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Abstract. Rogue antivirus software has recently received extensive at-
tention, justified by the diffusion and efficacy of its propagation. We
present a longitudinal analysis of the rogue antivirus threat ecosystem,
focusing on the structure and dynamics of this threat and its economics.
To that end, we compiled and mined a large dataset of characteristics of
rogue antivirus domains and of the servers that host them.

The contributions of this paper are threefold. Firstly, we offer the first,
to our knowledge, broad analysis of the infrastructure underpinning the
distribution of rogue security software by tracking 6,500 malicious do-
mains. Secondly, we show how to apply attack attribution methodologies
to correlate campaigns likely to be associated to the same individuals or
groups. By using these techniques, we identify 127 rogue security software
campaigns comprising 4,549 domains. Finally, we contextualize our find-
ings by comparing them to a different threat ecosystem, that of browser
exploits. We underline the profound difference in the structure of the
two threats, and we investigate the root causes of this difference by ana-
lyzing the economic balance of the rogue antivirus ecosystem. We track
372,096 victims over a period of 2 months and we take advantage of this
information to retrieve monetization insights. While applied to a specific
threat type, the methodology and the lessons learned from this work are
of general applicability to develop a better understanding of the threat
economies.

1 Introduction

A rogue security software program is a type of misleading application that pre-
tends to be legitimate security software, such as an anti-virus scanner, but which
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actually provides the user with little or no protection. In some cases, rogue se-
curity software (heretofore referred to as “rogue AV”) actually facilitates the
installation of the very malicious code that it purports to protect against.

Rogue AVs typically find their way into victim machines in two ways. First,
social engineering techniques can be used to convince inexperienced users that
a rogue tool is legitimate and that its use is necessary to remediate often non-
existent or exaggerated threats found on the victim’s computer. A second, stealth-
ier technique consists of attracting victims to malicious web sites that exploit
vulnerabilities in the client software (typically, the browser or one of its plug-
ins) to download and install the rogue programs without any user intervention
(e.g., through drive-by downloads). After a rogue AV is installed on a victim’s
machine, it uses a number of techniques to convince (or force) a user to pay for
additional tools or services, such as a “full version” of the program or the sub-
scription to an update service. The cost of these additional programs or services
ranges from $30-$100 [].

In the last few years, rogue AVs have become a major security threat, both in
terms of their pervasiveness and their financial impact. For example, over a 1-year
period, Symantec’s sensors detected 43 million installation attempts, covering
over 250 distinct families of rogue AV software [§]. In addition, an investigation
by Krebs revealed that affiliate programs alone can generate upward of $300,000
a month for the individuals that distribute rogue AVs [14].

As a consequence, different companies in the computer security industry have
recently focused their attention on this threat [14I8]. Most of the existing works
have considered individual facets of the rogue AV problem, for example, the
malware code (e.g., the installation techniques it employs), the sites involved
in its distribution (e.g., their number and geolocation), and the victims that it
affects. However, little has been done to understand the rogue AV phenomenon
as a whole, that is, relating how these individual pieces become combined in
rogue AV campaigns.

We seek to fill this gap by providing a better understanding of the organiza-
tion and dynamics of rogue AV campaigns. In particular, we focus on characteriz-
ing the infrastructure used in a campaign (e.g., its web servers, DNS servers, and
web sites) and the strategies used to create and manage it. We also investigate
the uniqueness of our findings to this very specific threat type, and we investigate
the motivations underneath these differences by exploring its economics.

The key of our approach is a method that, given a list of individual AV-
hosting sites, allows us to group them into campaigns, each characterized by
coherent features. More precisely, we use an extensive dataset including network
and domain registration information, as well as network-observable temporal
characteristics of a large number of domains that are associated with rogue AV
advertising and distribution. To that dataset we apply a multi-criteria fusion al-
gorithm to group together nodes based on a certain number of common elements
likely due to the same root cause (e.g., the same rogue AV campaign). This at-
tribution method uses a combination of unsupervised, graph-based clustering
combined with a data aggregation method inspired by multi-criteria decision



analysis (MCDA). On the one hand, our approach enables the identification of
rogue AV campaigns and the analysis of the modus operandi of the individuals
controlling them. On the other hand, this approach enables the execution of
comparative analyses and the assessment of the uniqueness of the findings to
the specific threat landscape.

The specific contributions of our work described in this paper include:

— The first, to our knowledge, large-scale analysis of the rogue AV threat and
of its distribution infrastructure, conducted by tracking 6,500 malicious do-
mains.

— A demonstration of the usefulness of attack attribution approaches to the
problem of mining large security datasets. We show how, by using MCDA, we
are able to discover specific campaigns likely to be associated to the action
of a specific individual or group.

— The first characterization of the behavior of rogue AV campaigns and their
economics. We reveal insights on the automated deployment of large amounts
of domains, and we demonstrate their specificity to the threat landscape by
comparing the results to those associated with other web-born threats. We
collect information on 372,096 users (clients) interacting with some rogue AV
domains to generate information on the average conversion rate of a rogue AV
campaign. We demonstrate the existence of a very specific economic balance,
that justifies a bigger investment in the deployment and maintenance of such
large-scale campaigns.

The remainder of this paper is organized as follows. Section [2| describes the state
of the art on tracking and mitigating the rogue AV threat. Section [3| describes
the features we used in our analysis, as well as the clustering technique itself.
Section [4 highlights our most interesting insights following the analysis, while
Section [5] assesses the specificity of our findings to the rogue AV threat, and
looks into their economic motivations. Finally, Section [6] summarizes some of
the lessons we learned from this study, and Section [7] concludes the document.

2 State of the Art

The presence of rogue security software has been observed (at least) as early
as 2005 [28]. More in-depth reports of rogue security software have ranged from
analyses on the diffusion of such threats [I], to studies on their social aspects
and their comparison to traditional malware economies [I8]. Recently, security
industry reports [48] have presented thorough descriptions of various instances
of rogue software, their look and feel as well as some tactics they use. By focusing
on a large-scale study of the structure of the distribution infrastructure for rogue
AV domains, this work complements previous analyses on rogue security software
by offering new lessons on this threat ecosystem and its peculiarities.

We previously provided a preliminary, high-level overview of some of the
results obtained with the method described in this paper [§]. The novel contri-
butions of this paper with respect to that technical report are threefold. First, we
provide a precise description of the experimental setup and the analysis method.



Second, we give a comparison, thanks to a novel experimental dataset, with
other kinds of web-based threats. Third, we supply an ensemble of insights on
the economic rationales explaining the identified differences.

Concurrently to our work, Google published a study on the distribution of
rogue AV software [2]], which focuses on the prevalence of rogue AV software and
on its distribution mechanisms. In this paper, we also uncovered the campaigns
underlying rogue AV sites and performed an initial study of their victims.

These economic insights contribute at completing the picture on the under-
ground economy and its dynamics. This complements previous works on the
topic. Similarly to what is presented here, Moore et al. [I6] have collected client
volume information for a different threat landscape, that of the phishing web-
sites. Holz et al. [II] have instead infiltrated some weakly configured drop-zones
to study the extent and the economic aspects of phishing and attack campaigns.
Finally, previous work [79] has monitored the type of transactions carried out
by cyber-criminals through underground channels.

Different techniques have been proposed to study the structure and the dif-
fusion of specific threats. Moshchuk et al. [I7] have crawled 18 million URLs
to quantify the nature and the extent of the spyware problem. Provos et al.
[19] have analyzed billions of URLs and used a combination of machine learn-
ing techniques and crawlers to analyze the infrastructure underneath drive-by
downloads. McGrath et al. [I5] have studied the dynamics associated to the reg-
istration of phishing domains. Stone-Gross et al. [24] have infiltrated the Torpig
botnet and gathered information on its size and dynamics. In all these cases,
the authors have used different data collection techniques to generate high-level
overviews on specific threats. While this work complements the state of the art
by providing an analysis of a previously unexplored threat landscape, that of
the rogue security software, our contribution goes beyond that. We show the
usefulness of multi-criteria analysis techniques to mine these large datasets and
discover specific campaigns within the multitude of domains under observation.
We also demonstrate our ability to leverage these techniques to compare differ-
ent threat landscapes, and identify specific behaviors that are a characteristic of
a given threat.

3 Methodology

In this Section, we begin by describing our methodology for collecting informa-
tion about the rogue AV distribution infrastructure. We then discuss the analysis
techniques that we used on the collected data. The data collection itself was car-
ried out over three separate phases: the collection of rogue AV-related domain
names, the collection of information on each domain and the discovery of spe-
cific campaigns leveraging attack attribution tools developed in the context of
the WOMBAT projec

® http://www.wombat-project.eu
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3.1 Rogue AV domains

To build an initial seed of domains associated to the rogue AV distribution, we
aggregated information from a number of different sources:

— Norton Safeweb (http://safeweb.norton.com)

— Malware Domain List (http://malwaredomainlist.com)

— Malware URL (http://www.malwareurl.com)

— Hosts File (http://www.hosts-file.net)
All these sources offer at least a rough categorization of the type of each malicious
domain they are listing, and allowed us to systematically collect all the domains
that were believed to be correlated to the rogue AV distribution by means of
simple heuristics.

To complete our picture on the collected domains, we have integrated our do-
main list with the information generated by freely accessible IP-NAME mapping
datasets (http://www.robtex.com). This allowed us to discover all the domain
names hosted on each IP where at least one rogue domain had been found.

3.2 Rogue server information

Once the initial list of domains was created, we have collected as much infor-
mation as possible on each of them, on their relation with the associated web
servers, and on their dynamics. To do so, we have taken advantage of HAR-
MUR, a Historical ARchive of Malicious URLs also developed in the WOM-
BAT project.

HARMUR enables us to study the relation between client side threats and
the underlying server infrastructure, and their evolution over time. Instead of de-
veloping new detection technologies (e.g., based on honeyclients, or special web
crawlers), HARMUR integrates multiple information sources and takes advan-
tage of various data feeds that are dedicated to detecting Web threats. By doing
so, HARMUR aims at enabling the creation of a “big picture” of the client-side
threat landscape and its evolution.

In the specific context of this work, HARMUR generated the necessary con-
textual information on the identified rogue AV domains, and on all the other
domains that were discovered to be sharing the same server as rogue AV do-
mains thanks to DNS mapping information. In order to generate a dynamic
perspective on the characteristics of the observed domains, HARMUR imple-
ments a set of analysis modules that are re-iterated on each tracked domains on
a daily basis:

— Information on the security state of a domain.

e Norton Safeweb information. For each domain, we have queried its
security status taking advantage of the Norton Safeweb website repu-
tation serviceﬁ This allowed us to retrieve information on a variety of
threats known to be present on each domain, ranging from browser ex-
ploits, to malware samples, to phishing sites.

S http://safeweb.norton.com
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e Google Safe Browsing information. We have taken advantage of the
Google Safe Browsing AP]E] to detect the presence of threats within a
given domain.

— Information on the domain.

e Registration information. We have parsed the registration data ob-
tained via the WHOIS protocol in order to get information on the iden-
tity of the registrant and of the provided contact email address, as well
as the name of the registrarﬂ

e DNS relations. By means of DNS queries, we have retrieved for each
domain the associated NS records and all the A records associated to all
the hostnames known to belong to it. Whenever only one domain name
was available and we had no information on the associated hostnames,
we considered as hostnames the domain name itself and the hostname
generated by prepending the standard “www” name.

— Information on the servers.

e Geolocation and AS information. For each web server associated to
the rogue domain through a DNS A record, we have collected information
on its geographical location as well as its associated Autonomous System
number.

e Server uptime and version string. By means of HTTP HEAD pack-
ets, we have tested the responsiveness of the discovered servers and, by
looking at the HTTP response headers, we have collected information
on the server configuration by looking at the advertised server version
string.

3.3 Limitations

Despite our efforts to maximize the threat coverage by aggregating as many
information sources as possible, we are fully aware of the limitations of the
dataset at our disposal. Due to the nature of our observational ability and the
way the rogue AV ecosystem operates, it is impossible to know with certainty
what fraction of the total rogue AV providers across the whole Internet we have
been able to observe. For instance, we have noticed a predominance of servers
physically located in US. This result might be skewed by the type of heuristics
used for identifying rogue AV sites, that could overlook rogue AV servers that
are primarily marketed to non-English languages. Moreover the identification
of rogue domains is itself a potential source of bias. Our analysis is based on
the identification of rogue AV domains performed by third party sources, and
does not provide any guarantee in terms or precision of classification. We have

" http://code.google.com/apis/safebrowsing/

8 The WHOIS specification [6] requires WHOIS records to be human readable, and
does not specify their syntax and their semantics. As a consequence, the data stored
by different registrars is often in different formats. We have built a generic parser
that handles a vast number of registrars and 17 specific parser for other common
registrars, but despite of this effort registration information is not available for all
the domains taken into consideration.
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indeed identified through manual inspection of our feeds a limited number of
domains that did not seem to be actually related to the rogue AV threat type.
However, the number of such misclassifications is negligible relative to the size
of the dataset. Moreover, when mining the different rogue AV campaigns, any
possible pollution of the dataset has been implicitly filtered out by our clustering
techniques, as described later.

3.4 Multi-criteria decision analysis

To analyze the campaigns through which rogue AV software is distributed, we
have used an attack attribution method that relies on a multi-criteria fusion
algorithm that has proven to bring several advantages with respect to more
traditional clustering methods [25]. Thanks to this method, rogue AV domains
are automatically grouped together based upon common elements likely due
to the same root cause, i.e., same rogue campaign. This attribution method
is based on a combination of a graph-based clustering technique with a data
aggregation method inspired by multi-criteria decision analysis (MCDA). This
method has been successfully used previously to analyze other types of attack
phenomena [526)27], namely attack events found in honeypot traces.

Generally speaking, the method systematically combines different viewpoints
such that the behavioral properties of given phenomena are appropriately mod-
eled by the aggregation of all features.

The attribution method used in this paper consists of three components:

1. Feature selection: we determine which relevant features we want to in-
clude in the overall analysis, and we characterize each element of the dataset
according to each extracted feature denoted by Fy,k = 1,...,n (e.g., by
creating feature vectors for each element).

2. Graph-based clustering: an undirected edge-weighted graph is created
regarding every feature F}, based on an appropriate distance for measuring
pairwise similarities.

3. Multi-criteria aggregation: we combine the different graphs of features
using an aggregation function that models the expected behavior of the phe-
nomena under study.

The approach is mostly unsupervised, i.e., it does not rely on a preliminary
training phase.

Feature selection. Among the different information tracked through HAR-
MUR, we have selected a number of features that we believed to be likely to
reveal the organized operation of one specific individual or group.

— Registrant email address (Fgey). Whenever available, the email address
provided upon registration of the domain.

— Web Server IP addresses (Fip), class C (F¢i.¢), class B (For.B)
subnets. To allow the identification of servers belonging to the same infras-
tructure, we have separately considered three features corresponding to the
full IP address, its /24 and its /16 network prefix.



— Nameserver IP address (Fig). The IP address of the authoritative name-
server(s).
— Registered domain name (Fp,,,). We decided to consider as a feature
the domain name itself to be able to detect common naming schemes.
In summary, by analyzing the available features, we have defined the following
feature set: F = {FRega Frip,Foic, Fei., Fins, FDom}, which will be used by the
multi-criteria method to link rogue domains to the same campaign.

Graph-based representation. In the second phase of our attack attribution
method, an undirected edge-weighted similarity graph is created regarding each
selected feature Fj, based on an appropriate distance for measuring pairwise
similarities. A specific definition of similarity had to be defined for each of the
considered features.

Since feature vectors defined for Frp, Foi.c, Foi.p and Fyg are simply sets of
IP addresses (or sets of IP subnets), it is relatively easy to calculate a similarity
between two sets by using the Jaccard similarity coefficient. This coefficient is
commonly used to estimate the amount of overlap between two sets of data.

While simple equality would have been sufficient, we wanted to incorporate
into Frey some additional semantics, taking into consideration the usage of spe-
cific email domains or the usage of specific keywords. For this reason, we have
given maximum similarity score to identical email addresses, and non-null simi-
larity scores to email addresses sharing same username, same email domain, or
both containing popular AV keywords. For the sake of conciseness we refer the
interested reader to [25] for more detailed information on this measure.

Finally, we wanted to define a notion of similarity for Fp,,, able to catch
commonalities between rogue domain names having similar patterns, or common
sequences of the very same tokens. We have accomplished this goal by using the
Levenshtein dist(mceﬂ To normalize the Levenshtein distance to a similarity
metric, we have used a commonly-used transformation [23] that maps a generic
distance value to a similarity score within the interval [0, 1].

Multi-criteria aggregation. As a final step of the multi-criteria analysis,
we have used an aggregation function that defines how the criteria (i.e., the
site features) must be combined to group rogue domains as a function of their
common elements.

An aggregation function is formally defined as a function of n arguments
(n > 1) that maps the (n-dimensional) unit cube onto the unit interval: f :
[0,1]" — [0, 1]. To model complex requirements, such as “most of” or “at least
two” criteria to be satisfied in the overall decision function, we have used Yager’s
Ordered Weighted Averaging (OWA) [30].

9 Levenshtein distance corresponds to the minimum number of operations needed to
transform one string into the other (where an operation is an insertion, deletion, or
substitution of a single character).



Other possible aggregation functions that allow for more flexible modeling,
such as the Choquet integral, may also be used and have been considered else-
where [25].

Definition 31 (OWA) [230] For a given weighting vector w, w; >0, > w; =
1, the OWA aggregation function is defined by:

OW Aw(z) = Y wizg =< W,z > (1)
=1

where we use the notation z~_ to represent the vector obtained from z by arrang-
ing its components in decreasing order: z(1y > 2(2) = ... 2 Z(n)-

In our application, the vector z represents the set of similarity values obtained
by comparing a given pair of domains with respect to all site features F}, as
defined previously. By associating weights to the magnitude of the values rather
than their particular inputs, OWA aggregation allows us to define a weighting
vector w that gives lower weights to the two highest scores:

w = [0.10, 0.10, 0.20, 0.30, 0.20, 0.10 ]

In other words, we assign more importance to features starting from the third
highest position. The two highest scores will have lower weights (0.10), and thus
at least three strong correlations will be needed to have a global score above 0.3
or 0.4, which will be used as a decision threshold to keep a link between two
domains. A sensitivity analysis has been performed on this decision threshold to
determine appropriate ranges of values [25]; however, due to space constraints,
we do not provide further details in this paper.

4 Insights on the rogue security software threat economy

We will now look into the details of the dataset presented in the previous section
and try to infer information regarding the modus operandi of the individuals at
the root cause of these businesses.

4.1 High-level overview

The dataset at our disposal consists of 6,500 DNS entries, collected between
June and August 2009, pointing to 4,305 distinct IP addresses hosting rogue
AV servers. At least 45% (2,935) of all domains were registered through only 29
Registrars.

As a first step, we have taken advantage of the DNS information at our
disposal to set apart generic hosting services, hosting both rogue AV domains
and benign sites, from servers specifically deployed for hosting Rogue AV content.
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Version string # servers

Apache 610

Microsoft-I1S /6.0 218

Apache/2.2.3 (CentOS) 135

Apache/2.2.3 (Red Hat) 123

Apache/2 100 § ‘ i
Apache/2.2.11 (Unix) mod_ssl/2.2.11 Don.laln # registered dgmalns
OpenSSL/0.9.81 DAV/2 'gmaq.com 1238 (30.52%)
mod_auth_passthrough/2.1 id-private.com 574 (14.15%)
mod_bwlimited/1.4 FrontPage/5.0.2.2635 69 yahoo.com 533 (13.14%)
Apache/2.0.52 (Red Hat) 19 whoisprivacyprotect.com 303 (7.47%)
nginx 33 privacyprotect.com 125 (3.08%)
Apache/2.2.11 (Unix) mod_ssl/2.2.11 mas2009.com 101 (2.49%)
OpenSSL/0.9.8e-fips-rhel5 space.kz 90 (2.22%)
mod_auth_passthrough/2.1 NameCheap.com 85 (2.10%)
mod_bwlimited/1.4 FrontPage/5.0.2.2635 32 domainsbyproxy.com 62 (1.53%)
LiteSpeed 26 hotmail.com 59 (1.45%)
Others 1498 Table 2. Top 10 registrant email do-
Table 1. Top 10 server version strings. mains.

We identified all DNS entries resolving to the same IP address, and correlated
these with lists of known rogue AV- and malware-serving domains. A total of
2,677 IP addresses (web servers) host only domains that are known to serve rogue
AV software. An additional 118 IPs provide services for both rogue-AV and other
malware-serving domains. The remaining 1,510 IP addresses host both malicious
and benign domains, and are therefore likely to be associated to hosting services
unaware of the illicit use of their infrastructure.

Rogue AV servers localization. Mapping the 2,677 IPs hosting only rogue
AV software to Autonomous System (AS) numbers, we identified a total of 509
ASes. Interestingly, but yet not surprisingly, the distribution of servers over
ASes is skewed towards some specific ASes: approximately 37% (984 servers)
are hosted by only 10 particularly popular ASes. As previously pointed out, the
geographical distribution of these servers is heavily skewed towards US locations:
approximately 53% (1,072 servers) are hosted in the USA.

Rogue AV server versions. When looking at the web server type and version
for the 2,677 rogue AV web servers, in some cases we see some very specific
configurations that may be indicative of the use of standardized templates or
of a single entity/operator using a fixed configuration. Table [1| reports some of
the most popular observed version strings. Overall, Apache (in various configu-
rations) seems to be used in well over 40% of the rogue AV servers.

Rogue AV domain registrations. We also looked at the email addresses pro-
vided by all Registrants of rogue AV domains. The list of most popular domains,
shown in Table 2| contains some of the obvious email hosting services (Gmail,
Yahoo! Mail, Lycos, etc.). More interestingly, we see that 26% of the analyzed
domains make use of anonymous domain registration services such as domains-
byproxy.com, whoisprivacyprotect.com, id-private.com, and space.kz. We also see
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some cases of ISPs that do not formally offer anonymous domain registration
services, but are rather lax in their verification of registrant identities and email
addresses. For instance, Namecheap.com is often associated to registrant names
ranging from “Kyle” to “AA”.

Rogue AV domains and browser exploits. While rogue AV software seems
to be primarily trying to lure users into downloading software to stop non-
existing security issues on their systems (scareware), we found it interesting to
evaluate the presence of other threats on the domains by correlating them with
information provided by web crawlers. We determined that 814 of the rogue AV
domains were serving malware of various types; 417 domains attempted to use
browser exploits; 12 domains led to the installation of spyware, and 19 domains
would cause the installation of a trojan. This result underlines the use, in a
minority of cases, of more aggressive strategies for the monetization of clients
lured into visiting the domains.

Towards the big picture. Given the size of the dataset, it is beyond the scope
of this work to describe all the relationships we discovered in the course of our
analysis. We have although tried to generate a “big picture” of the landscape by
plotting in Figure [1| the relationships between servers hosting rogue AV content
and all the domains known to be hosted on them, a total of 235,086 domains. Due
to the complexity of the landscape, we have tried to simplify the visualization
by omitting all IPs that were associated to less than 100 different domains. The
represented domains comprise both known rogue AV domains and unrelated
domains that have been discovered as being hosted on the same server thanks to
robtex.com. We have used darker colors to differentiate rogue AV domains from
the others.

The subset represented in Figure [T consists of 174 servers that were hosting
a total of 30,632 distinct domain names. In this observed domain set, 15% of
the total hosted rogue security software, while 9% were observed to host other
types of threats. Interestingly, most of the domain names are linked to a single
web server, but some rogue AV domains were associated, over time, to several
distinct TP addresses, creating some complex subgraphs such as those in the
middle of Figure

Figure [I] shows the complexity of the problem of the identification of ma-
licious domains. It highlights the challenges of protecting the web clients from
potentially dangerous sites through IP-based blacklisting methods. Indeed, the
coexistence of both rogue and legitimate domains on the same server IP un-
dermine the applicability of such approaches since it would be detrimental to
perfectly benign sites. We will explore this issue further in Section [6]

4.2 The campaigns

To get a better understanding of the modus operandi of the rogue AV opera-
tors, we have taken advantage of the multi-criteria decision analysis (MCDA)
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Fig. 1. Relationships between observed domains and the servers hosting them. Darker
nodes represent rogue AV domains, while lighter nodes indicate benign domains.

described in Section to mine the dataset and identify separate campaigns
likely to be generated by the action of a single individual or group.

The application of the method has led to the identification of 127 separate
campaigns grouping a total of 4,549 domains. The identified campaigns have
an average size of 35.8 domains, but with a significant variance in size. More
specifically, 4,049 domains are associated to the 39 biggest campaigns, with the
largest comprising 1,529 domains.

In the rest of this Section we will look more closely at three of these campaigns
and we will show through their analysis the value of the MCDA in getting insights
on the dynamics of the rogue AV threat landscape.

Large-scale campaigns. Some of the campaigns identified by our attribution
method consisted of several hundreds domains. One of such examples is repre-
sented graphically in Figure [2l The graph represents the relationship between
domains (clustered in big, dense groups of small rectangles), the subnets of their
hosting servers (represented with larger, lighter rectangles) and the registrant
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Fig. 2. Graphical representation of a long lasting, larger campaign.

email addresses (represented with large, dark rectangles). The nodes at the bot-
tom of the graph represent instead domain registration dates.

Figure |2 groups about 750 rogue domains that have been registered in the
.cn TLD (resolving to 135 IP addresses in 14 subnets), on eight specific dates
over a span of eight months. However, despite the apparent link to China, the
majority of the IP addresses of the hosting servers were hosted in the United
States, Germany, and Belarus. In fact, no server could be identified as being
located in China.

Interestingly, the same Chinese registrar (Era of the Internet Technology)
was used for the registration of all domain names. All of the domain names are
composed of exactly 5 alphanumeric characters, apparently chosen in a random
fashion (wze3zr.cn, owvmg.cn,...), which indicates the use of automated tools
to create those domains. Another noteworthy characteristic of this campaign is
that the registrant responsible for 76% of the domains makes use of a WHOIS
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domain privacy protection service (cn@id-private.com), which we have said to
be a commonly observed characteristic in certain rogue campaigns.

Finally, a manual analysis of the domains represented in Figure [2| revealed
a more complex underlying ecosystem. These domains were in fact linking to a
fake scan page hosted on a server belonging to a separate campaign. Such discov-
ery underlines the existence of complex interrelations in this threat ecosystem,
interrelations that would have been impossible to discover without the employ-
ment of data mining techniques able to reduce a corpus of thousands of domains
to few, large campaigns carried out by specific individuals.

PC-Security and PC-Anti-Spyware campaigns. One very good example of
such interrelation can be found when looking at two other distinct clusters iden-
tified by our approach. The multi-criteria decision algorithm correctly identified
them as two distinct campaigns, as they involve different features (different tim-
ings, different web servers, etc.). However, the analysis of both clusters reveals
a common modus operandi used in both cases.

Indeed, the two clusters were composed of a relatively low number of domains
(16 and 14) that were clearly referring to anti-virus or anti-spyware “products”
(e.g., pesecurity-2009.com, homeav-2010.com, pc-antispyware2010.com). A num-
ber of similarities could be identified in their deployment strategy:

— Both clusters use the exact same domain naming scheme, consisting of the in-
sertion of dashes among a set of fixed words (e.g., pc-anti-spyware-2010.com,
pe-anti-spyware-20-10.com, and pc-antispyware-2010.com).

— All of the domains in each cluster use the same registrar (OnlineNIC) and
are serviced by the same two ISPs.

— The email addresses of all domain registrants are in “.ru” domains.

— The servers were on consecutive IP addresses, although the two clusters were
associated to servers in completely different networks.

Perhaps even more conclusively, upon manual inspection we found that the
content of each site was identical, with the exception of one differing image. All
this leads us to assume that the deployment of the rogue AV domains was carried
out with a good degree of automation by interacting with a single registrar. It
is also worth noting that both clusters are split between two different ISPs,
suggesting an attempt to provide some level of redundancy in case a cluster is
taken offline by the ISP. Finally, we observed that all of the hosting web servers
were located in the US. We refer the interested reader to [25] for a more detailed
presentation of these two results, as well as other interesting ones.

“

5 Landscape characteristics

Section [] provided an in-depth overview of the rogue AV threat landscape, and
showed our ability to identify within such landscape articulated campaigns de-
ployed via a certain level of automation. The specificity of these characteristics to
the Rogue AV landscape stays although unproved so far. This Section addresses
this problem by performing a comparative analysis of the results obtained for the
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Rogue AV landscape with those obtained by looking at a completely different
web-borne threat: drive-by downloads. We will show that the complexity of the
identified campaigns is a very specific characteristic of the rogue AV landscape,
and we will go further by looking into the economics of this landscape, showing
that the particularly large return on investment largely justifies the complexity
of the observed infrastructure.

5.1 Comparison with drive-by downloads

The methodology proposed so far is completely generic, and can be utilized
equivalently to study the characteristics of the infrastructure underlying any
web-borne threat. We have therefore decided to leverage this fact to compare
our findings for the rogue AV threat with those of a specific type of drive-by
download. To do so, we have constructed a second dataset taking advantage
of data generated by some internal web crawlers and used it as an additional
URL feed for HARMUR. Among all the exposed threats, we have chosen to
focus on all the landing sites (we use “landing site” as in [19] to denote the
site that initiates a drive-by download) that exploited a very specific weakness,
namely the Internet Exzplorer ADODB.Stream Object File Installation Weakness
(CVE-2006-0003). We have thus repeated the very same experiment as the one
performed on the rogue AV dataset, collecting information on the very same
network observables and using such information to build domain features for the
multi-criteria analysis technique.

While the multi-criteria approach could successfully identify 127 distinct clus-
ters in the rogue AV dataset, 39 of which accounted for more than 60% of the
domains, the clustering profile is very different when looking at the browser
exploits web sites. Only 15 small clusters have been identified, accounting for
only 201 domains (3.8%). This means that the vast majority of domains (96.2%)
did not end up in any cluster. In other words, the very same approach that
allowed us to identify large correlations within the rogue AV domains seems
to be incapable of detecting any significant correlation in the browser exploit
landscape. The reason for this striking difference can be found in the different
modus operandi associated to these two threat classes. Our methodology aims
at identifying correlations indicative of a shared ownership and management of a
set of domains. In rogue security software, the infrastructure in charge of luring
the victims into installing the products is maintained by the criminals them-
selves. This includes both the cost of registering the domains and maintaining
the hardware, but also the effort of attracting the users towards it.

This does not seem to happen in the drive-by downloads threat landscape: in
the vast majority of cases, the landing pages in charge of exploiting the clients
are owned and maintained by uncorrelated individuals. As showed also in [19],
drive-by downloads mainly operate by compromising legitimate domains that
implement weak security practices. What motivates the individuals at the root
of the rogue AV threat infrastructure to sustain the additional cost of directly
deploying and maintaining these domains? Providing an answer to this question
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requires a better understanding on the costs and the revenues associated to the
deployment of a rogue AV campaign.

5.2 Rogue AV monetization

Data collection. The problem of studying the victims of online attacks has
received much attention in the past few years. The crux of the problem is that
attacks and victims are geographically and temporally distributed, and, as a
consequence, there is generally no natural vantage point that researchers can
leverage to perform their monitoring.

One approach to overcome this problem consists of performing passive mea-
surements of the secondary effects of victims’ activity. For example, in the
context of spam botnets, researchers have used spam messages [31] and DNS
queries [20122] as proxy indicators of infected machines. Active approaches are
also possible. For example, in some cases, researchers have been able to infil-
trate part of the attackers’ infrastructure, and, thus, gain visibility of its victims
directly from “the inside” [1224].

These are interesting approaches, yet sometimes difficult to implement for
practical or legal reasons. Therefore, we decided to use a novel approach to
collect information “remotely from the inside”.

Indeed, we observed that, in a number of cases, the servers hosting rogue AV
sites were configured to collect and make publicly available statistics about their
usage. These servers were Apache web servers using the mod_status module,
which provides a page (by default, reachable at the /server-status location)
with real-time statistics about the server status, such as the number of workers
and the count of bytes exchanged. When the module is configured to generate
“extended status” information, it also provides information about the requests
being currently processed, in particular, the address of the client issuing a request
and the URL that was requested.

We note that the server status data source has a few limitations. In particu-
lar, it does not give access to the content of the communications between clients
and servers. As a result, we cannot be certain of the outcome of any access: often-
times, we will see that the same web page (URL) is accessed, without knowing if
the access was successful or not. Second, the server status page only provides the
IP address of each victim. It is well known that, mostly due to NAT and DHCP
effects, IP addresses are only an approximate substitute for host identifiers, and,
due to the lack of visibility into the client-server traffic, we cannot use existing
techniques to mitigate this problem [329]. Despite these limitations, the server
status data allows us to gain some visibility into the access behavior of rogue
AV clients.

Victim access dataset. In total, we identified 30 servers that provided status
information. Of these, 6 also provided information about client requests, which is
critical for our analysis. We continuously sampled the server status pages of each
of these 6 servers over a period of 44 days and stored the access time, source IP
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Rank Site Clients (#) e .
1 windoptimizer.com 55,889 P el Va
2 inb4ch.com 23,354 e
3 scan6lux.com 21,963 200000
4 gobackscan.com 19,057 150000
5 pattle.info 14,828 oo
6 goscansnap.com 14,590
7 goscanback.com 11,347 e
8 tranks.info 10,050 °
9 cherly.info 9,875
10 phalky.info 9,836
Table 3. Most accessed rogue AV sites. Fig. 4. Cumulative clients activity.
Home page
Email Link
Redirect

Link from other site

Purchase

Purchase confirmation

Fake scan

Update check Download

Report

Fig. 3. Typical sequence of accesses by client

address of the client, and the specific URL on the server that was accessed. The 6
servers hosted 193 active rogue AV domains, and an additional 4,031 domains, 62
of which were also rogue AV sites but did not receive any traffic. The remaining
3,969 co-located domains are a mix of malware-serving and benign sites. We
then removed from our dataset requests that were not directed at rogue AV sites
or that consisted only of probing or scanning attempts. After this filtering, we
identified 372,096 distinct client IP addresses that interacted with the rogue AV
servers during our observation period.

Localization and server usage. Clients from all around the world interacted with
the rogue AV servers. The countries that were most visiting them were USA
(147,729 distinct client IPs), UK (20,275), and Italy (12,413). Some rogue AV
sites appear to be more popular than others, in terms of the distinct client IP
addresses that were served by each. A number of sites only received a handful of
clients; in fact, 27 of the rogue AV sites were visited by only 1 client (probably
an indication that these sites were no longer, or not yet, actively used). The
average number of distinct client IP addresses per rogue AV site was 2,557, with
a median of 560 and a standard deviation of 5,405. The 10 most popular rogue
AV sites are listed in Table
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Access behavior. By clustering the requests issued by the clients according to the
requested URL’s path, we identified 6 different request types: scan, purchase,
purchase confirmation, download, report, and update check. Figure [4] presents
the cumulative count of distinct clients (IP addresses) that were observed issuing
each type of request. (The presence of the same type of requests on different sites
is probably an indication that many rogue AV sites are built on top of the same
“rogue AV toolkit.”)

As represented in Figure[3] these requests correspond to distinet phases with
respect to the interaction of victims with rogue AV sites. A user that is somehow
redirected to one of these servers is typically presented with the option to run
a scan (typically perfunctory) of their computer. The goal of the scan is to
scare users into downloading the rogue AV, by reporting that a large number of
malware (viruses, Trojans, etc.) and other threats are present on their computers.
If the scan is successful in this goal, the user will click through to a purchase page,
or to a “free” download page. In the former case, users enter their information,
including payment details (typically a credit card), and are presented with a
purchase confirmation page. If the charge is successful, or for sites that offer a
free “trial” version of rogue AV software, the user is redirected to a download
page. Once it is successfully installed on the user’s computer, the rogue AV
software will periodically check for updates by querying a specific URL on the
server. In certain cases, it will also report back to the server the occurrence
of specific events (e.g., the download of new updates). During our monitoring,
each site handled only a few types of requests. More precisely, a large number of
sites were devoted to handling only scan requests, while payment requests were
directed at only 7 sites. We speculate that this separation of tasks simplifies
the management of the campaign: even when a scan site is taken down, the
processing of payments remains unaffected.

Monetization. To determine the success rate of rogue AV servers in convincing
clients to download their software, we have counted the number of IPs that had
performed, on the same day, a scan followed by a download. We have also counted
those that did not perform a download after a scan. Doing so, we observed 25,447
successful and 306,248 unsuccessful scans, leading to the estimation of a 7.7%
conversion rate from scan to download.

Similarly, our access data indicates a 1.36% conversion rate from scan to
payment. Given an average price for rogue AV software of between $30 and $50,
our analysis indicates that these 6 servers (which may be controlled by the same
entity, or 6 distinct entities) may generate a gross income of between $111,000
and $186,000 in a period of 44 days. However, this is a best-case scenario; it
is likely that at least some of the accesses to the payment URL represented
failed or non-existent payments (recall that we do not have access to the actual
server response). If we use a more conservative conversion rate between web
server access and actual purchase of 0.26%, estimated by others in the context
of email spam [I3], the gross income for rogue AV site operators in the same
period would range between $21,000 and $35,000. The total operational costs
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for these rogue AV sites would consist of the cost of hosted web servers and the
cost of registering the 193 DNS domains. An informal survey of the providers
hosting rogue AV sites indicates that the average monthly cost of a hosted web
server is $50. Similarly, the annual domain registration costs vary between $3
and $10. Thus, the costs to the rogue AV operators would range between $1,179
and $2,530 (potentially under $400, if we pro-rate the domain registration for a
44-day period).

While the above cost estimate does not take into consideration the additional
cost of advertising the maintained domains through different techniques, the
costs are easily covered by the (unknown) income from other illicit activities that
piggy-back on the rogue AV distribution flow (e.g., keystroke loggers installed
through drive-by downloads by the rogue AV servers).

Ultimately, the easiness with which rogue AV campaigns manage to success-
fully lure users into purchasing their products generates a return on investment
that fully justifies the deployment and the management of complex infrastruc-
tures such as those studied in this work.

6 Lessons learned and countermeasures

This work leverages the analysis of real data to study the general characteris-
tics and dynamics of a specific threat landscape, that of rogue security software.
We identify the specificities of such threat landscape and their foundations in a
particularly favorable market. Such knowledge has direct repercussions on nowa-
days security practices, and helps underlining weaknesses in currently employed
techniques as well as potentials for new research avenues.

Users. Despite of a minor number of cases in which rogue AV domains were ob-
served also in association to other type of threats such as drive-by downloads, the
main propagation vector for this type of threat is the psychological impact on the
user. The in-depth study of the reasons for the successfulness of the interaction
between victims and rogue campaigns is out of the scope of this work, but our
analysis clearly shows that users have an important role in the successfulness of
rogue AV campaigns. As suggested in [10], the cost-benefit tradeoff associated to
the offering of security services is often badly received by the users, that tend to
reject the necessity of performing monetary investments to be shielded from hy-
pothetical security threats. Rogue security software leverages this social reality
to its own advantage. Increasing user awareness on the cost implicitly associated
to security may have an impact on the relatively high conversion rates observed
in this study, and may impact the return on investment associated to rogue AV
campaigns.

Blacklisting is strained. Our study revealed two characteristics of the infras-
tructure used to spread rogue AV that have important consequences on the
effectiveness of countermeasures against this threat, and, specifically, of black-
listing, a technique commonly used to prevent end users from accessing malicious
resources.
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As Figure [1] showed, the rogue AV infrastructure comprises both servers
that exclusively host a very large number of rogue AV sites and servers where
rogue AV sites coexist with legitimate ones. This situation is a worst case for
blacklisting. In fact, IP-based blacklisting (where access to a specific web server
IP is blocked) is bound to generate many false positives, thus preventing users
from visiting benign sites that happen to be hosted on server IPs that also serve
malicious sites. In fact, a naive IP-based blacklisting approach, listing all the
servers we identified, would have incorrectly blocked access to 129,476 legitimate
web sites. Conversely, domain name-based blacklisting (where access to a specific
domain is blocked) is undermined by the easiness with which malicious actors can
register large batches of domains. The registration of hundreds of automatically
generated domain names observed in the different campaigns is likely to be an
active attempt to evade such lists. For example, 77 of the rogue-specific servers
that we tracked were associated with more than twenty different domains, with
a maximum of 309 domains associated to a single server.

Taking-down rogue AV campaigns. What would be a good strategy then to ef-
fectively fight rogue AV campaigns? Our analysis of the victim access dataset
hinted at one possible direction: taking down payment processing sites. In fact,
these appeared to be less in number than other rogue AV sites (recall that 7
payment sites supported almost 200 front-end “scanning” sites) and seemed to
change less frequently. Furthermore, by disrupting the sites generating revenue,
defenders are likely to significantly affect also other parts of the rogue AV oper-
ations (e.g., registering new sites and paying for hosting).

DNS-based threat detection. This study has highlighted once more the important
role of the DNS infrastructure in Internet threats. Rogue AV campaigns often
rely on misleading DNS names to lure victims into trusting their products (e.g.,
pesecurity-2009.com). Also, we have seen how such campaigns often lead to the
automated deployment of large numbers of domains pointing to a few servers
and following well-defined patterns in their naming schema. For all these reasons,
as already noted in [20] for other type of threats, DNS seems to be a promising
point of view for the detection of such anomalies.

7 Conclusion

We presented a longitudinal analysis on the infrastructure and the dynamics
associated with an increasingly popular threat, that of rogue security software.

The contributions of this paper are threefold. Firstly, we provide the first
quantitative high-level analysis of the rogue AV threat landscape and the under-
pinning infrastructure. We detail the relationships between rogue AV domains
and the web servers hosting them, and we delve into their characteristics to ex-
tract high-level information on the structure of these threats. Secondly, we apply
a threat attribution methodology to 6,500 domains under observation and we
automatically extract information on large-scale campaigns likely to be associ-
ated to the operation of a single individual or group, likely through the help of
automated tools. Finally, we provide insights on the economy of the rogue AV
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threat landscape by leveraging information on the interaction of victim clients
with several rogue AV servers over a period of 44 days. We show how the rogue
AV distributors are able to generate considerable revenues through their activi-
ties, which fully justifies their investment in the deployment of the distribution
infrastructures.

While this paper targets specifically the rogue antivirus threat, we believe
that the methodologies and the lessons learnt from our work can be of value to
the study of other threats (e.g., phishing and other scams). More specifically,
we show how the combination of clustering and data aggregation methods can
be leveraged to profile different threat landscapes and, by comparison, offer a
valuable tool to the study of threat economies.
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