel vulnerability that allows the corruption of a kernel

function pointer, namely kfptr, with an arbitrary value [79, 77, 76, 73]. In this setting,

the exploit payload is not a set of fake data structures, but machine code (shellcode) to

be executed with elevated privilege. In real-world kernel exploits, the payload typically

consists of a multi-stage shellcode, the first stage of which stitches together kernel routines

(second stage) for performing privilege escalation [200]. In most cases, this boils down to

executing something similar to commit creds(prepare kernel cred(NULL)). These

two routines replace the credentials ((e)uid, (e)gid) of a user task with zero, effectively

granting root privileges to the attacking process.

The procedure is similar as in the previous example. Suppose that the payload has

been copied to user-space address 0xBEEF000, which the buddy allocator assigned to page

frame 190402 (0x2E7C2). In x86-64, physmap starts at 0xFFFF880000000000 (see

Table 4.1), and maps the whole RAM using regular pages (4KB). Hence, according to

formula 4.1, a synonym of address 0xBEEF000 is located within kernel space at address

0xFFFF880000000000 + (4096 ∗ 0x2E7C2) = 0xFFFF87FF9F080000.
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In ret2usr scenarios where attackers control a kernel function pointer, an advantage is

that they also control the memory access rights of the user page(s) that contain the exploit

payload, making it trivially easy to mark the shellcode as executable. In a hardened system,

however, a ret2dir attack allows controling only the content of the respective synonym pages

within physmap—not their permissions. In other words, although the attacker can set the

permissions of the range 0xBEEF000 – 0xBEEFFFF, this will not affect the access rights

of the corresponding physmap pages.

Unfortunately, as shown in Table 4.1, the WˆX property is not enforced in many plat-

forms, including x86-64. In our example, the content of user address 0xBEEF000 is

also accessible through kernel address 0xFFFF87FF9F080000 as plain, executable code.

Therefore, by simply overwriting kfptr with 0xFFFF87FF9F080000 and triggering the

kernel to dereference it, an attacker can directly execute shellcode with kernel privilege.

KERNEXEC, kGuard, and SMEP (PXN) cannot distinguish whether kfptr points to ma-

licious code or a legitimate kernel routine, and as long as kfptr ≥ 0xFFFF880000000000

and *kfptr is RWX, the dereference is considered benign.

4.4.2.1 Non-executable physmap

In the example above, we take advantage of the fact that some platforms map part (or all)

of the physmap region as executable (X). The question that arises is whether ret2dir can

be effective when physmap has sane permissions. As we demonstrate in Section 4.6.1, even

in this case, ret2dir attacks are still possible through the use of ROP [100, 195, 16].

Let’s revisit the previous example, this time under the assumption that physmap is not

executable. Instead of mapping regular shellcode at 0xBEEF000, an attacker can map an

equivalent ROP payload: a sequence of control and regular data that stitch together a chain

of code fragments ending with ret instructions, known as gadgets. Gadgets are located

in the kernel’s (executable) .text segment, and perform a semantically equivalent compu-

tation with the regular shellcode (e.g., commit creds(prepare kernel cred(NULL)).

To trigger the ROP chain, kfptr is overwritten with an address that points to a stack

pivoting gadget [187, 197], which is needed to set the stack pointer to the beginning of the

ROP payload, so that each gadget can transfer control to the next one.
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By overwriting kfptr with the address of a pivot sequence, like xchg %rax, %rsp;

ret (assuming that %rax points to 0xFFFF87FF9F080000), the synonym of the ROP

payload now acts as a kernel-mode stack. Note that Linux allocates a separate kernel

stack for every user thread using kmalloc, making it impossible to differentiate between a

legitimate stack and a ROP payload “pushed” in kernel space using ret2dir, as both reside

in physmap. Finally, the ROP code should also take care of restoring the stack pointer

(and possibly other CPU registers) to allow for reliable kernel continuation [4, 173].

4.5 Implementation

We have implemented the techniques presented in the previous sections under a common

framework for the development of ret2dir exploits. Our implementation is readily avail-

able as a shared library, called libret2dir, and provides support for x86/x86-64 and

AArch32/AArch64 Linux architectures (additional targets can be added with moderate

engineering effort). libret2dir can be used to aid the development of kernel exploits

against ret2usr-hardened targets, by automating the process of injecting the exploit pay-

load in kernel space. In addition, it can be used to convert existing ret2usr exploits to

ret2dir-equivalents with minimal effort.

The core part of the API provided by libret2dir consists of the following functions:

int ret2dir_init();

caddr_t ret2dir_get(size_t &pnum);

int ret2dir_map(void *src, size_t len);

At first, the library has to be initialized by invoking ret2dir init. This function launches

a discovery phase for determining the features of the target platform that are of interest

for ret2dir, such as PHYS OFFSET, PFN MAX, PFN MIN, the user/kernel split used (32-

bit architectures only), etc. At this stage, libret2dir also checks whether pagemap

is accessible through /proc. If it is available, then libret2dir uses the PFN leaking

technique to locate synonyms. Otherwise, it falls back to the page frame spraying method.
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Once the library is initialized, there are two principal methods that an exploit writer

can use: get and map. The former is implemented by ret2dir get, which requests pnum

contiguous pages in physmap. If pagemap is available, then the technique presented in

Section 4.3.1 is used for obtaining up to pnum contiguous synonym pages (the number of

actual pages obtained is returned back via pnum); synonyms are internally represented in

the form of (uaddr, kaddr) pairs. After locating the synonyms, ret2dir get returns

kaddr base, which is the base address of the contiguous kernel-space synonyms. The

exploit writer can assume that the payload will be available at [kaddr base:kaddr base

+ (pnum * PAGE SZ) - 1], and use addresses from this region (instead of user-space

addresses) when corrupting kernel data or code poiners. If pagemap is not available, then

libret2dir randomly selects a page-aligned address from within the physmap region,

by taking into consideration the appropriate physmap signature (if available), and returns

that as kaddr base. Note that in this case, only a single page is reserved (pnum = 1).

Armed with the address of the synonym in kernel space, the exploit writer can now

proceed to prepare the payload, which is typically position-dependent (especially in the

case of ROP code). Once ready, ret2dir map can be used to inject the payload in kernel

space. The exploit writer provides a pointer to the beginning of the payload along with its

size. If pagemap is available, libret2dir makes the payload available at kaddr base,

by copying it in to the appropriate user-space locations (i.e., uaddr instances), recorded

during the invocation of ret2dir get. Otherwise, it begins the page frame spraying

process, as described in Section 4.3.2, with the hope that at the end of it kaddr base will

map to an instance of the “sprayed” payload.

4.6 Evaluation

4.6.1 Effectiveness

We evaluated the effectiveness of ret2dir against kernels hardened with ret2usr protec-

tions, using real-world and custom exploits. We obtained a set of 8 ret2usr exploits from

EDB [158], covering a wide range of kernel versions (v2.6.33.6–v3.8). We ran every exploit

on an unhardened kernel to verify that works and follows a ret2usr exploitation approach.
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Next, we repeated the same experiment with every kernel hardened against ret2usr

attacks, and, as expected, all exploits failed. Finally, we transformed the exploits into

ret2dir-equivalents, using libret2dir (Section 4.5), and used them against the same

hardened systems. Overall, our ret2dir versions of the exploits bypassed all available ret2usr

protections, namely SMEP, SMAP, PXN, KERNEXEC, UDEREF, and kGuard.4

Table 4.2 summarizes our findings. The first two columns (EDB-ID and CVE) corre-

spond to the tested exploit, and the third (Arch.) and fourth (Kernel) denote the archi-

tecture and kernel version used. The Payload column indicates the type of payload pushed

in kernel space using ret2dir, which can be: a ROP payload (ROP), executable instructions

(SHELLCODE), tampered-with data structures (STRUCT), or a combination of the above,

depending on the exploit. The Protection column lists the deployed protection mechanisms

in each case. Empty cells correspond to protections that are not applicable in the given

setup, because they may not be: (i) available for a particular architecture, (ii) supported

by a given kernel version, (iii) relevant against certain types of exploits. For instance, PXN

is available only in ARM architectures [130], while SMEP and SMAP are Intel processor

features [87, 54]. Furthermore, support for SMEP was added in kernel v3.5 [220] and for

SMAP in v3.7 [49]. Note that depending on the permissions of the physmap area (see

Table 4.1), we had to modify some exploits that relied on plain shellcode to use a ROP

payload, in order to achieve arbitrary code execution (while in ret2usr exploits attackers

can give executable permissions to the user-space memory that contains the payload, in

ret2dir exploits it is not possible to modify the permissions of physmap).5 Entries for

kGuard marked with * require access to the (randomized) .text segment of the kernel.

As we mentioned in Section 2.3, KERNEXEC and UDEREF were recently ported to

the AArch32 architecture [199]. In addition to providing stronger address space separation,

the authors made an effort to fix the permissions of the kernel in AArch32, by enforcing

the WˆX property for the majority of RWX pages in physmap.

4At the time of writting, we did not have access to a CPU (or CPU emulator) that supported PAN.

5Exploit 15285 uses ROP code to bypass KERNEXEC/UDEREF and plain shellcode to evade kGuard.

Exploit 26131 uses ROP code in x86 (kernel v3.5) to bypass KERNEXEC/UDEREF and SMEP/SMAP,

and plain shellcode in x86-64 (kernel v3.8) to bypass kGuard, KERNEXEC, and SMEP.
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However, as the respective patch is currently under development, there still exist regions

inside physmap that are mapped as RWX. In kernel v3.8.7, we identified a ∼6MB physmap

region mapped as RWX that enabled the execution of plain shellcode in our ret2dir exploit.

The most recent kernel version for which we found a publicly-available exploit is v3.8.

Thus, to evaluate the latest kernel series (v3.12) we used a custom exploit. We artificially

injected two vulnerabilities that allowed us to corrupt a kernel data or function pointer,

and overwrite it with a user-controlled value (marked as “Custom” in Table 4.2). Note

that both flaws are similar to those exploited by the publicly-available exploits. Regarding

ARM, the most recent PaX-protected AArch32 kernel that we managed to boot was v3.8.7.

We tested every applicable protection for each exploit. In all cases, the ret2dir versions

transfered control solely to kernel addresses, bypassing all deployed protections. Figure 4.3

depicts the shellcode we used in x86-64 and AArch32 architectures. The shellcode is relocat-

able, so the only change needed in each exploit is to to replace pkcred and ccreds with

the addresses of prepare kernel cred and commit creds, respectively, as discussed

in Section 4.4.2. By copying the shellcode into a user-space page that has a synonym in the

physmap area, we can directly execute it from kernel mode by overwriting a kernel code

pointer with the physmap-resident synonym address of the user-space page. We followed

this strategy for all cases in which physmap was mapped as executable (corresponding to

the entries of Table 4.2 that contain SHELLCODE in the Payload column).

For cases in which physmap is non-executable, we substituted the shellcode with a

ROP payload that achieves the same purpose. In those cases, the corrupted kernel code

pointer is overwritten with the address of a stack pivoting gadget, which brings the kernel’s

stack pointer to the physmap page that is a synonym for the user page that contains the

ROP payload. Figure 4.4 shows an example of an x86 ROP payload used in our exploits.

The first gadgets preserve the %esp and %ebp registers to facilitate reliable continuation

(as discussed in Section 4.4.2.1). The scratch space can be conveniently located inside the

controlled page(s), so the addresses SCRATCH SPACE ADDR1 and SCRATCH SPACE ADDR2

can be easily computed accordingly. The payload then executes (semantically) the same

code as the shellcode to elevate privilege.
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x86-64 AArch32

push %rbp | push r3, lr

mov %rsp, %rbp | mov r0, #0

push %rbx | ldr r1, [pc, #16]

mov $<pkcred>, %rbx | blx r1

mov $<ccreds>, %rax | pop r3, lr

mov $0x0, %rdi | ldr r1, [pc, #8]

callq *%rax | bx r1

mov %rax, %rdi | <pkcred>

callq *%rbx | <ccreds>

mov $0x0, %rax |

pop %rbx |

leaveq |

ret |

Figure 4.3: The plain shellcode used in ret2dir exploits for x86-64 (left) and AArch32 (right)

targets (pkcred and ccreds correspond to the addresses of prepare kernel cred and

commit creds).

4.6.2 Performance

In systems without access to pagemap, ret2dir attacks have to rely on physmap spraying

to find a synonym that corresponds to the exploit payload. As discussed in Section 4.3.2,

the probability of randomly selecting a physmap address that maps to the exploit pay-

load depends on: (i) the amount of installed RAM, (ii) the physical memory load due to

competing processes, and (iii) the size of the physmap area. To assess this probability, we

performed a series of experiments under different system configurations and workloads.
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/* save orig. esp */

0xc10ed359 /* pop %edx ; ret */

<SCRATCH_SPACE_ADDR1>

0xc127547f /* mov %eax, (%edx) ; ret */

/* save orig. ebp */

0xc10309d5 /* xchg %eax, %ebp ; ret */

0xc10ed359 /* pop %edx ; ret */

<SCRATCH_SPACE_ADDR2>

0xc127547f /* mov %eax, (%edx) ; ret */

/* commit_creds(prepare_kernel_cred(0))*/

0xc1258894 /* pop %eax ; ret */

0x00000000

0xc10735e0 /* addr. of prepare_kernel_cred */

0xc1073340 /* addr. of commit_creds’ */

/* restore the saved CPU state */

0xc1258894 /* pop %eax ; ret */

<SCRATCH_SPACE_ADDR2>

0xc1036551 /* mov (%eax), %eax ; ret */

0xc10309d5 /* xchg %eax, %ebp ; ret */

0xc1258894 /* pop %eax ; ret */

<SCRATCH_SPACE_ADDR1>

0xc1036551 /* mov (%eax), %eax ; ret */

0xc100a7f9 /* xchg %eax, %esp ; ret */

Figure 4.4: Example of an x86 ROP payload (kernel v3.8) used in our ret2dir exploits.
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Figure 4.5: Probability (Psucc) that a selected physmap address maps to the exploit payload

(successful exploitation) with a single attempt, when using physmap spraying, as a function

of the available RAM in the system.

Figure 4.5 shows the probability of successfully selecting a physmap address, with a

single attempt, as a function of the amount of RAM installed in our system. Our testbed

consisted of a single host armed with two 2.66GHz quad-core Intel Xeon X5500 CPUs

and 24GB of RAM, running 64-bit Debian Linux v7. Each bar denotes the average value

over 5 repetitions of the same experiment. On each iteration we count the percentage

of the maximum number of physmap-resident page frames that we managed to aquire,

using the spraying technique (Section 4.3.2), over the size of physmap. We used three

different workloads of increasing memory pressure: an idle system (Idle), a desktop-like

workload with constant browsing activity (Web) in multiple tabs (Facebook, Gmail, Twitter,

YouTube, and a mostly-static website), and a distributed kernel compilation (Kbuild) with

16 parallel threads running on 8 CPU cores (gcc, as, ld, make). Note that it is necessary

to maintain continuous activity in the competing processes for their working set to remain

hot, otherwise the ret2dir processes can easily “steal” their memory-resident pages.
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The probability of success increases with the amount of RAM. For the lowest-memory

configuration (1GB), the probability ranges between 65–68%, depending on the workload.

This small difference between the idle and the intensive workloads is an indication that

despite the continuous activity of the competing processes, the ret2dir processes manage

to claim a large amount of memory, as a result of their repeated accesses to already allo-

cated pages that in essence “lock” them to main memory. For the 2GB configuration the

probability jumps to 88%, and reaches 96% for 16GB.

Note that as these experiments were performed on a 64-bit system, physmap always

mapped all available memory. On 32-bit platforms, in which physmap maps only a subset

of RAM, the probability of success is even higher. As discussed in Section 4.3.1.1, in such

cases, the additional memory pressure created by competing processes, which more likely

were spawned before the ret2dir processes, helps “pushing” ret2dir allocations to the desired

zones (ZONE NORMAL, ZONE DMA) that fall within the physmap area. Finally, depending

on the vulnerability, it is quite common that an unsuccessful attempt will not result in a

kernel panic, allowing the attacker to run the exploit multiple times.

Availability

The complete set of exploits developed to assess the effectiveness of our ret2dir attack(s) is

available at: https://www.cs.columbia.edu/˜vpk/research/ret2dir/. Inter-

ested readers are referred to Appendix D for more information on how to use them.

https://www.cs.columbia.edu/~vpk/research/ret2dir/
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Chapter 5

XPFO

5.1 Overview

In this chapter, we investigate whether a physical memory management approach that

enforces the explicit use of page frames by different security contexts (user vs. kernel), can

efficiently and effectively protect the OS kernel against ret2dir attacks.

Restricting access to /proc/<pid>/pagemap and similar interfaces, or disabling such

features completely (e.g., in Linux this can be easily achieved by compiling the kernel with-

out support for PROC PAGE MONITOR), is a simple step that can hinder, but not prevent,

ret2dir attacks. To that end, we present the design, implementation, and evaluation of an

eXclusive Page Frame Ownership (XPFO) scheme for Linux, which provides strong kernel

isolation and effective ret2dir protection with low overhead.

5.1.1 Threat Model

We assume a kernel hardened against ret2usr attacks using one (or a combination) of the

protection mechanisms outlined in Section 2.3. In addition, we assume an unprivileged

attacker with local access, who seeks to elevate privileges by exploiting a kernel-memory

corruption vulnerability [35, 28, 40, 29, 43, 26, 22, 44, 42, 41, 33, 32, 31, 23, 38, 34, 39, 37]

(see Section 2.2). Recall that in a kernel hardened against ret2usr attacks, the hijacked

control or data flow can no longer be redirected to user space in a direct manner, as the

respective ret2usr protection scheme(s) will block any such attempt.
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For that reason, we surmise the (ab)use of the implicit physical memory sharing be-

tween user processes and the kernel (e.g., through physmap), which allows an attacker to

deconstruct the isolation guarantees offered by ret2usr protection mechanisms, and redirect

the kernel’s control or data flow to user-controlled code or data.

Note that we do not make any assumption(s) regarding the type of corrupted data;

both code and data pointers are possible targets [192, 78, 68, 79, 77, 76, 73]. Overall, the

adversarial capabilities we presume are identical to those needed for carrying out the ret2dir

attacks introduced in Chapter 4.

5.2 Design

XPFO is a thin management layer that enforces exclusive ownership of page frames by

either the kernel or user-level processes. Specifically, under XPFO, page frames can never

be assigned to both kernel and user space, unless a kernel component explicitly requests

that (e.g., to implement zero-copy buffers [182]).

We opted for a design that does not penalize the performance-critical kernel allocators, at

the expense of low additional overhead whenever page frames are allocated to (or reclaimed

from) user processes. Recall that physical memory is allotted to user space using the

demand paging and copy-on-write (COW) methods [12], both of which rely on page faults

to allocate RAM. Hence, user processes already pay a runtime penalty for executing the

page fault handler and performing the necessary bookkeeping. XPFO aligns well with this

design philosophy, and increases only marginally the management and runtime overhead of

user-space page frame allocation.

Crucially, the physmap area is left untouched, and the slab allocator, as well as kernel

components that interface directly with the buddy allocator, continue to get pages that

are guaranteed to be physically contiguous and benefit from fast virtual-to-physical address

translations, as there are no extra page table walks or modifications (see Section 4.2.1).
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Figure 5.1: Overall XPFO operation. Whenever page frames are assigned to a user process,

XPFO unmaps their respective synonyms from physmap, breaking unintended aliasing and

ensuring that malicious content can no longer be “injected” to kernel space using ret2dir.

Figure 5.1 summarizes the operation of XPFO. Whenever a page frame is assigned

to a user process, XPFO unmaps its respective synonym from physmap, thus breaking

unintended aliasing and ensuring that malicious content can no longer be “injected” to

kernel space using ret2dir. Likewise, when a user process releases page frames back to

the kernel, XPFO maps the corresponding pages back in physmap to proactively facilitate

dynamic (kernel) memory requests.

A key requirement here is to wipe out the content of page frames that are returned by

(or reclaimed from) user processes, before making them available to the kernel. Otherwise,

a non-sanitizing XPFO scheme would be vulnerable to the following attack. A malicious

program spawns a child process that uses the techniques presented in Section 4.4 to map

its payload. Since XPFO is in place, the payload is unmapped from physmap and cannot

be addressed by the kernel. Yet, it will be mapped back once the child process terminates,

making it readily available to the malicious program for mounting a ret2dir attack.
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5.3 Implementation

We implemented XPFO in the Linux kernel v3.13. We devoted a significant amount of time

to engineer our patch to fulfill the design requirements described in Section 5.2, and make

as few and localized kernel modifications as possible—our aim is to to integrate XPFO in

future Linux releases. Our implementation (∼500LOC) keeps the management and runtime

overhead to the minimum, by employing a set of optimizations related to TLB handling

and page frame cleaning, and handles appropriately all cases in which page frames are al-

located to (and reclaimed from) user processes. Specifically, XPFO deals with: (a) demand

paging frames due to previously-requested anonymous and shared memory mappings (brk,

mmap/mmap2, mremap, shmat), (b) COW frames (fork, clone), (c) explicitly and im-

plicitly reclaimed frames ( exit, munmap, shmdt), (d) swapping (both swapped out and

swapped in pages), (e) NUMA frame migrations (migrate pages, move pages), and (f)

huge pages and transparent huge pages.

Handling the above cases is quite challenging. We first extended the system’s page frame

data structure (struct page) with the following fields: xpfo kmcnt (reference counter),

xpfo lock (spinlock) and xpfo flags (32-bit flags field)—struct page already con-

tains a flags field, but in 32-bit systems it is quite congested [47]. Note that although the

kernel keeps a struct page object for every page frame in the system, our change re-

quires only 3MB of additional space per 1GB of RAM (∼0.3% overhead). Moreover, out

of the 32 bits available in xpfo flags, we only make use of three: “Tainted” (T; bit 0),

“Zapped” (Z; bit 1), and “TLB-shootdown needed” (S; bit 2).

Next, we extended the buddy system. Whenever the buddy allocator receives re-

quests for page frames destined to user space (requests with GFP USER, GFP HIGHUSER, or

GFP HIGHUSER MOVABLE set to gfp flags), XPFO unmaps their respective synonyms

from physmap and asserts xpfo flags.T, indicating that the frames will be allotted to

userland and their contents are not trusted anymore. In contrast, for page frames destined

to kernel space, XPFO asserts xpfo flags.S (optimization; see Section 5.3.1).
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Whenever page frames are released to the buddy system, XPFO checks if xpfo flags.T

was previously asserted. If so, the frame was mapped to user space and needs to be wiped

out. After zeroing its contents, XPFO maps it back to physmap, resets xpfo flags.T,

and asserts xpfo flags.Z (optimization; more on that in Section 5.3.1). If xpfo flags.T

was not asserted, the buddy system reclaimed a frame previously allocated to the kernel

itself and no action is necessary (fast-path; no interference with kernel allocations). Note

that in 32-bit systems, the above are not performed if the page frame in question comes

from ZONE HIGHMEM—this zone contains page frames that are not direct-mapped.

Finally, to achieve complete support of cases (a)–(f), we leverage kmap/kmap atomic

and kunmap/kunmap atomic. These functions are used to temporarily (un)map page

frames acquired from ZONE HIGHMEM (see Section 4.3.1.1). In 64-bit systems, where the

whole RAM is direct-mapped, kmap/kmap atomic returns the address of the respective

page frame directly from physmap, whereas kunmap/kunmap atomic is defined as NOP

and optimized by the compiler. If XPFO is enabled, all of them are re-defined accordingly.

As user pages are (preferably) allocated from ZONE HIGHMEM, the kernel wraps all code

related to the cases we consider (e.g., demand paging, COW, swapping) with the above

functions. Kernel components that use kmap to operate on page frames not related to user

processes do exist, and we distinguish these cases using xpfo flags.T. If a page frame is

passed to kmap/kmap atomic and that bit is asserted, this means that the kernel tries to

operate on a frame assigned to user space via its kernel-resident synonym (e.g., to read its

contents for swapping it out), and thus is temporarily mapped back in physmap. Likewise,

in kunmap/kunmap atomic, page frames with xpfo flags.T asserted are unmapped.

Note that in 32-bit systems, the XPFO logic is executed on kmap routines only for direct-

mapped page frames (see Table 4.1). xpfo lock and xpfo kmcnt are used for handling

recursive or concurrent invocations of kmap/kmap atomic and kunmap/kunmap atomic

with the same page frame.
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5.3.1 Optimizations

The overhead of XPFO stems mainly from two factors: (i) sanitizing the content of re-

claimed pages, and (ii) TLB shootdown and flushing (necessary since we modify the kernel

page table). We employ three optimizations to keep that overhead to the minimum. As full

TLB flushes result in prohibitive slowdowns [152], in architectures that support single TLB

entry invalidation, XPFO selectively evicts only those entries that correspond to synonyms

in physmap that are unmapped; in x86/x86-64 this is done with the INVLPG instruction.

In systems with multi-core CPUs, XPFO must take into consideration TLB coherency

issues. Specifically, we have to perform a TLB shootdown whenever a page frame previously

assigned to the kernel itself is mapped to user space. XPFO extends the buddy system to

use xpfo flags.S for this purpose. If that flag is asserted when a page frame is alloted

to user space, XPFO invalidates the TLB entries that correspond to the synonym of that

frame in physmap, in every CPU core, by sending IPI interrupts to cascade TLB updates.

In all other cases (i.e., page frames passed from one process to another, reclaimed page

frames from user processes that are later on alloted to the kernel, and page frames allocated

to the kernel, reclaimed, and subsequently allocated to the kernel again), XPFO performs

only local TLB invalidations.

To alleviate the impact of page sanitization, we exploit the fact that page frames pre-

viously mapped to user space, and subsequently reclaimed by the buddy system, have

xpfo flags.Z asserted. We extended clear page to check xpfo flags.Z and avoid

clearing the frame if the bit is asserted. This optimization avoids zeroing a page frame

twice, in case it was first reclaimed by a user process and then subsequently allocated to

a kernel control path that required a clean page—clear page is invoked by every kernel

execution path that requires a zero-filled page frame.
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Benchmark Metric Original XPFO (%Overhead)

Apache Req/s 17636.30 17456.47 (%1.02)

NGINX Req/s 16626.05 16186.91 (%2.64)

PostgreSQL Trans/s 135.01 134.62 (%0.29)

Kbuild sec 67.98 69.66 (%2.47)

Kextract sec 12.94 13.10 (%1.24)

GnuPG sec 13.61 13.72 (%0.80)

OpenSSL Sign/s 504.50 503.57 (%0.18)

PyBench ms 3017.00 3025.00 (%0.26)

PHPBench Score 71111.00 70979.00 (%0.18)

IOzone MB/s 70.12 69.43 (%0.98)

tiobench MB/s 0.82 0.81 (%1.22)

dbench MB/s 20.00 19.76 (%1.20)

PostMark Trans/s 411.00 399.00 (%2.91)

Table 5.1: XPFO performance evaluation results using micro- and macro-benchmarks from

the Phoronix Test Suite.

5.4 Evaluation

5.4.1 Effectiveness

To evaluate the effectiveness of the proposed protection scheme, we used the ret2dir versions

of the real-world exploits presented in Section 4.6.1. We back-ported our XPFO patch to

each of the six kernel versions used in our previous evaluation (see Table 4.2), and tested

again our ret2dir exploits when XPFO was enabled. In all cases, XPFO prevented the

respective exploitation attempt.
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5.4.2 Performance

To assess the performance overhead of XPFO we used kernel v3.13, and a collection of micro-

and macro-benchmarks from the Phoronix Test Suite (PTS) [178]. PTS puts together stan-

dard system tests, like apachebench, pgbench, kernel build, and IOzone, which are

typically used by kernel developers to track performance regressions. Our testbed was the

same with the one used in Section 4.6.2; Table 5.1 summarizes our findings (the num-

bers reported are average values over 5 repetitions). Overall, XPFO introduces a minimal

(negligible in most cases) overhead, ranging between 0.18–2.91%.

5.5 Discussion

5.5.1 Limitations

XPFO provides protection against ret2dir attacks, by braking the unintended address space

sharing between different security contexts. However, it does not prevent generic forms of

data sharing between kernel and user space, such as user-controlled content pushed to kernel

space via I/O buffers, the page cache, or system objects like pipes and message queues.

5.5.2 Alternative Design Approaches

5.5.2.1 Physical Memory Partitioning

An alternative solution to XPFO is to split physical memory in two mutually exclusive parts.

Pages frames in the first part are permanently assigned to the kernel and are pre-mapped

in the physmap area, while frames from the second part are alloted to user processes

on demand. This scheme guarantees by design that there are no synonyms of user-space

addresses in kernel space: page frames belong either to the kernel domain or the user

domain. An implementation of this scheme would require minimal changes in mm to ensure

that user-domain page frames are always assigned from the part of RAM that is not mapped

in physmap. As discussed in Section 4.3.1.1, in 32-bit systems ZONE HIGHMEM currently

contains page frames that cannot be directly addressed by the kernel through physmap, so

this or a similar zone could be leveraged for this purpose.
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Likewise, the kernel will use only frames from zone(s) that are included in the physmap

area. The main drawback of this approach is resource underutilization, as any unused page

frame in either part will not be available to the other part when the latter has depleted

its memory. For instance, although the kernel might still have available page frames for its

own use, it will refuse to provide them to user processes in case all user page frames have

been allocated. A more resource-efficient approach would be to dynamically adjust the size

of the two domains, although the overhead for doing so needs to be explored.

5.5.2.2 physmap Layout Randomization

Another potential mitigation against page frame spraying is to randomize the location of

physmap, by taking advantage of the ample virtual address space in 64-bit systems. The

simplest scheme would be to divide physmap into RAM-sized slots, and map the entire

RAM into one of them at boot time. In x86-64 the current size of physmap is 64TB (see

Table 4.1). Therefore, assuming a machine with 64GB RAM, the aforementioned scheme

will result in 1024 slots (i.e., 10 bits of randomization entropy). Even after successfully

spraying and occupying 96% of RAM, the attacker would now have to guess the right one

among the 1024 slots.

As the amount of RAM in future systems increases, however, randomization entropy

will drop, while (depending on the exploit) an attacker might be able to launch repeated

ret2dir attempts. In addition, this solution is not applicable in 32-bit systems, as in most

cases the size of the physical memory is close to (or exceeds) the size of physmap.

Availability

Our XPFO prototype, mainly implemented as a patch for Linux kernel v3.13, is freely

available at: https://www.cs.columbia.edu/˜vpk/research/xpfo/. Interested

readers are referred to Appendix E for more information on how to use it.

https://www.cs.columbia.edu/~vpk/research/xpfo/
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Chapter 6

Conclusion

6.1 Summary

In this dissertation, we investigated the hypothesis that the security posture of modern OSes

can be improved by employing a synergy of defenses and exploit prevention techniques,

which guarantee the strong isolation between user and kernel space.

Towards this goal, we presented kGuard: a lightweight, compiler-based mechanism that

protects the kernel from ret2usr threats. Unlike previous work, kGuard is fast, flexible, and

offers cross-platform support. It works by injecting fine-grained inline guards during the

translation phase, which are resistant to bypass, and it does not require any modification to

the kernel. kGuard can safeguard 32- or 64-bit OSes that map a mixture of code segments

with different privileges inside the same scope and are susceptible to ret2usr attacks. We be-

lieve that it strikes a balance between safety and functionality, and provides comprehensive

protection, as demonstrated by our extensive evaluation with real exploits against Linux.

In addition, we presented ret2dir: a novel kernel exploitation technique that takes advan-

tage of direct-mapped physical memory regions in kernel space to bypass deployed ret2usr

protections. To improve kernel isolation, we designed and implemented XPFO: an exclusive

page frame ownership scheme for the Linux kernel, which prevents the implicit sharing of

physical memory, thereby ensuring that user-controlled content can no longer be injected

into kernel space using ret2dir. The results of our experimental evaluation demonstrate

that XPFO offers effective protection with negligible runtime overhead.
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6.2 Future Directions

As commodity software is increasingly used in mission-critical settings, improving the trust-

worthiness of key elements in the software stack becomes an issue of utmost importance.

To this end, we introduced new techniques to protect essential software components, like

OS kernels (kGuard [115, 114], XPFO [113]). However, the bulk of the work still lies ahead.

Going forward, we plan to address the security challenges of the unique software ecosystem

that emerging technologies, like mobile and cloud computing, have started shaping. The

following research directions capture our vision towards next-generation software protection.

6.2.1 Agile Software Hardening

Despite years of research, software hardening still revolves around the concept of defense

in depth. The basic premise behind this strategy to protection is that by stacking together

different exploit mitigation techniques, software compromise becomes harder. However,

this “blanket” approach to software security (i.e., “protect everything, the same way, all

the time, at the same intensity”) works well only with defences that have negligible, or

close to zero, performance overhead and are oblivious to the setting(s) in which the hard-

ened software is used. Hence, as security-critical components, like OS kernels, language

runtime environments, cryptographic libraries, etc., are utilized verbatim in a multitude of

diverse domains—ranging from mobile settings to cloud computing environments—software

providers are coerced to employ “cheap” exploit mitigations with lax security guarantees,

rather than modern protection primitives with assured security; the latter typically inflict

non-negligible runtime slowdowns or operate only on platforms with specific characteris-

tics. Consequently, the majority of the software stack remains armored with rudimentary

broad-spectrum defense schemes, such as ASLR, NX memory, and compiler-based tripwires

(e.g., stack canaries, memory poisoning), despite the latest advances in the development of

protections with guaranteed security properties.
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Looking forward, we believe that we should rethink how we harden our systems. As es-

sential software components move rapidly from one domain to another to meet the demands

of emerging software ecosystems (i.e., app stores and mashup cloud applications), which

rely heavily on software of unknown quality and provenance, the problems of the blanket

approach will only be exacerbated. The preclusion of every protection mechanism that does

not align with the “always-on, applicable-everywhere” mode of operation culminates in a

monoculture of defenses (i.e., the same exploit mitigations are used repeatedly in environ-

ments with fundamentally different security requirements and characteristics), which allows

adversaries to automate their techniques for bypassing protections and reliably exploit soft-

ware running in dissimilar settings with minimal (additional) effort.

To address these challenges, we envision a next-generation security architecture that

enables defenses to be constantly in flux, fostering the deployment and use of protection

mechanisms like Data Flow Tracking (DFT) [112]—heavyweight, yet principled and very

effective—as and where needed in a strategic manner. Our goal is to infuse systems with the

ability to dynamically change their defenses along several dimensions, by elevating hard-

ening rectification and agility to first-rate principles. The benefits of such an approach

to software security are manifold. First, hardening agility creates a diversified and unpre-

dictable environment, which naturally breaks the monoculture of defenses and hinders the

ability of adversaries to use standard recipes for bypassing exploit mitigations. Second,

hardening rectification allows software to make the best use of the hardening capabilities

that a particular setting offers, and dynamically adapt the deployed defences to meet certain

needs. For instance, intensify the hardening level to protect against an active exploitation

attempt, or turn off redundant protections to increase performance and preserve power.

To support this effort, we plan to build upon our prior work on Virtual Application

Partitioning [86] and investigate compiler-assisted techniques that efficiently, and transpar-

ently (to the extent possible), enable systems to adapt the (a.) granularity (coarse-grain vs.

fine-grain), (b.) intensity, and (c.) layering, of the deployed protection mechanisms, based

on the (i) environment in which the software is executing (e.g., mobile device, cloud plat-

form), (ii) data that the application operates upon (high-value vs. low-value), (iii) innate

properties of particular code parts (high-privileged vs. deprivileged/sandboxed), and (iv)
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external events. In addition, we plan to explore minimal hardware extensions for boosting

certain kinds of heavyweight runtime protections, such as CFI and DFT [112, 103]. Finally,

in the longer term, our aim is to leverage automated program verification techniques for

applying defense mechanisms strategically, in a very fine-grained and targeted manner (e.g.,

only in code parts that certain safety properties cannot be proven to hold, or only when an

application operates on inputs that are proven to be unsafe), in a spirit similar to that of

Taint Flow Algebra [104].

6.2.2 Kernel Security

Kernel protection is a fertile and challenging research area that we plan to continue work-

ing on, as kernel exploitation is currently turning into one of the primary methods for

compromising (hardened) systems. ret2usr [115, 114] and ret2dir [113]—the two attacks we

introduced as part of this dissertation—signified the importance of proper isolation between

the OS kernel and user processes, by demonstrating how the weak separation of different

protection domains (i.e., kernel space vs. user space) can be leveraged to completely sub-

vert state-of-the-art kernel defenses. Going forward, we plan to explore kernel designs, and

hardware extensions, which can safely combine different protection domains without trading

security for performance, or vice versa.



BIBLIOGRAPHY 75

Bibliography
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Appendix A

Examples of ret2usr Exploits

ret2usr attacks are usually manifested by overwriting kernel-resident control data (e.g.,

return addresses, jump tables, function pointers) with user-space addresses (see Section 2.2).

In early versions of such exploits, this was accomplished by invoking a (vulnerable) system

call with carefully crafted arguments to nullify a function pointer. When the NULL function

pointer is eventually dereferenced, control is transferred to address zero that resides in user

space. Commonly, that address is not used by processes and is unmapped.1 However, if the

attacker has local access to the system, she can build a program with arbitrary data or code

mapped at address zero (or any other address in her program for that matter). Note that

since the attacker controls the program, its memory pages can be mapped both writable

and executable, and placed at known locations (i.e., kernel-space ASLR and WˆX measures

do not apply).

1In Linux, accessing an unmapped page, when running in kernel mode, results into a kernel oops and

subsequently causes the OS to kill the offending process (unless a lock is held, in which case Linux will result

into a kernel panic). Other OSes fail-stop directly with a kernel panic.
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A.1 sendpage ret2usr Linux Exploit

736 sock = f i l e −>p r i v a t e da t a ;

737 f l a g s = ! ( f i l e −> f f l a g s & ONONBLOCK) ? 0 : MSGDONTWAIT;

738 i f (more )

739 f l a g s |= MSGMORE;

740 / ∗ [ ! ] NULL po in t e r d e r e f e r en c e ( sendpage ) [ ! ] ∗/

741 return sock−>ops−>sendpage ( sock , page , o f f s e t , s i z e , f l a g s ) ;

Listing A.1: NULL function pointer in Linux (net/socket.c).

Listing A.1 shows a straightforward NULL function pointer vulnerability that affected all

Linux kernel versions released between May 2001 and August 2009 (v2.4.4/v2.6.0 – v2.4.37/-

v2.6.30.4) [25]. If the sendfile system call is invoked with a socket descriptor belonging

to a vulnerable protocol family, the value of the sendpage pointer in line 741 is set to

NULL. This results in an indirect function call to address zero, which can be exploited by

attackers to execute arbitrary code with elevated privileges.

Figure A.1 illustrates the steps taken by a malicious process to exploit the vulnerability

in x86. It starts by invoking the sendfile system call with the offending arguments (i.e., a

datagram socket of a vulnerable protocol family, such as PF IPX). The corresponding libc

wrapper (0xB7F50D20) traps to the OS via the SYSENTER instruction (0xB7FE2419)

and the generated software interrupt leads to executing the system call handler of Linux

(sysenter do call()). The handler dynamically resolves the address of sys sendfile

(0xC01D0CCF) using the array sys call table, which includes the kernel address of

every supported system call, indexed by system call number (0xC01039DB).2 Privileged

execution then continues until the offending sock sendpage() routine is invoked. Due to

the arguments passed in sendfile, the value of the sendpage pointer (0xFA7C8538) is

NULL and results in an indirect function call to address zero. This transfers control to the

attacker, who can execute arbitrary code with kernel privilege.

2The address 0xC03FD3A8 corresponds to the kernel-memory address of sys call table.
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0xFFFFFFFF

} stack offset

} mmap offset
stack break

} brk offset

0x08048000

2

3

4

5

(0xb7f50d20)

(0xfa7c8538)

6

1

(0xc01d0ccf)

0xC0000000

[user stack]

0xc01039db:call *0xc03fd3a8(,%eax,4)

[kernel text]

0xc032fda5:call *0x50(%ebx)

0xfa7c8538:0x00000000

[vmalloc area]

SHELLCODE

0x08049d1d: call 0xb7d7d62c [user text]

[data + bss segment]

[user heap]

0xb7d7d62c:jmp *0x10(%ebx) [sendfile@plt]

sysenter [sendfile@libc]0xb7fe2419:

Figure A.1: Control transfers that occur during the exploitation of a ret2usr attack. The

sendfile system call, on x86 Linux, causes a function pointer in kernel to become NULL,

illegally transferring control to user space code.

A.2 tee ret2usr Linux Exploit

1333 / ∗ [ ! ] NULL po in t e r d e r e f e r en c e ( ops ) [ ! ] ∗/

1334 ibu f−>ops−>get ( ip ip e , i bu f ) ;

1335 obuf = opipe−>bufs + nbuf ;

1336 ∗ obuf = ∗ i b u f ;

Listing A.2: NULL data pointer in Linux (fs/splice.c).

31 struct p ip e bu f op e r a t i on s {

32 int can merge ;

33 void∗ (∗map) ( /∗ . . . ∗/ ) ;

34 void (∗unmap) ( /∗ . . . ∗/ ) ;

35 int (∗ pin ) ( /∗ . . . ∗/ ) ;

36 void (∗ r e l e a s e ) ( /∗ . . . ∗/ ) ;

37 int (∗ s t e a l ) ( /∗ . . . ∗/ ) ;

38 void (∗ get ) ( /∗ . . . ∗/ ) ;

39 } ;

Listing A.3: struct pipe buf operations (include/linux/pipe fs i.h).
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Listing A.2 shows the Linux kernel bug exploited by Spengler [198]. The ops field in

line 1334, which is a data pointer of type struct pipe buf operations, becomes NULL

after the invocation of the tee system call. Upon dereferencing ops, the effective address

of a function is obtained via get, which is mapped to the seventh double word (assuming an

x86 architecture) after the address pointed by ops (i.e., due to the definition of structure

pipe buf operations; see Listing A.3). Hence, the kernel reads a code pointer from

0x0000001C, which is controlled by the user. This enables an attacker to redirect the

control flow of the kernel to an arbitrary address.
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Appendix B

kGuard RTL Internals

branchprot instrument(), our instrumentation callback, is invoked by the GCC pass

manager for every translation unit after all RTL optimizations have been applied, and

exactly before the target code is emitted. At this point, the corresponding translation

unit is maintained as graph of basic blocks (BBs) that contain chained sequences of RTL

instructions, also known as rtx expressions (i.e., LISP-like assembler code for an abstract

machine with infinite registers).

GCC maintains a specific graph-based data structure (call-graph) that holds infor-

mation for every internal/external call site. However, indirect control transfers are not

represented in it and are assumed to be control-flow neutral. For that reason we perform

the following. We begin by iterating over all the BBs and rtx expressions of the respective

translation unit, selecting only the computed calls and jumps. This includes rtx objects of

type CALL INSN or JUMP INSN that branch via a register or memory location. Note that

ret instructions are also encoded as rtx objects of type JUMP INSN. Next, we modify the

rtx expression stream for inserting the CFAR and CFAM checks. The CFAR guards are inserted

by splitting the original BB into 3 new ones. The first hosts all the rtx expressions before

{CALL, JUMP} INSN, along with the random NOP sled and two more rtx expressions that

match the compare (cmp) and jump (jae) instructions shown in Listing 3.1. The second

BB contains the code for loading the address of the violation handler into the branch reg-

ister (i.e., mov in x86), while the last BB contains the actual branch expression along with

the remaining rtx expressions of the original BB.
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Lastly, the process also involves altering the control-flow graph, by chaining the new

BBs accordingly and inserting the proper branch labels to ensure that the injected code

remains inlined. CFAM instrumentation is performed in a similar fashion.
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Appendix C

kGuard Distribution

Our kGuard bundle [109] contains the following tools:

• kguard: a GCC plugin that implements CFA-based control-flow confinement and

code inflation, as specified in Section 3.2, Section 3.3, and Appendix B.

• kvld: a helper tool that detects and reports unprotected (exploitable) control transfer

instructions in ELF [219] objects, along with a kguard instrumentation summary.

Although kGuard is a cross-platform solution, both kguard and kvld were mainly

evaluated in x86/x86-64 Linux. Earlier versions were successfully used with members of the

BSD family and the ARM platform (AArch32), but our latest release was solely developed

and tested on Debian GNU/Linux v6 [59] and v7 [60].

C.1 Limitations

kGuard is implemented as an RTL IR optimization pass (see Section 3.3 and Appendix B),

and as such, it does not handle assembler code (both “inline” and external). Hence, any

indirect control-flow transfer embedded in assembly snippets is left unprotected. Note,

however, that this is not a fundamental limitation of kGuard, but rather an implementation

decision. In principle, one can incorporate the techniques presented in Section 3.2 (i.e.,

CFA-based control-flow confinement, code inflation, and CFA motion) in the assembler,

instead of the compiler, as they do not require high-level semantics.
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In addition, our released prototype does not include support for the following features:

• Liveness analysis for minimizing register spilling in CFAM guards (see Section 3.2).

Even though initial versions of kGuard included support for that feature, we had to

significantly rewrite the respective code when we ported kguard from GCC v4.5 [84]

to v4.6 [85]. Hence, to avoid fragmentation, and given the limited performance ben-

efits of the feature, we opted for a scheme that always spills a fixed register (i.e.,

%edi/%rdi in x86/x86-64), as shown in Listing 3.3.

• CFA motion (see Section 3.2.2.2). Although kguard supports the log parameter,

which records all necessary information to perform CFA relocation, it does not han-

dle the actual rewriting of the .text segment of the kernel/modules. The latter

is performed through a kernel component that is OS- and architecture-specific. In

Section 3.2.2.2, we describe, in detail, how to implement CFA motion in x86 Linux

(kernel v2.6.32) and {Free, Net}BSD.

• NOP sled in the beginning of the kernel .text segment. Code inflation randomizes

the starting address of the kernel .text segment, by inserting a (huge) NOP sled of

random length its beginning (see Section 3.2.2.2). Again, though original versions of

kguard included support for that feature, we decided to remove it from our latest

release, as many commodity OSes begun employing kernel-space ASLR [66].

C.2 Building kGuard

What follows are the steps to build kguard from source. We assume a Debian GNU/Linux

distribution (v6 [59] or v7 [60]; x86/x86-64) and the latest release of kGuard (v3.14159alpha

at the time of writing).

• Dependencies:

– GNU make v3.81 (or later) [88], GNU binutils v2.22 (or later) [90].

– GCC v4.5 [84] or v4.6 [85] (versions ≥ 4.7 are not supported).

– libbsd v0.4.2 (or later) [82].
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• Build steps:

1. Download [109]:

wget https://www.cs.columbia.edu/˜vpk/research/kguard/kguard-src.

tar.gz

2. Unpack:

tar xzf kguard-src.tar.gz

3. Build:

cd kguard-src && make

If the build process is successful, kguard (kguard.so) will be made available in the

working directory ; kvld is implemented as an AWK [3] script, and therefore, no compi-

lation is necessary. In Debian and Debian-derived distributions (e.g., Ubuntu), the build

dependencies can be satisfied by installing the following packages: build-essential,

gcc-4.{5, 6}-plugin-dev, libbsd-dev. Note that we recommend building kguard

with the same version of GCC used to compile protected kernels, by setting the CC and

CFLAGS variables, accordingly, in Makefile. Lastly, kguard.h includes the default

value(s) for the starting address of the kernel .text segment. Hence, if kGuard is used in

experimental settings, KADDR DFL needs to be modified accordingly.1

C.3 Using kGuard

C.3.1 kguard

Once kguard (kguard.so) is successfully built, one can start compiling kGuard-protected

kernels by leveraging the -fplugin and -fplugin-arg parameters of GCC. In Linux,

which uses the kBuild system [14], we recommend supplying the respective parameters

through the CFLAGS variable or by directly editing the main Makefile of the kernel and

altering KBUILD CFLAGS. As stated in Section 3.3, kGuard accepts 3 parameters: stub

(address or symbol), nop (decimal integer), and log (file path). stub provides the name of

the runtime violation handler, nop stores the maximum size of the random NOP sled inserted

1 For example, in x86 OpenBSD KADDR DFL should be set to 0xD0000000.

https://www.cs.columbia.edu/~vpk/research/kguard/kguard-src.tar.gz
https://www.cs.columbia.edu/~vpk/research/kguard/kguard-src.tar.gz
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before each CFA, and log is used to define an instrumentation logfile for CFA motion. In

addition, our latest prototype supports the retprot (boolean) flag for controlling the

instrumentation of ret instructions (x86/x86-64 only). The default parameter values are

the following: stub = panic, nop = 16, log = NULL, and retprot = 1.

In common settings, appending ‘-fplugin=<full-path>/kguard.so’2 to the build

flags should be sufficient for compiling a kGuard-protected kernel; specific parameters can

be further tailored to need with -fplugin-arg. For example, the (maximum) size of the

NOP sleds can be doubled (i.e., from 16 to 32 NOPs), and the runtime violation handler can

be redefined (e.g., from panic to chndl), with ‘-fplugin-arg-kguard-nop=32’ and

‘-fplugin-arg-kguard-stub=chndl’, respectively. Note that certain (sub)directories

of the kernel source tree may have to be excluded from being instrumented with kguard.

Examples include early, machine-dependent bootstrap code (e.g., arch/x86/boot/ in

x86/x86-64 Linux), the vDSO [48] (i.e., arch/x86/vdso in x86-64 Linux), etc.

In recent Linux kernels, the above can be performed with the CFLAGS REMOVE macro

of kBuild, whereas in all other cases, every kGuard-related directive should be manually

stripped from the build flags. The latest Linux kernel that we successfully built with kGuard

was v3.2; we appended ‘-fplugin=<full-path>/kguard.so’ to KBUILD CFLAGS in

the main Makefile, and the following snippet(s) to arch/x86/vdso/Makefile:

CFLAGS_REMOVE_vdso-note.o = -fplugin=<full-path>/kguard.so

CFLAGS_REMOVE_vclock_gettime.o = -fplugin=<full-path>/kguard.so

CFLAGS_REMOVE_vgetcpu.o = -fplugin=<full-path>/kguard.so

CFLAGS_REMOVE_vvar.o = -fplugin=<full-path>/kguard.so

C.3.2 kvld

kvld can be used with any x86/x86-64 kGuard-instrumented ELF file (kobj) as follows:

objdump -d <kobj> | cut -f3 | kvld.

2
<full-path>: absolute path of the directory that contains kguard.so.
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Appendix D

ret2dir Distribution

The ret2dir exploits we developed against hardened x86/x86-64 Linux targets (see Sec-

tion 4.6.1; Table 4.2) are all publicly available, primarily serving two purposes:

1. Educate the community regarding ret2dir attacks.

2. Provide a testbed for evaluating future ret2dir protection mechanisms.

Our ret2dir distribution [110] contains the following:

• ret2dir {amd64, i386}.vmwarevm: two VMs that run atop VMware’s hyper-

visors (Player [213], Workstation [214], Fusion [212]). Both VMs target VMware

hardware specification v10 and use Debian GNU/Linux v7 [60] as guest OS.

• getpmap: a helper tool for querying the /proc/<pid>/pagemap interface.

D.1 ret2dir Virtual Machines

ret2dir amd64.vmwarevm is configured to use 2 vCPUs and 2GB of RAM, booting 64-

bit kernels, whereas ret2dir i386.vmwarevm is configured to use 2 vCPUs and 4GB of

RAM, booting 32-bit kernels, as shown in Figure D.1 and Figure D.2, respectively.
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Figure D.1: ret2dir amd64.vmwarevm running over a VMware hypervisor. Entries

beginning with “[-]” correspond to vanilla Linux kernels without any ret2usr protection.

Entries beginning with “[+]” indicate Linux kernels hardened against ret2usr attacks—the

protection mechanisms enabled are listed after “with”. Names in parentheses indicate the

exploit(s) that the respective kernel is vulnerable to.

GRUB kernel entries beginning with “[-]” correspond to vanilla Linux kernels without

any ret2usr protection. Conversely, entries beginning with “[+]” correspond to Linux

kernels hardened against ret2usr attacks, while the exact ret2usr protection mechanisms

enabled are listed after “with”. Lastly, names in parentheses indicate the exploit(s) that

the respective kernel is vulnerable to.

D.2 ret2dir Exploitation Kit

The credentials to login to the guest OS are the following:

• Username: ‘w00t’

• Password: ‘pwn3d’
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Figure D.2: ret2dir i386.vmwarevm running over a VMware hypervisor. GRUB entries

beginning with “[-]” correspond to vanilla Linux kernels without any ret2usr protection.

Entries beginning with “[+]” indicate Linux kernels hardened against ret2usr attacks—the

protection mechanisms enabled are listed after “with”. Names in parentheses indicate the

exploit(s) that the respective kernel is vulnerable to.

We have developed and pre-installed a ret2dir exploitation kit (ekit) on both VMs,

which automates the process of running the proper exploit(s) on the kernel used to boot

the guest OS. Once logged in, ekit can be invoked by running ekit/runme.

ekit automatically detects and reports the Linux kernel version used, along with all

ret2usr protection mechanisms available (if any) and a summary of certain system charac-

teristics (e.g., the CPU model, RAM size, the size of ZONE HIGHMEM in 32-bit kernels).

Based on that it will also list the exploits available for the specific kernel version, including

the EDB-ID and CVE number(s) of each exploit. Upon selecting a particular exploit to

run, ekit will provide the option to invoke either the ret2usr or ret2dir variant, suggesting

to execute the one that bypasses deployed protections.
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The purpose of ekit is to enable users experiment with multiple combinations. For

instance, a user can invoke a ret2usr exploit on a hardened kernel, to first verify that the

respective ret2dir protection mechanisms work, and then execute the ret2dir variant of the

same exploit on the same kernel, to observe how the techniques presented in Section 4.3

can bypass deployed ret2dir defenses. The source code of all ret2usr and ret2dir exploits

used by ekit is available at ‘ekit/ret2usr/’ and ‘ekit/ret2dir/’, respectively.1

Finally, note that both VMs come pre-configured with a GDB [91] kernel stub, allowing

the remote debugging of the guest OS and vulnerable kernels. ret2dir i386.vmwarevm

can be debugged from the host OS by connecting to port 8832 ((gdb) target remote

localhost:8832), whereas ret2dir amd64.vmwarevm can be debugged by connecting

to port 8864.

D.3 getpmap

getpmap can be used with any Linux kernel that exports /proc/<pid>/pagemap as

follows: getpmap -p <pid> -a <vaddr>. The decimal number returned by getpmap is

the PFN that corresponds to virtual address <vaddr> of process <pid>.

1 For brevity, all our ret2dir exploits use the deterministic technique described in Section 4.3.1.
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Appendix E

XPFO Distribution

Our XPFO prototype implements the page frame ownership scheme described in Section 5.3,

along with the optimizations outlined in Section 5.3.1, and is freely available as a patch for

Linux kernel v3.13 [164]. The initial version of XPFO supported both the x86 and x86-64

architectures. However, our latest release has been mainly tested and evaluated on x86-64

Debian GNU/Linux v7 [60].

E.1 Patching the Linux Kernel

What follows are the steps to patch the Linux kernel and add support for XPFO.

• Dependencies:

– GNU patch v2.6.1 (or later) [89].

• Patch steps (we assume that the working directory is set to the topmost directory of

Linux kernel v3.13 source code [164]):

1. Download the XPFO patch [111]:

wget https://www.cs.columbia.edu/˜vpk/research/xpfo/linux-3.13-xpfo.

patch

2. Apply the patch:

patch -p1 < linux-3.13-xpfo.patch

https://www.cs.columbia.edu/~vpk/research/xpfo/linux-3.13-xpfo.patch
https://www.cs.columbia.edu/~vpk/research/xpfo/linux-3.13-xpfo.patch
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Figure E.1: XPFO can be enabled by running make menuconfig (once the kernel is

patched) and asserting the XPFO kernel configuration option under “Kernel Hacking”.

E.2 Enabling XPFO

After successfully patching the kernel, XPFO can be enabled by asserting the XPFO kernel

configuration option. This can be performed by appending ‘CONFIG XPFO=y’ to .config,

or by invoking make menuconfig1 and enabling XPFO under “Kernel Hacking”, as shown in

Figure E.1. Note that XPFO requires DEBUG KERNEL and X86 configuration options being

enabled, and HIBERNATION,DEBUG PAGEALLOC, and KMEMCHECK, being disabled. Lastly,

the XPFO-enabled kernel can be compiled using the standard build procedure [156]. Dur-

ing boot time the following message is appended to system message buffer, indicating that

XPFO is active: XPFO (eXclusive Page Frame Ownership) protection: active.

1Alternatively, make {n, x, g}config can be used.
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