
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 413

A Secure PLAN

Michael Hicks, Angelos D. Keromytis, and Jonathan M. Smith

Abstract—Active networks, being programmable, promise greater flex-
ibility than current networks. Programmability, however, may introduce
safety and security risks.

This correspondence describes the design and implementation of a secu-
rity architecture for the active network PLANet [1]. Security is obtained
with a two-level architecture that combines a functionally restricted packet
language, PLAN [2], with an environment of general-purpose service rou-
tines governed by trust management [3]. In particular, a technique is used
which expands or contracts a packet’s service environment based on its
level of privilege, termednamespace-based security.

The design and implementation of an active-network firewall and virtual
private network is used as an application of the security architecture. Mea-
surements of the system show that the addition of the firewall imposes an
approximately 34% latency overhead and as little as a 6.7% space over-
head to incoming packets.

Index Terms—Active firewall, active networks, active packets, PLAN,
programming languages, security.

I. INTRODUCTION

Active networks [4] offer the ability to program the network on a
per-router, per-user, or even per-packet basis. Unfortunately, this added
programmability threatens the security of the system by allowing a
wider range of possible attacks. Any feasible active network architec-
ture therefore requires strong security guarantees. We would like these
guarantees to come at the lowest possible price to the flexibility, per-
formance, and usability of the system.

At the University of Pennsylvania, we have developed an active in-
ternetwork called PLANet [1]. PLANet’s node architecture consists of
two levels: thepacket leveland theservice level. All programs at the
packet level reside in the messages, or packets, that are sent between
the nodes of the system. These programs are written in the packet lan-
guage for active networks (PLAN), [2]. Packet programs are simple by
nature, and serve to “glue” together service level programs, just as a
shell-script glues together calls to more complicated utilities. In con-
trast, service level programs (orservice routines), reside at each node
and are invoked by PLAN programs evaluating there. Service routines
are general-purpose and may be dynamically loaded across the network
[5]. This general architecture is shared by many so-called active packet
systems, including ANTS [6]–[8], SNAP [9], PAN [10], and others.

A central goal of PLANet is to provide Internet-like service as a base-
line, augmented by active capabilities. The Internet allows any user
with a network connection to have some basic services. In addition to
basic packet delivery provided by IP, basic information services like
DNS, and protocols like HTTP, FTP, and SMTP are provided. Simi-
larly, a goal of PLANet is to allow any user of the network to have

Manuscript received July 1, 2002; revised March 24, 2003 and June 28, 2003.
A shorter version of this paper was published in the International Working Con-
ference on Active Networks [68], and an extended version of that paper was
published in the DARPA Active Networks Conference and Exposition [69]. This
work was supported by DARPA under Contract N66001–96-C-852, NSF under
Grant ANI 98–13875, with additional support from the Intel Corporation. This
paper was recommended by Guest Editors W. Pedrycz and A. Vasilakos.

M. Hicks is with the University of Maryland, College Park 20742, USA
(e-mail: mwh@cs.umd.edu).

A. D. Keromytis is with Columbia University, New York, NY 10027, USA
(e-mail: angelos@cs.columbia.edu).

J. M. Smith is with the University of Pennsylvania, Philadelphia, PA 19104,
USA (e-mail: jms@cis.upenn.edu).

Digital Object Identifier 10.1109/TSMCC.2003.817347

access to basic services; these services should naturally include some
“activeness.” This goal implies that some functionality, like packet de-
livery in the current Internet, should not mandate authorization. There
is a pragmatic reason to make the same choice: the converse assump-
tion, in whichall packetsrequire proper authorization before they can
be executed, can be extremely costly. This is because authorization
requiresauthentication, i.e., each packet must be associated with a
principal that is relevant to the authorization policy. Packet-level au-
thentication uses cryptography to ensure that a packet’s identity is not
spoofed and its contents have not been tampered with, and crypto-
graphic operations, particularly public-key operations, can be quite ex-
pensive relative to normal packet processing. For example, adding a
30% overhead to packet processing (based on measurements of soft-
ware-based cryptography that we report at the end of the paper) on
each node would severely degrade the performance of the network.

PLANet was designed so that the programs at the packet level are
the lowest common denominator with respect to security. That is, all
packet programs by themselves (without calls to service routines) are
safe by definition thanks to the formal properties of our packet lan-
guage, PLAN. This is the same model as in the IP Internet—all IP
packets are acceptable by default and need not be authorized inside
the network. Security, therefore, boils down to the services. In partic-
ular, a packet remains safe as long as it only makes calls to service
routines that are themselves safe. Therefore, we must ask the ques-
tion “which services can be considered safe?” While for some services
the answer is clear (for example, determining the address of the cur-
rent node should be safe), service safety is ultimately a matter of local
policy. For example, a router in the center of the network may allow
very few service routines, while an end-host might provide a more lib-
eral execution environment. Moreover, a service’s safety in general is
likely not absolute: using it might be acceptable for some packets but
not for others. For example, a properly authorized network manage-
ment packet should be allowed to update a node’s routing table, while
an untrusted packet should not.

This paper presents the design and implementation of the security
architecture in PLANet. We focus on the task of building a secure ser-
vice infrastructure based on the foundation of a safe packet language, in
this case PLAN. While our architecture was developed specifically for
PLANet, we believe it is more broadly applicable. In particular, it will
apply to any active network infrastructure that manages general-pur-
pose, node-resident services in combination with safe (whether active
or passive) packets. Our approach to service security is also relevant to
extensible systems, like some web servers and operating systems.

We begin by presenting a description of our architecture, after de-
scribing the attacks it protects against. We then follow up with a de-
scription of the implementation of this architecture in PLANet. After
a discussion of PLAN and its relevant characteristics, we present pos-
sible methods of security management and the ones we have chosen
to implement arenamespace-based securitywith policy-based param-
eterization. We describe how we enable authentication, and manage
relevant security information, such as which service routines are avail-
able to which principals, using query certificate manager (QCM [11]).
We then demonstrate how we have used our system to implement two
applications: a simple active firewall, and a virtual private network for
active packets. Finally, we present some related work and conclude.

II. OVERVIEW OF SECUREPLAN

To evaluate the effectiveness of any security system, we must con-
sider the threats it defends against. Therefore, we begin by describing
the behaviors that threaten an active network, and then describe our
two-level security architecture designed to secure against them.

1094-6977/03$17.00 © 2003 IEEE

414 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

A. Threat Model

The two major threats to any active networking system are to the
public resourcesof the system: the CPU, memory, and network; and to
thecontentsof the system: the packets themselves and the information
stored on routers. These threats imply two forms of attack.

1) Denial-of-Service. Because of the greater expressibility of ac-
tive network programs (compared to traditional passive packet
headers), there is greater potential for the misuse of the system’s
public resources, thus denying service to other programs. For
general programs, the public resources should be fairly appor-
tioned, while those with more privilege could gain additional
latitude. We address only active node-specific denial-of-service
(DoS) considerations; the much harder network DoS problem is
better addressed through other means (e.g., [12], [13]).

2) Protection. Programs should be protected from interference by
other programs. In particular, one program should not be able to
read or write data private to another program without authoriza-
tion, either while the packet program is in transit or when it is
running (i.e., no packet or program snooping). This property im-
plies program isolation.

In responding to these attacks with a security system, there may be
attacks on the security system itself. As mentioned, we would like to
allot greater privilege to some packets, such as those associated with
a node’s administrator. Therefore, it is important that these packets
be properly authenticated, and that no impersonation orspoofingat-
tacks be possible. Similarly, the authentication and authorization mech-
anisms should also be robust againstreplayattacks, in which valid, but
old messages are replayed in an attempt to gain illegal access.

Passive networks are vulnerable to these same attacks; active net-
works simply expand the “vocabulary” of an attacker. For example,
an attacker can mount a denial-of-service attack over the Internet by
attempting to overload a web server with a constant flow of HTTP
GET requests. If the attacker has enough resources (such as a coor-
dinated fleet of “drone” machines to make requests), it can overwhelm
the ability of the server to perform useful work. An active network can
make such attacks easier (particularly when, like PLANet, it provides
active packets) because it increases the maximum amount of resources
required to process a single packet, and thus the attacker needs fewer
resources to overwhelm its target. The goal of PLANet’s security ar-
chitecture is to reduce the effect and increase the difficulty of mounting
attacks, particularly denial-of-service attacks, while still preserving the
utility of the network’s active capabilities. At this point, auditing tech-
niques can be used to discover the source of an attacker, such as IP
traceback [14], [15] and pushback [12]. Moreover, such techniques are
more easily implemented and deployed in an active setting.

B. Architecture

As already described in Section I, we partition the problem of de-
fending against these attacks into the packet level and the service level,
using different mechanisms at each level. At the packet level, security is
obtained viafunctional restriction: the limited nature of the PLAN lan-
guage prevents attacks from being formulated, particularly denial-of-
service and protection attacks. We justify this claim in Section III.

At the service level, we make use of an authorization system to
govern access to services. While some services may be considered us-
able by all (we call these the “core” services), many services that are
necessary for the operation of the active node should not be made avail-
able to all packets; an example would be network management func-
tions. Our architecture associates with each principal1 a set of service

1A principal may be a network node or a user. Each principal holds a
public/private key pair, and is identified (at least for security purposes) by its
public key.

Fig. 1. PLANet’s security architecture. The contents of the dashed box are
available to all incoming packets, while the dotted boxes encapsulate service
packages available only to select users. Services may be further restricted by
what parameters they can be called with.

routines and policies that are allowed at its level of privilege. The poli-
cies are enforced and the routines are made available after the user has
been successfully authorized. This architecture is illustrated in Fig. 1.

This scheme provides access control for system services. However,
once access to these resources is obtained, finer-grained management
may be required. For example, more than just say that a packet may or
may not have access to a service, we might say that a service is acces-
sible but only when called with certain parameters. We flesh out the
details of this architecture in Sections III and IV. We describe PLAN’s
security properties in the Section IV, and then present our service man-
agement methodology.

III. PACKET SECURITY VIA PLAN

PLAN [2] is a small functional language resembling ML [16],
[17]. It differs most importantly from other functional languages in
that it provides language-level support, using the primitiveOnRemote

among others, for evaluating an expression at a remote node. Invoking
OnRemote results in a newly spawned packet that is sent to and evalu-
ated at the remote location. PLAN was designed as the foundation of
PLANet’s security, with the intention that all PLAN programs can be
considered safe. In this section we introduce PLAN and describe the
language’s security properties.

A. PLAN: The Packet Language for Active Networks

PLAN supports standard programming features, such as functions
and arithmetic, and features common to functional programming, like
lists and the list iteratorfold (intuitively, fold executes a given function
f for each element of a given list, accumulating a result as it goes). Two
notable restrictions are that functions may not be recursive and itera-
tion must be bounded. PLAN programs call service routines present on
the executing node using normal function call syntax. These services
are implemented in a full programming language such as C, Java [18],
Cyclone [19], ML [16], or any other language.

PLAN’s OnRemote primitive is used to direct a computation to take
place on a different node, and has the effect of creating a new packet
that is sent to that node to initiate the computation. The computation is
specified as a function call to perform remotely, along with 0 or more
arguments that are evaluated locally. The following example executes

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 415

the function f at the nodehostwith the argument 4; the arithmetic1+3
is performed by the invoking node.

OnRemote(jf j(1 + 3); host . . .):

OnRemote takes two additional arguments (the. . . in the above
example).

1) A resource boundcount, which is greater than 0. Each packet
has associated with it a resource bound that is decremented on
each hop, as with the IP “Time To Live” (TTL) counter. When
a new packet is created withOnRemote, its resource bound is
initialized by subtracting the specified amount from the parent
packet program.

2) A routing function. This is the name of the service that is to pro-
vide hop-by-hop lookups to route the packet to its final desti-
nation. A variant ofOnRemote, called OnNeighbor, does not re-
quire a routing function, but restricts spawned packets to execute
only on immediately adjacent nodes. These packets are therefore
responsible for their own routing.

Remote evaluation withOnRemote is best-effort and asynchronous: the
OnRemote call returns immediately and does not wait for any result
from the spawned packet.

PLAN provides the ability to manipulate programs as data, via a
construct known as achunk (short for “code hunk”). A chunk may
be thought of as a function that is waiting to be executed. In PLAN,
chunks are first-class—they can be passed as arguments to functions
and stored in variables—and consist internally of some PLAN code, a
function name, and a list of values to be used as arguments during the
application. A chunk is typically used as an argument toOnRemote to
specify some code to evaluate remotely. The syntaxjfj(4) in the above
example is used to define a chunk literal; when this chunk is evaluated,
the function f will be executed with the argument 4. A chunk can also
be evaluated manually by passing it to theeval service, which resolves
the function name with the current environment, performs the applica-
tion, and returns the result. The codeeval (jfj(4)) is thus equivalent to
simply invokingf(4). Chunks play an important role in service secu-
rity, as we discuss in Section V.

Fig. 2 shows how to programping in PLAN. This program is exe-
cuted by packaging it into a packet and sending it to our ping target,
indicating it should evaluate the function ping upon arrival. This re-
sults in the chunkjreplyj(payload) being created and sent back to
the source of the original packet, as determined via thegetSource

service routine. The call togetRB returns all of the current packet’s re-
source bound, which is here donated to the new packet. The new packet
is routed using thedefaultRoute routing service. When the return
packet evaluates at the source, it prints the message “success.”

B. PLAN’s Security Properties

PLAN was designed so that all PLAN programs by their nature are
impervious to the attacks we described above. That is, PLAN programs
(which do not call service routines, or only call “safe” ones) should not
be able to mount denial-of-service attacks nor should they be able to
interfere with other packets or node-resident code and/or data. This is
achieved in three ways.

1) Strong Typing. In weakly-typed languages, like C, security re-
strictions can be overcome by, for example, using unsafe casts to
change integers into pointers, or by exploiting unchecked array
accesses to force buffer overflows. PLAN prevents such protec-
tion attacks by enforcing strong typing, as is done in languages
like Java, ML, and Modula-3.

2) Limited expressibility . PLAN is not a general-purpose lan-
guage, but is resource- and expression-limited in order to prevent

Fig. 2. Ping in PLAN. Service invocations are in italics.

CPU and memory denial-of-service attacks. In particular, all
PLAN programs are guaranteed to terminate,2 since PLAN
does not provide a means to express nonfixed-length iteration
or recursion. In addition, PLAN does not provide means for its
programs to directly communicate, meaning that one program
cannot directly access or affect another (communication is
possible indirectly through services).

3) Packet Counting. While PLAN’s language restrictions can
bound CPU and memory resource usage on a single node, they
are not sufficient in restricting use ofnetworkresources. For this
purpose, PLAN packets have aresource boundcounter which is
decremented each time a packet is sent. Therefore, the number
of hops that a PLAN program and any of its progeny may take
is limited by the initial value of this counter, thus preventing
denial-of-service attacks on the network infrastructure.

The first mechanism is widely understood in both the active net-
works community and the extensible operating systems and mobile
code communities [6], [9], [20]–[24]. It has the nice benefit that ca-
pability-style protection can be enforced by the language, dramatically
reducing protection costs. The latter two mechanisms have come into
common usage in packet-based active network schemes [6], [9], and
[25], but the first technique of the two is less appreciated. Most active
network systems of which we are aware assume that a general-pur-
pose, type-safe language combined with resource counters is sufficient;
misbehaving threads are simply killed when they exceed their resource
limits.

However, abrupt termination is both potentially unsound, and
quite costly [26]. In particular, without careful engineering, abruptly
terminating a packet may leave the system in an inconsistent state,
since packets may be manipulating shared resources when they are
killed. This problem led Sun to deprecate theThread:kill routine
present in early versions of Java. Systems using language-based pro-
tection typically restrict sharing, at some performance cost, to support
safe termination, [22], [27]. Operating systems have traditionally
segregated processes into distinct address spaces, at a significant
performance penalty to interprocess communication, so that they can
be killed abruptly without worry of shared resources. In PLANet we
require neither mechanism because we are guaranteed that packet
programs will terminate on their own.

C. Resource Bounding

While guaranteed termination is an important property, to adequately
defend against denial-of-service attacks we must strengthen it to bound
the resources consumed prior to termination. The following property
applies to IP packets, and could well be considered for active packets.

The amounts of bandwidth, memory, and CPU cycles that a
single packet can cause to be consumed should belinearly related
to the initial size of the packet and to some resource bound(s) ini-
tially present in the packet.

Such a property is useful for active networks because it directly re-
lates a router’s resource usage to the number and size of the packets it

2PLAN programs terminate as long as the services called also terminate.

416 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

processes. For example, it can know the maximum amount of memory
needed to execute the packet, based on its size. If a router is experi-
encing overload, it can decide to drop packets based solely on their
maximum possible resource usage (based on their size), without having
to partially evaluate them or examine their contents.

Of course, even a linear relationship is unhelpful if the constant of
proportionality is large. As we discussed earlier, the constant of propor-
tionality for routing IP packets is very small, which requires an attacker
to amass substantial resources to mount a denial-of-service attack by
flooding. We would prefer at the least to retain this state of the affairs
for an active network.

To satisfy a linearity property in PLAN, we must rule out programs
like the following one, which executes in time exponential in its length.

fun f1() =()

fun f2() =(f1(); f1())

fun f3() =(f2(); f2())

fun f4() =(f3(); f3())

fun exponential() =(f4(); f4()):

This program defines five functions (that do nothing), but requires a
total of 31 function calls to completely evaluateexponential (or2n�
1 calls, wheren is the number of function definitions). We prevent such
programs by requiring that for any PLAN functionf , which calls some
number of other PLAN functionsg1 . . . gn, the sum total of PLAN
functions called byg1 . . . gn is at most 1. Moreover, we place a constant
boundc on the length of lists to be iterated over with fold ; each multiple
of c decrements one resource bound from the packet.

More recently, a follow-on to PLAN called SNAP [9] has been pro-
posed, which is an assembly-like language for packet programming.
SNAP programs meet the linear resource usage property with a small
constant of proportionality. For example, SNAP instructions can allo-
cate at most three words per instruction. We have developed a compiler
to compile PLAN programs into SNAP programs, which essentially
imposes the restrictions we have described above [28]. Indeed, the se-
curity architecture that we propose here will work just as well with
SNAP or with any other packet language that prevents the attacks that
we have described above.

However, while we feel that language-based support for achieving
resource bounds is a promising approach, more work is needed to better
understand the tradeoff between resource security and flexibility in
unauthorized packets.

As we have described it, the safety of a packet program is predicated
on the safety of the services it calls. If a service allows a program to, for
example, perform unbounded iteration, then denial-of-service attacks
can be more easily launched. For this reason, it is critical that a ser-
vice management system be in place. We discuss our approach, among
others, of using trust management to manage namespaces in Section IV.

IV. SERVICE SECURITY VIA TRUST MANAGEMENT

Because of their general-purpose nature, service routines may per-
form actions which, if exploited, could be used to mount an attack. A
radical solution to this problem would be to preventanyservice rou-
tine from being installed that could potentially harm the node in the
ways described in Section II-A. However, this solution would rule out
many useful service routines. Instead, we wish to allow the inclusion
of potentially harmful service routines—for example, network manage-
ment operations—that should only be made available to certain,trusted
users.

A. Trust Management

Given our loose goal of allowing only trusted programs to use po-
tentially unsafe services, it follows we must define a policy that relates
trusted programs to unsafe service routines and a means to enforce this
policy. We can expand on this observation to arrive at the following re-
quirements for our setting.

1) Security policies
— Policies should bemodifiableas needed, by the proper ad-

ministrative entities, while the system is operating. This is
particularly important for active networks, as both new users
and new services that should be governed by the security
policy will appear over time.

— Policy abstractions should beflexibleso as to address current
as well as future application needs. Again, this requirement
derives from the inherent dynamicism of an active network,
both in terms of its users and services.

2) Enforcement mechanisms
— To minimize the size of ourtrusted computing base, enforce-

ment mechanisms should be simple to understand and em-
ploy [29]. That is, in general, trustworthiness decreases with
complexity, since the likelihood of both implementation and
user error is higher.

— It should be possible to implement enforcement mechanisms
without relying on the existence of a widely-available infra-
structure. That is, each node should be able tomake decisions
locally, based on its own policy and/or credentials that a user
program might present.

— Security mechanisms mustscaleto support increasing num-
bers of different applications, users, administrative entities,
and their trust relations. Note that the previous requirement
for decentralization should improve scalability.

In general, many of these requirements can be met by employing atrust
management system[3]. In a trust management system, each user, or
principal, is assigned some level of trust (or privilege). Based on this
trust level, the principal is permitted to perform certain actions, and
may potentially delegate those actions to other principals. The novelty
of the approach is that trust relationships are managed independently
of the particular actions that an application might perform. Instead, the
relationships between principals and the actions they may perform are
specified in a separate policy, expressed in a special policy language.
On each action that requires authorization, the program can invoke the
trust management system to determine if the action is authorized for the
principal in question. If so, the program can invoke the corresponding
action, perhaps with some additional parameters provided by the trust
management system in response to the query.

Typical trust management systems provide means for updating local
policies, for distributing policies across the network, and for using
cryptographically-sealed credentials to assert trust relationships. In
particular, cryptography is used to authenticate the principal associated
with a message before the local policy is checked for that principal.

Applying a trust management system to PLANet is straightforward.
Each PLANet node uses a policy manager from the trust management
system to manage its local policy. When a running PLAN program
wishes to invoke a protected service routine, the principal associated
with the packet is authenticated, and the operation is checked against
the appropriate policy by the policy manager. If either step fails, the op-
eration is denied. The interesting questions are how to choose policies
that admit useful services to the widest number of principals, and how
to ensure scalability and good performance through the choice of en-
forcement mechanisms. We consider the question of policy and mech-
anism for authorization below; details about our particular implemen-
tation of authentication and authorization are presented in Section V.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 417

B. Policy

To start, we must consider what kind of policies we would like to
express. As mentioned, we essentially want to encode our policy as
a mapping between principals and services. Conceptually, each prin-
cipal has associated with it a list of services that it can access, i.e., a
per-principal access control list (ACL). Furthermore, we want to re-
fine this mapping to specify not onlywhethera service routine may
be invoked, buthow it may be used. For example, asoft stateservice
which allows packets to store state on routers temporarily might ap-
portion different amounts of space to different principals. We call such
per-principal differences in service usagepolicy-based parameteriza-
tion. In general, because different services will have different usage
policies, we permit services to define service-specific policies based
on generic service parameters; we present more detail on policy-based
parameterization in Section VI. Finally, we would like to manage del-
egation policies with regard to these mappings. For example, we might
specify that the services in sets may be accessed not only by principal
p, but also by those principals authorized byp.

Encoded naively, a per-principal ACL would not scale as the number
of services and principals grows large. To improve scalability, we
change our specification of the ACL in two ways. First, we assume a
set of core services on the node. The ACL then indicates what services,
above the core services, are available to certain principals. We also
find it convenient to indicate which services should besubtracted
from the default environment for a particular principal; this will
be motivated in Section VII-A. Second, rather than map individual
principals to lists of services, we define sets of principals and sets of
services, and indicate mappings between them. This idea is similar to
the use of group permissions in the Unix filesystem: rather than store
a list of user ids with each i-node, a single group id is stored instead,
which indirectly refers to a set of user id’s.

By using a suitably expressive trust management infrastructure, we
should be able to encode this set-based policy, and then rely on the trust
management infrastructure to provide delegation, admit the possibility
of updating the policy, and to administer it in a distributed, decentral-
ized manner. We describe the trust management system we use in our
implementation, the QCM, and the way that we formulate our policies
in Section VI.

Beyond this service-based policy, we might like to specify more gen-
eral resource usage constraints, such as bounding CPU and memory
use. While we do not consider such constraints in this paper, they have
been considered in work we have done elsewhere. In particular, we
have found that resource-based policies can be achieved with assistance
from lower-level system software, as in the SQoSH [30] and RCANE
[31] systems, which share a software base used to implement many
PLAN services. SQoSH uses trust management techniques to control
a virtual-clock based bandwidth allocation system, and RCANE uses
trust management techniques to control a more general resource mul-
tiplexing scheme. The scheme was implemented both by changes to
language runtimes (unnecessary with appropriate use of our scheme)
and by use of a node operating system, Nemesis [32], to provide re-
source guarantees.

C. Mechanism

While the policy manager will handle the issues relating to policy
and trust management, we must still decide how to use it most effec-
tively. In particular, we must decide when authentication and authoriza-
tion will take place, so as to maximize flexibility and performance.

There is a space of possible decisions, bounded roughly by the fol-
lowing two approaches.

1) Perform policy checks at each service-routine invocation.Each
time a service routine is called from a PLAN program, a check

is made to see if the “current principal” is allowed to access the
service. If this is the first such check, then the principal must be
authenticated. If either the authentication or authorization check
fails, the action fails and an exception is raised. In effect, this is
a variation of the Unix system-call mechanism.

The benefit of this approach is its flexibility. In particular,
policies can take advantage of dynamic information, such as the
values of arguments to the service functions. The drawback is
that all service calls are subject to a runtime checkat each in-
vocation. This is because the set of services subject to policy,
and the policies themselves, might change over time. Therefore,
service routines in general need a “hook” for checking the most
recent policy. We can mitigate some of this cost by limiting the
routines that might be subject to policy. This might be applicable
to the set of standard, core services, or to services that do not re-
quire policy-based parameterization.

2) Perform all checks once-and-for-all, before the packet executes.
That is, all service calls in the packet are authorized before the
packet is allowed to execute. The advantage of this approach is
that once authorized, the packet can run without dynamic checks.
On the other hand, there are two drawbacks. First, policies based
on information that is not known at the time of the early check
are precluded, reducing flexibility. Second, the static check must
consider all possible execution paths, even ones that may not be
executed. As a result, one static check could be more costly than
a series of dynamic ones.

We employ the middle ground of these two approaches, using two
mechanisms. First, before it wishes to access a privileged service, a
packet authenticates itself with the node. At this time, the policy is
checked, and those services that the packet is authorized (unauthorized)
to invoke are added to (subtracted from) the packet’s current service
symbol table (which at the outset of execution contains just the core
services). From then on, if a packet attempts to invoke a service for
which it is not authorized, that service will not be in the symbol table
and thus access will be denied. Since PLAN is strongly typed and its
interpreter looks up services on an as-needed basis, programs are in-
capable of invoking code outside of this updated table. We call this
approachnamespace-based security.

Second, we allow those services which may require policy-based pa-
rameterization to query the policy manager as necessary during their
execution. For example, the soft state service mentioned above would
query the local policy on each attempt to store new soft state, thereby
determining whether the current principal was allowed to allocate ad-
ditional storage.

There are a number of advantages to this approach. First, only those
packets that use privileged (noncore) services must pay for authentica-
tion and authorization; unauthenticated programs may run without any
performance penalty. This mimics the model of the Internet, which al-
lows normal packets to flow without authentication, while specialized
packets, like router control protocol messages and network manage-
ment messages, need to be authenticated. Second, privileged services
that only appear in the policy as access/deny (i.e., they are not sub-
ject to policy-based parameterization), do not require a per-invocation
check. Finally, services whose usage depends on dynamic information
(i.e., the arguments of the invocation, or some other system state) can
specify their own policies and invoke the policy manager as needed.

As we have described them, policies only apply to PLAN service
routine calls, not calls between service routines. However, this func-
tionality can be added, as we demonstrated in work on a related system
[33] built on top of ALIEN [34]. Here we used Objective Caml [16]
as our service language, and extended its support for namespace-based
security (referred to asmodule thinningby Rouaix [35]) to support our
policies.

418 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

In Sections V and VI, we describe the mechanisms used by PLAN
programs for authentication and authorization.

V. IMPLEMENTING AUTHENTICATION

Before a PLAN program may invoke a trusted service, its associated
principal must be determined; this is the process of authentication. Au-
thentication in open networks is typically done in a public-key setting
by verifying a digital signature in the context of some communication
(e.g., a packet). In PLAN, one obvious link between communication
and authentication is the chunk. Before we describe chunk authenti-
cation, we give an overview of the basic principles behind public key
cryptography and digital signatures.

A. Public Key Cryptography and Authentication

A cryptographic algorithm is “symmetric” if the same key is used
to encrypt and decrypt (e.g., DES [36]). Public key systems use two
different keys: a private key,Kprivate, and a public key,Kpublic, where
DK (EK (M)) = M . That is, a message is encrypted by
principal’s public key and then decrypted by its private key. Examples
of public key cryptographic systems are RSA [37] and DSA [38].

Public key cryptographic systems have a significant advantage over
symmetric systems in that two principals can exchange a message, or
verify the validity of a digital object, provided they have acquired the
peer’s public key in some trusted manner, without need to engage in
some real-time exchange. In contrast to symmetric key systems, where
the principals must exchange keys in a confidential manner, public keys
do not need to be confidential.

Digital signatures use a public key system to bind an object to a
public/private key pair. To sign the object, the signer computes a func-
tion of the object and the private key.3 The result of this function is
verifiable by anyone knowing the corresponding public key. A valid
signature assures the verifier that, modulo bad key management prac-
tices on the part of the signer or some break-through in forgery, the
signed object was indeed signed by the signer’s private key and that it
has not been modified since that time.

Public key certificates (e.g., X.509 [39]) are statements made by a
principal (as identified by a public key) about another principal (also
identified by a public key). Public key certificates are cryptographically
signed, such that anyone can verify their integrity, i.e., the fact that
they have not been modified since the signature was created. They are
typically used to bind a public key to some form of identity, such as an
IP address, a DNS name, an email address, etc.

B. Authenticating Chunks

As described in Section III-A, a chunk encapsulates some PLAN
code, and can be executed remotely usingOnRemote or locally using
eval . We have added a service calledauthEval which takes as argu-
ments a chunk, a digital signature, and a public key. Here, the signature
is the result of signing the binary representation of the provided chunk
using the private key that pairs with the provided public key.AuthEval

verifies the signature, and if successful, the chunk is evaluated; other-
wise, an exception is raised. The authenticated principal is associated
with its chunk during evaluation. Because our PLAN interpreter eval-
uates each packet in its own thread, this can be done by associating the
principal with that thread’s identifier. Services can determine the “cur-
rent principal,” perhaps to query a service-specific policy, by checking
this mapping. Because a caller’s thread identifier cannot be forged, and
because the authentication service is itself a separate service, this pro-
vides a safe way to track a principal without worry that some mali-

3Usually a “summary” of the object is signed, computed through a crypto-
graphic one-way hash function.

cious service will change the associated principal after the authentica-
tion phase.

There are two advantages to this approach. One is that a principal
signs exactly the piece of code it wants to execute, and may only have
extra privilege while executing that piece of code. Second, only those
programs that require authorization must pay the extra time and space
overheads.

But the approach has three problems. The first is that the authentica-
tion performed here isone-way authentication. While the node authen-
ticates the principal, the principal never authenticates the node. This
could be a problem if a program is diverted from its intended destina-
tion and invoked on a different node. The second problem is that there is
nothing guarding against replay attacks. Finally, public key operations
are notoriously slow. We address these problems by using an additional
authentication protocol developed as part of work on secure active net-
work environment (SANE) [31], [40]. We briefly describe SANE next,
and describe how its protocol is implemented in PLANet.

C. SANE

A key goal of SANE is to enable a sphere of trust among various
nodes and/or applications across a distributed, potentially untrusted in-
frastructure. To achieve this, SANE defines a novel cryptographic au-
thentication protocol, which allows a principal and a node to authenti-
cate each other and generate ashared secretand an identifier for that se-
cret, named “SPI.” Once the protocol is completed, parties can use the
shared secret to authenticate via HMAC-SHA1 [41] digital signatures,
in a way similar to that used in the IPsec [42] protocols. To prevent
replay, each principal associates a monotonically increasing counter
with the shared secret, also included in every transmitted message. To
deal with out-of-order delivery, we use a sliding-window scheme, again
similar to the scheme used in IPsec. The additional state required is
minimal, e.g., an integer keeps track of the largest sequence number
received, and a 64-bit mask shows which of the previous 64 packets
have been received. (The window size is configurable. Our choice of
64 as the default value was based on IPsec). We reflect the use of
HMAC-SHA1 in PLAN by altering the signature of authEval to take
a chunk and a tuple consisting of the SPI, the counter, and the HMAC
signature over all of the previously mentioned items.

The SANE protocol is essentially a variation of the station-to-sta-
tion protocol (StS) [43], which builds on top of the Diffie-Hellman key
agreement protocol (DH) [44]; these protocols permit two parties to es-
tablish a shared secret over an untrusted communication medium. We
describe these protocols briefly below, and then describe the SANE au-
thentication protocol and how it is implemented in PLANet.

The DH algorithm is based on the difficulty of calculating discrete
logarithms in a finite field. Each participant agrees to two primes,g

andp, such thatg is primitivemod p. These values do not need to be
protected in order to ensure the strength of the system, and therefore can
be public values. Each participant then generates a secret large random
integer. Bob generatesx as his large random integer and computesX =
gx mod p. He then sendsX to Alice. Alice generatesy as her large
random integer and computesY = gymod p. She then sendsY to Bob.
Bob and Alice can now each compute a shared secret,k, by computing
k = Y x mod p andk = Xy mod p, respectively. The valuesX, Y ,
g, andp can all be made public without loss of security.

Unfortunately, the Diffie-Hellman algorithm is susceptible to a
man-in-the-middle attack. The attack can be defeated, however, by
combining Diffie-Hellman with a public key algorithm, such as DSA
or RSA, as proposed in the station to station protocol.

In its simplest form, shown in Fig. 3, StS consists of a Diffie-Hellman
exchange, followed by a public key signature authentication step, typ-
ically using the RSA algorithm in conjunction with some public-key
certificate scheme such as X.509 [39]. In most implementations, the

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 419

Fig. 3. Four-message station to station key agreement protocol.

Fig. 4. Three-message station to station key agreement protocol.

second message is used to piggy-back the responder’s authentication
information, resulting in a three-message protocol, shown in Fig. 4.
Other forms of authentication may be used instead of public key sig-
natures (e.g., Kerberos [45] tickets, or preshared secrets), but these are
typically applicable in more constrained environments. The short ver-
sion of the protocol has been proven to be the most efficient [46] in
terms of messages and computation.

D. SANE Authentication Protocol in Planet

The SANE authentication protocol is a variation of the StS pro-
tocol. Here we describe the protocol in terms of its implementation in
PLANet, assuming that an application wishes to mutually authenticate
with an active node. Analysis and further details can be found in the
SANE papers [31], [40], and the PLAN documentation [47].

1) To start, the user application requests authentication with a re-
mote PLAN node. The application sends a PLAN program to
the node with which it wants to authenticate. This program in-
vokes the PLAN serviceDHmessageOne with two arguments:
a certificate, and a signature of that certificate using the user’s
public/private key pair. In the current implementation, we use
DSA [38] keys for authentication. All certificates used during
the exchange are PLAN tuples4 which begin with the following
four fields:

— signer’s public key;
— random number (acookie);
— time at which certificate is valid;
— time at which certificate expires.
The latter three of the above fields are are essentially used to

prevent replay attacks. Note that the duration of time fields im-

4A tuple is simply an aggregate data structure, like a struct in C . A tuple that
contains something of typeint and something of typeoat would have type
int � oat.

plies the level of synchronization between the two nodes’ clocks.
The remaining fields of the first certificate are:

— sender’sexchange id;
— receiver’s address;
— sender’s address.
The exchange id is generated at the sender, and is used to iden-

tify this particular protocol exchange. At the completion of the
protocol it will be used to establish theSPI, described later. For
a node, the address is represented as a PLANhost, while an ap-
plication’s address is of typehost � port.

2) When the node receives the message, it verifies the signature on
the certificate with the certificate signer’s key. It then makes sure
the certificate is active and has not expired, and that the receiver’s
address is the current node.

If the current node wishes to negotiate with the sender, it cre-
ates a bit of state to keep track of the exchange. It stores the
sender’s exchange id, calculates its own exchange id, and addi-
tionally stores the sender’s address and public key. It also cal-
culates its local portion of the shared secret and the “public”
value of this secret. The response certificate includes both ex-
change id’s, the public value, the application’s public key, and
both addresses.

Since the response message is being sent to an application,
rather than a node, it is packaged as a tuple, labeled by a string
“DHmessageTwo,” to be delivered to the application. This tuple
also contains the certificate and its signature.

3) Application verifies the signature, looks up the exchange id to
find the information stored about this exchange, and verifies that
it is all correct. It then calculates its secret and corresponding
public value, then combines it with the value in the message to
produce the shared secret. The SPI identifying the secret is then
calculated based on the two exchange id’s. This SPI is used to
identify the secret in later messages which have been signed
using the secret. The application’s public value is included
in a message back to the node which is essentially a mirror
of the message just received. As described earlier, this third
message is actually a PLAN program that invokes the PLAN
serviceDHmessageThree with two arguments: the certificate
containing the described information, and a signature of that
certificate using the user’s public/private key pair.

4) The node receives the final message and repeats the actions taken
by the application for the previous message. No response is sent;
the protocol is complete.

Each principal in the exchange now has a secret known only to the
other principal to be used for signing future communications. In our
implementation, the secret is stored in two tables; one table indexed
by the peer’s address (which includes other information about the pro-
tocol), and another indexed by SPI. The former table may be used by
the application when it wants to send a message to the peer, the latter
table is used to look up the SPI found in a signed chunk so that the
signature can be verified.

Note that this authentication exchange is not limited to an application
contacting a node—nodes may contact other nodes and applications
may contact other applications. The latter is in common practice in the
Internet today, and the former may be used, for example, to establish
trust relations between administrative domains.

VI. I MPLEMENTING AUTHORIZATION

As our policy manager, we have chosen to use the QCM [11], which
provides comprehensive security credential location and retrieval ser-
vices for set-based policies. While in this paper we are making use of
QCM, our architecture is designed so that other policy managers can be

420 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

used instead. In particular, we have used the KeyNote [48] trust-man-
agement system in related work [33]. We begin by briefly describing
QCM, and then explain how we encode our security policies as QCM
policies.

A. QCM

According to the QCM website5

A QCM is a server used for the authenticated distribution of
sensitive information over an insecure network. A QCM server
acts like a secure, distributed database: it queries remote QCM
servers to answer local queries about distributed data, and ensures
the authenticity of the data by cryptographic means. Moreover,
QCM can acceptdigitally-signed certificatesissued by remote
servers. When such certificates are submitted along with the local
query, queries to the remote servers are short-circuited. The man-
agement of queries and certificates is completely automatic and
transparent to the user. Applications such as directory services,
public key distribution, and distributed access control lists are di-
rectly programmable in QCM, and QCM has a formal semantics
and correctness guarantees.
QCM manages data organized in sets, which can be built up from

constants, like strings, integers, and keys, and from other sets, using
set union. For example, a QCM server could define the set PKD that
associates a user’s name with his or her public key as follows:

PKD = f(\Alice";Kalice); (\Bob";Kbob)g

Sets can be queried by by using set comprehensions. For example, the
following query resolves AliceKeys to the set that contains all of the
keys associated with Alice in PKD.

AliceKeys= fkj (\ Alice"; k) 2 PKDg:

Simple set membership can be performed creating a singleton set if and
only if membership conditions hold, as in

f\yes"j Kalice2 AliceKeysg

This query will resolve to the singleton set containing “yes” if the vari-
able AliceKeys contains the given key; it will resolve to the empty set
otherwise.

QCM set definitions are location-specific. That is, local namespaces
are made global by prepending them with location/owner of the names-
pace:K$x is the global name of the local namex in K

0s namespace,
and is pronounced, “K 0s x.” Here,K refers to the public key of a prin-
cipal that holds data at its home server. Global names can be referred
to from any location. For example, Alice may define herPKD by ad-
ditionally incorporating Carl’sPKD, which is defined by his remote
QCM server:

PKD = f(\Alice"Kalice); (\Bob";Kbob)g unionK carl$ PKD

Part of the novelty of QCM is that querying a set with remotely-defined
components can automatically result in a queries being sent to remote
sites. For example, if the authorization service onK alice makes a
membership test on setPKD, QCM will automatically queryK carl
if necessary. However, QCM is optimized to reduce communication
overhead by being conservative: some queries can be resolved by using
partial, local information only. For example, the membership test for
Alice’s key, above, would not require a remote query to Carl’s site.

QCM also supports the use ofcertificates, which are signed
assertions about set relationships, and can be used to avoid remote
queries. For example, the following illustrates a certificate that asserts

5http://www.cis.upenn.~edu/ qcm/.

thatK$PKD contains at least the pair of Alice with her public key
(and is signed byK).

K says("Alice";Kalice) 2 PKD:

Such a certificate could be provided before making a query, and would
potentially prevent messages from being sent to remote sites. Servers
may wish to operate in a mode in which no remote queries are sent
automatically, but instead relevant certificates must be provided up
front. While more onerous for the user/application, this may prevent
denial-of-service attacks on the certificate retrieval system.

The version of QCM that we use is implemented as a service in
PLAN, and makes use of PLAN packets to perform its communica-
tions. These packets query the QCM service on remote nodes on be-
half of the QCM service of the querying node. Interestingly, the QCM
service can itself be privileged (and thus subject to policy) as long
as there are no cycles in the policy specification. Certificates may be
passed as additional arguments toauthEval, or may be obtained during
node-node authentication.

B. Implementing Service Policies in QCM

We use QCM sets to define both namespace-based security poli-
cies and per-service parameterizations. Using QCMs location-specific
definitions and certificates should allow such policies to scale as the
number of users, services, and nodes in the network grows.

Namespace Control Policies:Following our general policy require-
ments discussed in Section IV-B, our QCM namespace control policy
specifies an ACL in terms of the services to be added to or subtracted
from the default service-environment (i.e., the core services) by asso-
ciating certainthickenandthin sets of services with a principal or set
of principals; the former defines services that should be added to the
service symbol table and the latter defines services that should be sub-
tracted. Once a principal has been authenticated, QCM is queried and
the symbol table is modified as directed; the modified symbol table is
used for the duration of the authenticated chunk’s evaluation. As an
optimization, we cache the modified table for future reference, thus
avoiding repeated invocations of QCM and reconstructions of the table
as long as the policy has not changed.

The following is an example QCM ACL that considers two princi-
pals,p1 andp2:

p1 =hp10s public keyi;

p1 svcs =f\print"g;

p2 =hp20s public hboxkeyi;

p2 svcs =f\thisHost"g

acl =f(p1;p1 svcs; fg);

(p2; union(p2 svcs; p1 svcs); fg)g:

In addition to identifying the keys ofp1 andp2, we define two sets,
p1 svcs andp2 svcs, which specify the respective thicken sets of those
principals in the ACL. The ACL itself is defined by the variableacl,
which is a set of three-tuples. The first tuple indicatesp1 ’s environment
should be thickened following authentication byp1 svcs, while the
second says thatp0

2s environment should be thickened by bothp1 svcs
andp2 svcs. In both cases, the thin sets are empty, specified byfg.
Note that in this case, the first element of the three-tuple is an indi-
vidual principal; more generally, it can be a set of principals.

Policy-Based Parameterization:In addition to specifying names-
pace-based policies, we can specify per-service policies to be used by
the services themselves, allowing policy-based service parameteriza-
tion. Such policies are specified as a set identified by the service’s
name, whose elements are two-tuples that contain:

1) principal or set of principals (as in the ACL);

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 421

2) labeled record of length 1, with the label corresponding to a ser-
vice-dependent parameter name (where multiple parameters per
service are reflected as multiple records).

As an example, consider the PLANresident state package which
provides user-defined soft state. The resident state policy specifies how
much state particular principals are allowed to keep. For example:

def =hdefault user
0

s keyi;

resident =f(def; hamount = 100i);

(p1; hamount = 1000i)g

This policy indicates that unauthenticated users (which are automat-
ically given thedef key) are allowed to have at most 100 words of
information stored on the node at any given time,6 while principalp1
may store up to 1000 words of information. This policy is enforced in
the resident state implementation itself by calling QCM on each store
attempt.

Scaling Policies: An interesting question is how this infrastructure
should be used to deploy services and update policies over a large
administrative domain. In our prototype implementation, new service
routines can be installed using the service routineinstallServices,
which dynamically loads some provided code into the router. This ser-
vice should obviously be privileged, requiring authorization to use. One
benefit of the PLANet architecture is that interesting protocols or mech-
anisms (such as soft-state, unreliable packet delivery with fragmenta-
tion/reassembly, etc.) can be encoded using a few general services, with
the majority of the logic being coded as PLAN [1]. As such, we expect
that services will be added relatively infrequently, which implies that
security policies will not change often (since the number of privileged
users for a given domain is likely to be relatively static). Given this,
one way to update the QCM policy for each node would be to allow
local policies to refer to a single global policy that resides on another
node in the local administrative domain. Thus, when this node’s policy
changes, those changes are reflected in all of the policies that refer to
it. For more fine-grained changes, we can augment local policy with
certificates provided by authenticated programs.

VII. A PPLICATIONS

As a proof-of-concept of our security architecture, we have designed
and implemented anactive firewallusing PLANet, as well as anactive
virtual private network. In this section, we describe both applications
and present some performance measurements.

A. Simple Active Firewall

In today’s Internet, firewalls are used to prevent the entry of poten-
tially harmful packets arriving from an outside, untrusted network. This
is visualized in Fig. 5. When packets can be active, this simple approach
can be too limiting.

Firewalls typically filter certain types of packets, for example TCP
connection requests on certain port numbers. Usually such packets are
easily identified by their protocol headers. In PLANet, and indeed in
any active-packet system, there is no quick way to determine a packet’s
functionality without delving into its contents, which would be a sig-
nificant performance bottleneck. Therefore, unless we wish to filter out
all active packets (which could be the case when under a denial-of-ser-
vice attack) we need an alternate way of stopping those packets which
may be potentially harmful.

Our approach is that rather than filter packets at the firewall, we as-
sociate with them athinnedservice environment in which any poten-

6Note that because all unauthenticated principals share thedef key, this
means that those principals can do little damage to the node, but can deny
service to other unauthenticated principals.

Fig. 5. Trusted network behind a firewall.

tially harmful services are removed. The packets may then be evaluated
inside the trusted network using only those services. While this may
seem to contradict our premise, stated in Section II-B, that the default
environment should consist only of “safe” services, in the context of a
trusted intranet we would expect that the default privilege allowed to
local packets exceeds that of foreign packets. Furthermore, we would
not want to impose the overhead of authentication and authorization on
local packets in the general case.

To thin the environment of foreign packets, our firewall associates
them with aguestidentity that has the appropriate policy. To do this,
the firewallF wraps the packet’s chunkc as follows:

fun wrapper(c; sign) = (zeroRB(); authEval(c; sign)):

This wrapper first exhausts the packet’s resource bound by calling
the servicezeroRB, thus preventing it from sending any additional
packets. It then evaluates the packet’s chunkc using the guest identity,
as indicated by the signature, for the duration of the evaluation. This
means that ifc attempts to call any services that have been thinned, the
call will fail.

This scheme implies that the firewall signs each packet, using the
guest’s identity, and provides the signature toauthEval. In order to
make this process as fast as possible, the firewall would authenticate
with hostsA, andB ahead of time using the guest key.

However, because the guest environment will provide less priv-
ilege than the default environment, we should be able to avoid the
cryptographic cost: any authenticating principal whose environment is
thinned and not thickened can be “taken at its word” [29]. We could
extend our framework to allowauthEval to take a public key rather
than a signature, accepting the identity of the key if and only if the
principal whose key it is has at most a thin set in the node policy (as
is the case for the guest). In Section VII-C we present results for the
more naive case (which approximates the performance of the VPN we
describe next), and can derive the performance for the more optimized
case.

How we choose to specify the guest’s thinned environment may be
accomplished in a number of ways. The simplest way would be specify
the thinned environment statically, at each hostA andB. However, a
more uniform and manageable approach would be that the guest iden-
tity is known locally, but its environment is defined at the firewall. The
salient part of our host QCM program is shown in Fig. 6.

The thin set is defined by the variableguest_thinned_servicesat
principal firewall. Notice that thethickenset is empty. To short-cir-
cuit remote queries, the firewall provides certificates during node-node
authentication that indicate the contents of itsguest_thinned_services
variable. Should the firewall policy be updated after initial authentica-
tion, the firewall would push certificates to the end host to reflect this
change.

B. Active Virtual Private Network

A virtual private network (VPN) is essentially two or more trusted
networks connected by secure “tunnels” across untrusted links. These

422 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

Fig. 6. Host QCM program.

tunnels are made secure by encryption, such that when a packet leaves
one trusted network and enters the tunnel it is encrypted, and then is
decrypted upon exiting the tunnel and reentering a trusted network. In
the Internet, IPSec [42] may be used to implement VPNs.

This idea is depicted in Fig. 7. Here we have two trusted networks,
consisting of nodesA,B, andP1 for network I, andC,D, andP2 for
network II, connected by a secure tunnel across an untrusted network.
A packet originating innetwork Idestined fornetwork II is encrypted
at its firewallP1, sent across the untrusted network, decrypted at the
peer firewallP2, and then finally delivered to its ultimate destination
in network II.

We can implement this idea in PLANet as follows. The VPN would
be set up by having nodesP1 andP2 mutually authenticate, resulting
in a shared secret. Say that nodeA sends a packet to nodeD. As it exits
network I, the firewallP1 intercepts, encapsulates, signs, and forward
the packet to the other network.7 In particular,P1 first extracts the
representation of the packet’s chunk (call it c) and creates a tunneling
chunk jfwdj(c;D); sign, whereD is the original destination address
within the remote network, and fwd refers to the following PLAN code
added to the packet:

fun fwd(c : chunk; dest : host) =

OnRemote(c; dest; getRB(); defaultRoute)

Next, it signs the tunneling chunk using the secret it shares with
P2, and replaces the packet’s original chunk c with the chunk
jauthEvalj(jfwdj(c; D); sign) where sign is the newly created
signature. Finally, it alters the destination of the packet to beP2 rather
theD, and sends it onward.

When the packet arrives at the peer firewallP2, it will perform the
authEval. This will grant the packet the full privileges of the remote
network, with which it sends the original chunk c to the originally in-
tended destinationD. SinceP2 is acting as a firewall described above,
had the packet not authenticated in this way it would have had its
privileges reduced upon entering the remote network. This illustrates
nicely how our authentication and authorization framework can form
the common ground of the dual notions of firewall and VPN.

C. Performance Analysis

We analyze the performance of our active firewall by comparing a
filtered and nonfiltered ping. In both cases, the initiating host lies in
the trusted network and is pinging a node in the untrusted network.
We do not present performance measurements for our VPN application
because its results are essentially the same as the firewall.

The PLAN code for ping is illustrated in Fig. 2. Our analysis ex-
amines the additional cost to elapsed time and packet size.8 For our

7Normally, a VPN would encrypt, rather than sign, outgoing packets. This
can be done as well in our framework given an encryption service that requires
authorization before it may be used. However, we elide this detail to keep the
presentation simple.

8The reader may note that the numbers reported here are slightly different
from those reported in [1]; this is due to changes made to the PLANet imple-
mentation.

Fig. 7. VPN consisting of two trusted networks connected by a secure tunnel.

Fig. 8. Ping elapsed time with and without the firewall. The left bar of each
pair is with a 0-byte payload, and the right bar is for maximally-sized (1500
bytes) packets.

experimental setup, we daisy-chain connect three machines with 100
Mbit Ethernet, configuring the middle machine as the active firewall.
Each machine is a 300 MHz Pentium II with 250 MB of memory run-
ning Linux 2.0.30. PLANet runs directly on top of Ethernet.

Time Overhead:As described in Section VII-A, the addition of the
firewall affects the packet processing time on the router and on the host
initiating the “ping.” While a router would normally just forward any
packet it receives, the firewall has to additionally sign and encapsulate
packets destined for the trusted network. On the initiating host, normal
interpretation of the “reply” packet is further burdened by the need to
decapsulate, verify the firewall’s signature, and thin the environment.

Fig. 8 illustrates the elapsed time of ping with and without the fire-
wall. The left figure is the end-to-end time, in which the black bar is
the unmodified ping and the white bar is the overhead imposed by the
firewall. The right figure similarly illustrates salient component costs
for the end host and the firewall with the additional overhead. For the
end host, the time consists of evaluating ping’s “reply” packet, while
for the firewall, this is the cost of forwarding the packet. The portion
of the overhead which may be attributed to signing (at the firewall)
and verifying (at the end host) is singled out. In both figures, times are
given for 0-byte payloads and maximally-sized payloads. Notice that
the overhead added to the component costs, which are the white and
gray bars in the figure on the right, add up to the difference in elapsed
time for the overall cost, which are the white bars in the figure on the
left.

The base ping times for 0-byte and maximal payloads are 2.13 and
3.06 ms, respectively; the firewall adds 37% and 32% of respective
overhead to these times (raising them to 2.91 and 4.03 ms). By exam-
ining the component costs, we can see that of this overhead, between
1/3 and 1/2 is attributable to signing and verification, based on the
packet size. For the firewall, the remaining overhead is due to encap-
sulation costs (which requires extra marshalling and copying), while
for the end-host it is due to decapsulation and the additional interpreta-
tion cost of the wrapper code. The time to thin the environment at the

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 423

Fig. 9. Ping reply packet overhead with and without the firewall. Illustrates
the additional cost of encapsulation and signing of foreign packets. Note that the
signature itself is 12 bytes long, thus the maximum payload in the+firewall

case is slightly smaller.

end host is negligible because we cache the thinned environment. If we
eliminate the cryptographic operations, by the means described earlier,
we reduce the end-to-end ping times to 2.58 and 3.41 ms for 0-byte and
maximal payload, respectively. This reduces the firewall-induced over-
head to 20% and 11%. Note that the cryptographic operations cannot
be removed in the case of the VPN.

Notice that the graph depicts verification (which in the figure is the
cryptographic component cost for the host) as twice as expensive as
signing (which is the cryptographic cost for the firewall). This is due
to two related points: we unmarshal PLAN programseagerly, and in
order to verify a PLAN value (that is, the original packet’s chunk) using
authEval, that value must first be marshalled into a binary format.
These two points combine to mean that we unmarshal the encapsulated
chunk when the packet arrives, only to remarshal it when performing
the signature verification. A smarter implementation would unmarshal
chunkslazily, thus avoiding this extra re-marshalling cost and thereby
equalizing signing and verification time.

There is room for further improvement. The cost of the cryptographic
operations (for cases when they are actually needed) could be reduced
through parallelism (to improve throughput) and special-purpose hard-
ware (to improve both throughput and latency). Furthermore, the cost of
PLAN interpretation is fairly high; a smarter interpreter would improve
both the cost of the basic ping as well as the encapsulated version. In
fact, we have recently been developing a compiler from PLAN to the
low-level packet language SNAP, resulting in significantly improved
performance [9], [28].

Space Overhead:The firewall also imposes a space cost due to the
extra code and signature that is attached to the incoming packets Fig. 9
illustrates the basic space overheads, with and without the firewall.

The no-payload reply packet is 80 bytes (consisting of code and fixed
fields), while the encapsulated version is 181 bytes, for an overhead
of 126%. Of the 101 bytes of overhead, 12 bytes are due to the signa-
ture. Since the overhead is fixed, its impact is reduced with packet size.
Looking at the maximally-sized packet, we see that this 101 bytes only
adds 6.8% of overhead above the 5.3% already imposed by the ping
program.

A particular concern is that by adding code to the packet as it passes
through the firewall we might exceed the link layer MTU and be forced
to fragment the packet. In the pathological (though probably not un-
common) case, each packet received by the firewall will be just smaller
than the MTU and thus have to be fragmented after addition of the
wrapper code. This problem also appears in the IPsec context, where it
remains open to further research. One advantage that we have over IP is
that in PLANet we may easily send PLAN programs to customize the
host processing (i.e., as a more expressive ICMP). It would be worth
examining how to best express in PLAN a mechanism similar to “Path
MTU Discovery” [49]. Another possible approach would be to com-
press the incoming packet, adding a wrapper to perform the decom-
pression upon arrival at the end-host.

A concern about the approach of PLANet in general is the space
cost of carrying the code in the packet. To mitigate this overhead, we
have considered ways in which the participants in a protocol may cache
code rather than always transmitting it with the packet. One approach
is to add language-levelremote-referenceswhich may be thought of as

pointers to remote objects. Since all PLAN values (including chunks)
areimmutable, the contents of a remote reference may be safely cached
without the need for a coherence protocol. In the case of our firewall,
the wrapper function code could reside at the firewall, while being
cached at the various hosts in the trusted network, thus reducing the
in-packet space costs. The issue of code caching is discussed in more
detail in [8].

VIII. R ELATED WORK

Securing active networks [50] has demanded three major research
thrusts.

1) First is the use of programming environments to offer safety and
security guarantees, for example the careful design of PLAN and
SNAP for safety, the use of module-thinning in ALIEN, and the
capability-like namespace isolation scheme ANTS achieves with
its MD5 hashes of active packets.

2) Second is the extension of the local guarantees achievable within
a programming environment to the collection of nodes com-
prising a network. While PLAN or SNAP, as examples of do-
main-specific languages, provide such guarantees irrespective of
location, they cannot make such guarantees when remote ser-
vices are invoked. Cryptographic techniques can extend local
safety properties by providing capability-like authorizations for
services, as was done in extending ALIEN’s protection to remote
systems in SANE, and similarly in SANTS [51].

The SANE [40] architecture is part of the SwitchWare Project
[5] at the University of Pennsylvania. SANE provides the ability
to securely bootstrap [52] an active node, and authentication and
naming services for code that is loaded. The main differences
between this work and SANE are that 1) we can depend on a
provably safe language (PLAN) for those packets that do not re-
quire special privileges, and 2) we have scalably built a means
for controlling service usage via trust management. Furthermore,
programming constructs available in PLAN (e.g., chunks) con-
siderably ease the task of implementing security abstractions.
SANE was developed in conjunction with the ALIEN architec-
ture [34], which (like us) employs namespace-based security and
strong typing. Taken together, these techniques prevent active
code from calling functions or accessing data even in a shared
address space. Similar approaches have been taken in [20], [53],
[54]. Other language-based protection schemes can be found in
[20]–[24].

SANTS, which uses an authorization scheme similar to ours,
further considers how to handle changes made to the contents of
cryptographically signed packets as they traverse the network.
However, as Alexander showed in his Caml-based architecture
[31], the performance penalty of frequent cryptographic opera-
tions can be substantial.

3) Third is support for multithreaded operation of active networking
systems in ways that provide resource protection. This work has
been centered around the lowest levels of the DARPA active net-
work architecture, the so-called “Node Operating System” [55],
examples of which include RCANE [56], JanOS [57], AMP [55],
and Scout [58]. These systems manage resources which may be
used by a safe programming environment in service invocations,
including management of resources used concurrently by mul-
tiple programming environments.

For example, the extensions of SANE described in the paper
by Alexanderet al.[31] to manage soft real-time streams showed
that a SANE-based front-end could provide access control for
services and resources with associated time bounds. This was

424 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

implemented with a low level scheduler in the supporting oper-
ating system, and would enable, for example, supporting “quality
of service”-like features such as priorities and construction of
differentiated-service network architectures. A particularly inter-
esting coupling with the work reported here would be bandwidth
control at the active firewall authorized by credentials.

0ur use ofauthEval resembles Java stack inspection (JSI) [59], [60].
In our case, code is afforded the privilege of the principal that signs it
for the duration that it runs. JSI refines this idea by examining the call
stack and giving the code the privilege of the least privileged principal
found on the stack, except when more trusted code explicitly widens the
privilege of its callers by invokingenablePrivilege. It would be inter-
esting to apply the same approach to nestedauthEval calls to provide
the same sort of security.

The SPIN [20] Project investigated the construction of extensible
operating system kernels, with the idea that type-safe Modula-3 code
could be loaded into an operating system for reasons of performance or
access to resources. SPIN’s dynamic binding infrastructure [61] pro-
vides mechanisms with which one could implement our approach to
service security. In particular, loaded modules can be linked against a
restricted interface, and calls to sensitive functions can be interposed
with “guards,” which could perform policy-based parameterization.
Grimm and Bershad [62] focus on separation of policy and enforce-
ment, and control abstractions crossing protection domains with redi-
rections of procedure or method invocations. SPIN’s extensibility is
targeted at a workstation environment rather than the network service
enhancement environment of PLAN, and is thus less concerned with
scalable, distributed policies9 than Secure PLAN. SPIN and other ap-
proaches to language-based security, like the J-Kernel [22] and Kaf-
feOS [27], are quite concerned with resource control of untrusted code.
The resource-limited nature of PLAN allows us to avoid the thorny is-
sues that arise here.

Perhaps the most closely related architecture, albeit one instantiated
with traditional operating systems mechanisms such as tagged objects
(where the tags are associated with permissions) is the “Sub-Operating
System” (SubOS) approach of Ioannidis,et al. [63]. In that system,
there is fine-grained access control of arriving code under control of
a nonremovable identifier attached to objects (such as code and data)
that arrive over a network. Three key distinctions in our system, in-
cluding the active firewall, relative to SubOS are 1) the active fire-
wall actively rewrites code to reflect restrictions on it, rather than at-
taching tags which must be further resolved against a privilege set; 2)
the rewrites are performed for any and all trusted hosts, ensuring that an
improperly configured element cannot mistakenly execute active code
considered dangerous; and 3) privilege can be increasedor decreased
in our system, unlike the SubOS, where privilege is always decreased
relative to the executing user, the main goal being the control of locally
executed active content.

IX. CONCLUSIONS

The Secure PLAN architecture couples limited but safe active
packets with general-purpose, but potentially unsafe service routines.
The architecture has two major advantages. First, packets that do not
require the computational cost of authentication and authorization
do not pay it. This is because all potentially unsafe computation is
relegated to the service level, which can be governed by trust-man-
agement techniques. Our experience is that the majority of active
packet programs, from diagnostics such asping to best-effort data

9In fact, our results include almost all of the future work suggested in the
Grimm and Bershad paper, who foresaw the need for policy specification lan-
guages, distributed authentication, and high performance for access control op-
erations.

delivery, require no potentially unsafe services, and therefore, should
not require authentication. The second advantage, which follows from
the first, is that security analysis, perhaps including validation and
verification, can be focused on a small set of service routines rather
than all possible active programs. That said, it is an important avenue
of future work to find ways to automatically certify services as safe,
so that they do not need to be protected by a trust-based policy. Recent
work by Moore [64] characterizes what constitutes a safe service in
light of the model discussed in Section III-C. proof-carrying code
[65], [66] is one way to certify safety in low-level code, so we would
hope its techniques could ensure safety as Moore defines it. A related
certification technique uses dependent types to prove that services
consume a bounded amount of time and/or space [67].

While our system uses both programming environment-based safety
and cryptography-based techniques to support use of services in net-
works (and is compatible with any NodeOS approach), the novel archi-
tectural contribution is the combination of enforcement mechanisms to
allow policy-writers to balance flexibility with performance. In partic-
ular, we support both namespace-based security to add to or subtract
from a packet’s default service namespace, and policy-based parame-
terization to allow services to formulate their own per-principal usage
policies. Namespace-based security can be enforced cheaply at authen-
tication-time, while policy-based parameterization requires per-invo-
cation checks. We have sought to enable scalability by carefully en-
coding the namespace-based policy, and by using a decentralized trust
management system [3].

The active firewall and active VPN are novel applications resulting
from our approach. The firewall uses PLAN packets’ activeness to
protect a trusted environment from untrusted computations. We have
demonstrated that our architecture addresses possible threats while
still preserving the flexibility and usability of the system, byactively
modifying the packet behavior, under control of a trust management
policy, rather than simply making a permit/deny decision as in a
traditional firewall architecture. Our experimental implementation has
demonstrated such an approach can have acceptable performance.

Our applications also make a novel use of active networking
technology. The system exploits the ability of PLAN to manipulate
“chunks” to build a far more flexible security gateway for network
services. In particular, the combination of trust management policy
and namespace security allows extremely fine-grained control of
permitted operations for remote users. One might view the active
firewall as providing a selectable continuum of access to services
rather than merely simple actions such aspass; drop or log. It is
thus in the spirit of active networking: flexibility and security, with
high performance.

ACKNOWLEDGMENT

The authors would like to thank S. Nettles, J. Moore, and T. Jim for
helpful discussions concerning this work, and the anonymous referees
for providing useful feedback. We would also like to thank T. Jim for
providing the PLAN-based implementation of QCM.

REFERENCES

[1] M. Hicks, J. T. Moore, D. S. Alexander, C. A. Gunter, and S. Nettles,
“PLANet: An active internetwork,” inProc. 18th IEEE Computer Com-
munication Societ INFOCOM Conf., 1999, pp. 1124–1133.

[2] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles, “PLAN:
A packet language for active networks,” inProc. 3rd ACM SIGPLAN
Int. Conf. Functional Programming Languages, 1998, pp. 86–93.

[3] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
ment,” inProc. 17th Symp. Security Privacy., Los Alamitos, CA, 1996,
pp. 164–173.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 425

[4] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. I. Wetherall, and
G. J. Minden, “A survey of active network research,”IEEE Commun.
Mag., pp. 80–86, Jan. 1997.

[5] D. S. Alexander, W. A. Arbaugh, M. Hicks, P. Kakkar, A. D. Keromytis,
J. T. Moore, C. A. Gunter, S. M. Nettles, and I. M. Smith, “The switch-
ware active network architecture,”IEEE Network Mag., vol. 12, pp.
29–36, 1998.

[6] D. I. Wetherall, J. Guttag, and D. L. Tennenhouse, “ANTS: A toolkit for
building and dynamically deploying network protocols,” in Proc. IEEE
Conf. Open Architectures Network Programming, Los Alamitos, CA,
Apr. 1998.

[7] D. Wetherall, “Active network vision and reality: Lessons from a cap-
sule-based system,” inProc. 17th Symp. Operating Systems Principles,
Kiawah Island, SC, Dec. 1999, pp. 64–79.

[8] M. Hicks, J. T. Moore, D. Wetherall, and S. Nettles, “Experiences with
capsule-based active networking,” in DARPA Active Networks Conf.
Exposition, May 2002.

[9] J. T. Moore, M. Hicks, and S. Nettles, “Practical programmable
packets,” in Proc. 20th IEEE Computer Communication Society
INFOCOM Conf., Apr. 2001, pp. 41–50.

[10] E. L. Nygren, “The Design and Implementation of a High-Perfonnance
Active Network Node,” M.A. thesis, Mass. Inst. Technol., Cambridge,
MA, 1998.

[11] C. A. Gunter and T. Jim, “Policy-directed certificate retrieval,”Softw.-
Pract. Exp., vol. 30, no. 15, pp. 1609–1640, 2000.

[12] J. Ioannidis and S. M. Bellovin, “Implementing pushback: Router-based
defense against DDoS attacks,” in Proc. Network Distributed System
Security Symp. (NDSS), Feb. 2002.

[13] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure overlay
services,” inProc. ACM SIGCOMM Conf., August 2002, pp. 61–72.

[14] S. Savage, D. Wetherall, A. Karlia, and T. Anderson, “Practical network
support for IP traceback,” inProc. ACM SIGCOMM Conf., Aug. 2000,
pp. 295–306.

[15] D. Dean, M. Franklin, and A. Stubblefield, “An algebraic approach to IP
ttaeeback,” inProc. Network Dsitributed System Security Symp. (NDSS),
Feb. 2001, pp. 3–12.

[16] X. Leroy. (2002) The Objective Caml System, Release 3.05. Instinit
Nat. Rec. Informntique Automatique (INRIA). [Online]. Available:
http://caml.inria.fr

[17] R. Milner, M. Tofte, R. Harper, and D. MacQueen,The Definition of
Standard ML (Revised). Cambridge, MA: MIT Press, 1997.

[18] J. Gosling, B. Joy, and G. Steele,The Java Language Specifica-
tion. Reading, MA: Addison-Wesley, 1996.

[19] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang,
“Cyclone: A safe dialect of C,” inProc. USENIX Annu. Technical Conf.,
Monterey, CA, June 2002, pp. 275–288.

[20] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Pitsczynski, D. lietket,
S. Eggers, and C. Chambers, “Extensibility, safety and performance in
the spin operating system,” inProc. 15th Symp. Operating Sytems Prin-
ciples, Dec. 1995, pp. 267–284.

[21] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska, “Sharing
and protection in a single-address-space operating system,”ACM Trans.
Comput. Syst., vol. 12, no. 4, pp. 271–307, Nov. 1994.

[22] C. Hawblitzel, C. Chang, and G. Czajkowski, “Implementing multiple
protection domains in java,” inProc. 1998 USENIX Annu. Technical
Conf., June 1998, pp. 259–270.

[23] J. Y. Levy, J. K. Ousterhout, and B. B. Welch, “The Safe-Tcl security
model,” in Proc. 1998 USENIX Annu. Technical Conf., June 1998, pp.
271–282.

[24] J. Moore. (1998) Mobile Code Security Techniques. Univ. Pennsylvania,
Philadelphia. [Online]. Available: http://www.cis.upenn.edu/~jonm/pa-
pers/cis700.ps

[25] B. Schwartz, W. Zhou, A. W. Jackson, W. T. Strayer, D. Rockwell, and
C. Partridge, “Smart packets for active networks,” inProc. IEEE Conf.
Open Architectures Network Programming, 1999, pp. 90–97.

[26] M. Hicks. (1998) PLAN System Security. Dept. Comput. Infornm.
Sci., Univ. Pennsylvania, Philadelphia. [Online]. Available: http:
//www.cis.upenn.edu/~switchware/papers/plan _security.ps

[27] G. Back, W. C. Hsieh, and J. Lepreau, “Processes in kaffeOS: Isolation,
resource management, and sharing in java,” in 4th USENIX Symp. Op-
erating Systems Design Implementation, San Diego, CA, Oct. 2000.

[28] M. Hicks, J. T. Moore, and S. Nettles, “Compiling PLAN to SNAP,” in
Proc. 3rd Int. Working Conf. Active Networks, vol. 2207, I. W. Marshall,
S. Nettles, and N. Wakamiya, Eds., Oct. 2001, Lecture notes in Com-
puter Science, pp. 134–151.

[29] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,”Proc. IEEE, vol. 63, pp. 1278–1308, Sept. 1975.

[30] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, S. Muir, and J. M.
Smith, “Secure quality of service handling (SQoSH),”IEEE Commun.,
vol. 38, pp. 106–112, Apr. 2000.

[31] D. S. Alexander, P. B. Menage, A. D. Keromytis, W. A. Arbaugh, K.
G. Anagnostakis, and J. M. Smith, “The price of safety in an active net-
work,” J. Commun., vol. 3, no. 1, pp. 4–18, Mar. 2001.

[32] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden, “The design and implementation of an op-
erating system to support distributed multimedia applications,”IEEE J.
Selected Areas Commun., vol. 14, no. 7, pp. 1280–1297, Sept. 1996.

[33] K. G. Anagnostakis, M. W. Hicks, S. Ioannidis, A. D. Keromytis, and J.
M. Smith, “Scalable resource control in active networks,” inProc. 2nd
Int. Working Conference Active Networks, vol. 1942, H. Yashuda, Ed.,
Oct. 2000, pp. 343–358.

[34] D. S. Alexander, “ALIEN: A Generalized Computing Model of Ac-
tive Networks,” Ph.D. dissertation, Univ. Pennsylvania, Philadelphia,
1998.

[35] F. Rouaix, “A web navigator with applets in caml,” inProc. 5th Int.
World Wide Web Conf. Compater Networks Telecommunications Net-
working, vol. 28, May 1996, pp. 1365–1371.

[36] “Data Encryption Standard,” U.S. Dept. Commerce, Tech. Rep.
FIPS-46, 1977.

[37] “PKCS #1: RSA Encryption Standard,” R. Laboratories, version 1.5 ed.,
1993.

[38] “Digital Signature Standard,” U.S. Department of Commerce, Tech.
Rep. FIPS-186, 1994.

[39] “X.509: The Directory Authentication Framework,” Int. Telecommun.
Union, Geneva, Switzerland, CCITT, 1989.

[40] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith, “A
secure active network environment architecture: Realization in switch-
ware,” IEEE Network Mag., vol. 12, pp. 37–45, 1998.

[41] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” IETF, Tech. Rep. RFC 2104, 1997.

[42] S. Kent and R. Atkinson, “Security Architecture for the Internet Pro-
tocol,”, IETF Tech. Rep. RFC 2401., 1998.

[43] W. Diffie, P. van Oorschot, and M. Wiener, “Authentication and authen-
ticated key exchanges,”Designs, Codes Cryptog., vol. 2, pp. 107–125,
1992.

[44] W. Diffie and M. Hellman, “New directions in cryptography,”IEEE
Trans. Inform. Theory, vol. IT-22, pp. 644–654, Nov 1976.

[45] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer, “Kerberos
authentication and authorization system,” in Project Athena Technical
Plan, Dec. 1987, Section E.2.l.

[46] L. Gong, “Efficient network authentication protocols: Lower bounds and
optimal implementations,”Distrib. Comput., vol. 9, no. 3, pp. 131–145,
1995.

[47] M. W. Hicks. (2001) PLAN Security Guide. [Online]. Available:
http://www.cis.upenn.edu/~switchware/PLAN/ docs-ocaml/security.ps

[48] M. Blaze, J. Feigenbaum, J. loannidis, and A. Keromytis, “The role of
trust management in distributed systems security,” inSecure internet
Programming. New York: Springer-Verlag, 1999, vol. 1603.

[49] J. Mogul and S. Deering, “Path MTU Discovery,” IETF, Tech. Rep. EEC
1191, 1990.

[50] (1998) Security Architecture for Active Nets. [Online]. Available: http:
//www.ittc.uksns.edu/ansecure/0079.html

[51] S. Murphy, E. Lewis, R. Watson, and R. Yee, “Strong security for active
networks,” inProc. IEEE Conf. Open Architectures Network Program-
ming., Apr. 2001, pp. 63–70.

[52] W. A. Arbaugh, A. D. Keromytis, D. J. Farber, and J. M. Smith, “Au-
tomated recovery in a secure bootstrap process,” inProc. Network Dis-
tributed System Security Symp., Mar. 1998, pp. 155–167.

[53] X. Leroy and F. Rouaix, “Security properties of typed applets,” inSecure
internet Programming. New York: Springer-Verlag, 1999, vol. 1603.

[54] T. von Eicken, “J-Kernel a capability bated operating system for java,”
in Secure Internet Programming. New York: Springer-Verlag, 1999,
vol. 1603.

[55] L. Peterson, V. Gottlieb, M. Hibler, P. Tullman, J. Lepreau, S. Schwab,
H. Dandekar, A. Purtell, and J. Hartman, “An OS interface for active
routers,” IEEE J. Selct. Areas Commun., vol. 19, pp. 473–487, Mar.
2001.

[56] P. Menage, “RCANE: A resource controlled framework for active net-
work services,” inProc. 1st Int. Workshop Active Networks, vol. 1653,
S. Covaci, Ed., Springer-Verlag, June 1999.

426 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

[57] P. Tullmann, M. Hibler, and J. Lepreau, “Janos: a Java-oriented OS for
active network nodes,”IEEE J. Select. Areas Commun., vol. 19, no. 3,
Mar. 2001.

[58] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peterson, T. A. Proeb-
sting, and J. H. Hastman, “Scout: A Conmmunications-Oriented Oper-
ating System,” Depart. Comput. Sci., Univ. Arizona, Tucson, Tech. Rep,
1994.

[59] C. Fournet and A. Gordon, “Stack inspection: Theory and variants,” in
Proc. ACM Symp. Principles Programming Languages, Jan. 2002.

[60] D. S. Wallach and E. W. Felten, “Understanding java stack inspection,”
in Proc. IEEE Symp. Security Privacy, May 1998, pp. 52–63.

[61] P. Pardyak and B. N. Bershad, “Dynamic binding for an extensible
system,” inProc. USENIX Symp. Operating Systems Design Implemen-
tation , 1996, pp. 201–212.

[62] R. Grimm and B. N. Bershad, “Providing policy-neutral and transparent
access control in extensible systems,” inSecure Internet Program-
ming. New York: Springer-Verlag, 1999, vol. 1603, pp. 317–338.

[63] S. Ioannidis, S. M. Bellovin, and J. M. Smith, “Sub-operating systems:
A new approach to application security,” in10th ACM SIGOPS Eur.
Workshop, Sept. 2002.

[64] J. T. Moore, “Practical Active Packets,” Ph.D. dissertation, Univ. Penn-
sylvania, Philadelphia, 2002.

[65] G. C. Necula, “Proof-carrying code,” inProc. 24th Annu. ACM
S1GPL4N-SIGACT Symp. Principles Programming Languages., New
York, Jan. 1997, pp. 106–119.

[66] G. C. Necula and P. Lee, “Safe kernel extensions without run-time
checking,” in Proc. USENIX Symp. Operating Systems Design and
Implementation, 1996, USENIX, pp. 229–243.

[67] K. Crary and S. Weirich, “Resource bound certification,” inSymp. Prin-
ciples Programming Languages, 2000, pp. 184–198.

[68] M. Hicks and A. D. Keromytis, “A secure plan,” inProc. 1st Int. Work-
shop Active Networks, vol. 1653, S. Covnci, Ed., Springer-Verlag, June
1999, pp. 307–314.

[69] M. Hicks, A. D. Keromytis, and J. M. Smith, “A secure plan (extended
version),” in Proc. DARPA Active Networks Conf. Exposition., May
2002, pp. 224–237.

[70] J. Vitek and C. Jensen,Secure Internet Programming: Security Issues for
Mobile And Distributed Objects. New York: Springer-Verlag, 1999,
vol. 1603.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

