
vDelay: A Tool to Measure Capture-to-Display Latency and
Frame Rate

Omer Boyaci, Andrea Forte, Salman Abdul Baset, and Henning Schulzrinne
Department of Computer Science

Columbia University, New York, USA

{boyaci,andreaf,salman,hgs}@cs.columbia.edu

ABSTRACT

We present vDelay, a tool for measuring the capture-to-display

latency (CDL) and frame-rate of real-time video applications

such as video chat and conferencing. vDelay allows measur-

ing CDL and frame-rate without modifying the source code

of these applications. Further, it does not require any spe-

cialized hardware. We have used vDelay to measure the

CDL and frame-rate of popular video chat applications such

as Skype, Windows Live Messenger, and GMail video chat.

vDelay can also be used to measure the CDL and frame-rate

of these applications in the presence of bandwidth variations.

1. INTRODUCTION

Real-time video chat applications augment the com-
munication experience of participants by allowing them
to see other participants in addition to having an audio
conversation. These applications have three key soft-
ware components: a video encoder that compresses the
video captured from the camera, a video decoder that
decompresses the video received over the network, and
a playout buffer that smooths the playout of received
video due to network variations. These software com-
ponents impact capture-to-display latency (CDL) and
frame-rate of the real-time video played at a receiver ap-
plication. Capture-to-display latency is the total time
to encode and decode a video frame, playout buffer
time, and latency of the network path. Along with
bit-rate, these two metrics provide quick insights into
the performance of a real-time video application. De-
velopers and testers can use these metrics to determine
whether the experimental performance of a video chat
or conferencing application meets the expected perfor-
mance. Moreover, since numerous video chat applica-
tions are available today, users can use the CDL and
frame-rate metrics to guide their selection of a video
chat application.

We present vDelay, a tool to measure the capture-to-
display latency (CDL) and frame-rate of a video stream.
The video stream is captured at the caller user agent
and displayed at a callee user agent. Both caller and
callee user agents run the same video application. vDe-
lay has three important properties. First, it does not

require any change in the source code or executable of
a real-time video application. Thus, it can be used to
measure the CDL and frame-rate of closed source video
applications. Second, vDelay does not require any spe-
cialized hardware. Third, it is written in Java so it is
platform independent and can be used to measure CDL
and frame-rate of a real-time interactive video applica-
tion on any operating system.

For the rest of the paper, we assume that a video ses-
sion is established between two participants. We desig-
nate one machine running the video chat application as
a caller user agent and the other as a callee user agent.
For simplicity, we refer to these machines as caller and
callee, respectively.

The paper is organized as follows. Section 2 discusses
issues involved in measuring CDL and frame-rate. Sec-
tion 3 presents the architecture of vDelay. Section 4
describes the experimental setup and Section 5 presents
CDL and frame-rate results for video chat applications.
Section 6 discusses related work. Section 7 presents
conclusions and future work.

2. MEASURING CDL AND FRAME-RATE

The key to measuring capture-to-display latency (CDL)
and frame-rate lies in embedding a timestamp in the
caller’s video, and retrieving that timestamp at the callee.
The timestamp is the current system time at the ma-
chine running the caller user agent. Assuming that
the machines running the caller and callee user agents
are time synchronized within an acceptable error, the
capture-to-display latency is the difference between the
timestamp retrieved from the caller’s video and cur-
rent system time at the machine running the callee user
agent. This difference can also be used to calculate the
inter-frame display time at the callee user agent. Fur-
ther, since every new frame must have an increasing
value of a timestamp, the number of frames within a
time period can be used to calculate the frame-rate of
the received video.

We use a trick to embed the timestamp in the caller’s
video that does not require any change to the video
chat application. The timestamp, i.e., the current sys-

2009 11th IEEE International Symposium on Multimedia

978-0-7695-3890-7/09 $26.00 © 2009 IEEE

DOI 10.1109/ISM.2009.46

194

������ ������

���������

�����	

���������

���	
��

Figure 1: vDelay setup.

tem time at the machine running the caller user agent,
is displayed at the monitor of the machine running the
caller user agent every t time units. In our case, the
monitor is a liquid crystal display (LCD) device. A we-
bcam is attached to the machine running the caller user
agent and faces the LCD monitor. Thus, it captures
the current image on the LCD monitor which includes
the timestamp. The caller user agent then encodes this
captured frame including the timestamp, and sends it
over the network to the callee user agent which decodes
the frame and displays it on its attached LCD moni-
tor. An application running on the same machine as
the callee user agent grabs the timestamp from the re-
ceived frame, and calculates the time difference between
the timestamp grabbed from the received frame and lo-
cal system time. The timestamps are processed to cal-
culate CDL and frame-rate. Figure 1 shows the setup
for measuring CDL and frame-rate. The novelty of this
approach lies in the fact that no additional hardware
is needed and no modification to the software of any
real-time video application is required.

Next, we discuss how to display and retrieve a times-
tamp at/from a LCD, and the factors that impact the
latency and accuracy of the received timestamp.

2.1 How to display and capture a timestamp?

We considered three approaches for displaying the
timestamp at the caller user agent. These approaches
display the timestamp as (1) an EAN-8 barcode [5], (2)
numeric characters, and (3) a progress bar. From ex-
perimentation, we found that displaying timestamp as
a barcode was the most attractive option. This was
so because barcodes such as EAN-8 and EAN-13 have
a built in checksum mechanism and because barcode
reading is very fast. The checksum is necessary because
a barcode image can get distorted due to bandwidth
variations and lossy encoding of video codecs. With-
out a checksum, it is difficult to ascertain whether the
timestamp grabbed from the frame is the same as the
one displayed at the caller user agent. No built in check-
sums exist for timestamps displayed as numeric charac-
ters and as a progress bar. Although it is conceivable
to design checksums for both numeric characters and a
progress bar, we did not feel a need since the reading

accuracy of the timestamp encoded as a barcode was
above 94% for a range of video chat applications (see
Section 4).

During our experiments we found that at the callee,
barcode image could be read in less than a millisecond,
facilitating the online calculation of capture-to-display
latency and frame-rate, whereas it took a few seconds to
recognize via OCR the timestamp displayed as numeric
characters. For these reasons, we have used barcodes to
encode and retrieve the timestamp from a video frame.

2.2 Factors impacting the embedding and re-
trieval of timestamp

Below, we discuss the factors that impact the em-
bedding and retrieval of a timestamp. These are LCD
refresh rate and response time, camera aperture, shut-
ter speed, and timestamp area in the captured video.
The first three impact the capture-to-display latency
and frame-rate calculations whereas the last factor im-
pacts the success rate of retrieving barcodes at the ma-
chine running the callee user agent. For the rest of the
paper, our use of the timestamp means the current sys-
tem time displayed as a barcode on the LCD monitor of
the machine running the caller user agent. In Section 4,
we describe how a timestamp is encoded as a barcode.

2.2.1 Refresh rate and response time of a LCD

The refresh rate determines the speed at which an
image is displayed on the LCD monitor and typically
starts at 60 Hz on modern LCD monitors. This means
that it may take up to 16.6 ms for a timestamp to appear
on a LCD monitor. The response time is the amount
of time it takes a pixel to refresh itself, i.e., ready it-
self for displaying the new pixel. The response time on
modern LCD monitors is typically 5ms. Together, re-
fresh rate and response time can delay the displaying of
timestamp by a few milliseconds.

To eliminate the impact of refresh rate and response
time, a virtual webcam driver can be designed which
grabs the frame from the frame buffer and passes it to
the caller user agent for encoding. However, the design
of such a virtual webcam driver is tightly coupled with
the underlying operating system. Thus, we have not
explored this approach.

2.2.2 Aperture

Aperture is a hole in the camera through which light
enters the camera. If the hole is narrow, less light enters
the camera and the captured image containing the bar-
code is likely to be dark. Consequently, it may be nec-
essary to keep the camera shutter open for a longer pe-
riod to capture the barcode being displayed on the LCD
monitor. Keeping the shutter open for a long period
adds delay to the capture-to-display latency. There-
fore, it is necessary to set the camera aperture to its

195

Resolution Size of timestamp
320x240 1/4
640x480 1/16
800x600 1/24
1024x768 1/40

Table 1: The size of timestamp encoded as
an EAN-8 barcode w.r.t resolution of captured
video.

highest value to minimize the length of the period the
shutter is open.

2.2.3 Shutter speed

Shutter speed is the duration of time for which the
shutter of a camera is open. If a shutter remains open
when multiple timestamps are being displayed on a LCD
monitor, the camera will capture all of these times-
tamps, and it may be difficult to retrieve them at the
receiver. Thus, shutter speed must be greater than the
refresh rate of a LCD monitor. Further, a low shutter
speed can impact the frame-rate of the received video.
Therefore, it should be set to a value that adds the least
delay to the capture-to-display latency and maximizes
the achievable frame-rate.

2.2.4 Timestamp area in the captured video

Video chat applications capture the video at different
resolutions such as 640x480 and 320x240. The times-
tamp should occupy a sufficient area in the captured
frame to maximize the successful reading of barcodes at
the callee machine. Through trial and error, we deter-
mined the minimum area that a timestamp encoded as
an EAN-8 barcode should occupy in the captured video
frame. Table 1 shows these values. These results may
be adjustable depending on the quality of a webcam,
and the barcode reader. Nevertheless, they provide a
useful guideline for conducting similar experiments.

3. VDELAY ARCHITECTURE

The vDelay tool consists of a vDelay-S and vDelay-R
Java application that run on the caller user agent ma-
chine and callee user agent machine, respectively. The
vDelay-S application displays the system time as an
EAN-8 barcode on the LCD monitor. There are three
related issues. First, the system time must be displayed
to the resolution of a millisecond to accurately mea-
sure capture-to-display latency. Since an EAN-8 bar-
code can only represent a maximum of eight digits, an
EAN-8 barcode can at most capture the eight least sig-
nificant digits of the system time measured in millisec-
onds. Second, through experimentation, we found that
generating barcodes every millisecond was not compu-
tationally efficient, so we generated the barcode images

��������

�	
����
��

	
���

��������	
����
��

������
��	��

�����������	�

���������������

�����
������

Figure 2: vDelay-R architecture.

Figure 3: Screen shot of vDelay-R application.
FPS, CDL, and FRR statistics are shown at the
top of the image. The barcode received from the
caller user agent is also visible.

in advance. Based on the least significant digits of the
system time, the vDelay-S application selects the ap-
propriate barcode image and displays it on the screen.
Lastly, an EAN-8 barcode image can represent a nu-
meric range between zero and 10 million, so it might be
necessary to generate these many barcode images. How-
ever, we only generated 10,000 EAN-8 barcode images
using barcode4j [3], an open source barcode generator,
that represent the numeric range [0, 9999]. Depend-
ing on the last four digits of the system time measured
in milliseconds, the vDelay-S application displays the
barcode image that represents those digits and displays
them on the LCD monitor. This numeric range implies
that after 10 seconds, the same barcode image is dis-
played on the screen. As discussed in Section 2.2.1, the
displaying of barcodes on the LCD monitor is delayed
by few milliseconds depending on the refresh rate and
response time of a LCD monitor.

Figure 2 shows the block diagram of vDelay-R ap-
plication. To facilitate grabbing the barcode from the
received frame, the vDelay-R application lets user select
the (top, left) and (bottom, right) screen coordinates of
the barcode image with mouse clicks. The vDelay-R ap-
plication then grabs the barcode image from the frame-
buffer every five milliseconds, and passes it to a barcode
reader. The time to grab the barcode image from the

196

Chat application Version Video Resolution Bit-rate Fps CDL Std. dev Encoding
codec (kb/s) (ms) (ms) CPU (%)

Live Messenger 14.0.8064.206 H.264 G 640x480 600 23 69 16 28
Gtalk v1.0.8.0 H.264 G 512x300 1000 27 99 16 16
X-Lite 3.0.47546 H.263+ 320x240 400 27 102 15 20
Yahoo 9.0.0.2152 Unknown 320x240 72 3 113 23 1
eyeBeam 1.5.19.5.52345 H.264 640x480 400 27 129 16 25
AIM 6.8.14.6 Unknown 240x180 120 9 147 57 20
Tokbox (LL) 2.01 2351d05 Unknown 270x200 320 24 148 72 25
Skype (HQ) 4.0.0.215 VP7 640x480 560 20 238 22 44
Tokbox (HL) 2.01 2351d05 Unknown 270x200 320 23 342 69 25

Table 2: Comparison of video chat applications. The results are sorted by capture-to-display latency
(CDL). The ‘G’ in the Resolution column is our best guess of the video resolution. LL, HL and HQ
are abbreviations for low latency, high latency, and high quality.

frame is less than a millisecond. We have used zing [16],
an open-source barcode reader. The vDelay-R applica-
tion reads the barcode, retrieves the timestamp, and
computes the difference between the local system time
and the timestamp retrieved from the frame. It then
computes the capture-to-display latency and frame-rate
and outputs them to the LCD monitor and writes them
to a file. It also computes the first read rate (FRR) of
barcodes and writes it to the display and a file. Figure 3
shows a screen shot of vDelay-R application. Kato et

al. [17] define FRR as:

FRR =
Number of successful first reads

Number of attempted first reads

A timestamp from a single frame can be grabbed mul-
tiple times depending on the the instant at which the
frame is grabbed from the screen. However, the vDelay-
R application reports the difference between the earliest
grabbed timestamp from a frame and the current sys-
tem time.

3.1 Clock synchronization

vDelay tool assumes that clocks are synchronized be-
tween the machines running the video chat applications.
With a minor adjustment, vDelay tool can be used to
calculate the capture-to-display latency when clock syn-
chronization may not be possible. The idea is that the
callee user agent reflects the video containing the times-
tamp back to the caller user agent. To reflect the video
without requiring any change to the video chat appli-
cation, the webcam attached to the machine running
the callee user agent points towards the LCD moni-
tor of the callee machine which displays the video re-
ceived from the caller that also contains the timestamp.
The vDelay-R application is run at the caller user agent
which retrieves the timestamp from the frame received
from callee. vDelay-R then compares the timestamp
with its current time to calculate the time elapsed since

the frame was sent from caller to callee user agent. This
elapsed time includes the round-trip network delay, and
video encoding, decoding, and playout time at the caller
and callee user agent. Assuming the round-trip network
delay is negligible as it would typically be in a labora-
tory LAN, one half of this elapsed time approximately
gives the capture-to-display latency.

4. EXPERIMENTAL SETUP

Figure 1 shows the experimental setup. It consists
of two machines, each with an Intel Core Duo proces-
sor [8] and a Dell 1909W flat panel display [4]. The
brightness on the LCD monitors is set to its maximum
value. Both machines run the Windows Vista operat-
ing system and are connected to the same subnet (RTT
< 1ms). The time on both machines is synchronized
through NTP and the NTP server query interval was
10 seconds. Each machine runs a video chat application.
A Logitech Quickcam Pro 9000 webcam [9] is attached
to the machine running the caller user agent and point
towards the LCD monitor displaying the timestamp. A
video session is established between two user agents.
The caller user agent sends the captured video includ-
ing the timestamp encoded as barcode over the network
to the callee user agent.

The webcam attached to the caller user agent cap-
tures the images on the LCD monitor. These images
include icons and desktop applications along with the
timestamp. It can be argued that video chat applica-
tions are optimized for human images and not the com-
puter displays, and thus the statistics obtained for CDL
and frame-rate may not reflect the common use case for
these applications. To address this, we prerecorded a
video of a human user sitting in front of a webcam and
run it on the machine running the caller user agent.
The vDelay-S application displays the timestamp at a
corner of this prerecorded video of a human user. The
webcam connected to the machine running the caller

197

0 200 400

Live Messenger
Gtalk

X−Lite
Yahoo

eyeBeam
AIM

Tokbox (LL)
Skype (HQ)
Tokbox (HL)

latency (ms)
(a)

0 50 100

latency std dev (ms)
(b)

0 50 100

first read rate (%)
(c)

0 10 20 30

Live Messenger
Gtalk

X−Lite
Yahoo

eyeBeam
AIM

Tokbox (LL)
Skype (HQ)
Tokbox (HL)

fps
(d)

0 500 1000

bit−rate (kb/s)
(e)

0 20 40 60

CPU utilization (%)
(f)

Figure 4: (a) Capture-to-delay latency (CDL) (b) Standard deviation of capture-to-display latency
(c) First read rate (FRR) (d) Frames per second (fps) (e) Bit-rate (f) CPU utilization for video
encoding.

user agent sender points to the monitor and captures
the prerecorded video of a human user and the times-
tamp, thereby mimicking a realistic video chat session.

At the machine running the callee user agent, we run
the vDelay-R Java application after the video call has
been established and the caller’s video along with the
barcode is visible at the LCD monitor. We run the
video session for 10minutes and report the CDL and
frame-rate results for this duration.

It is possible that the only webcam available is the
one attached to the display of a machine (such as LCD
of a laptop) and cannot be detached. Thus, it cannot
be pointed towards LCD monitor displaying the times-
tamp. To resolve this, a mirror can be placed in front
of the LCD monitor of the machine running the caller
user agent. The camera attached to the top of the LCD
monitor can capture the timestamp being displayed in
the mirror.

5. RESULTS

We used vDelay tool to measure capture-to-display
latency and frame-rate of Skype [11], Windows Live
Messenger [13], Yahoo Messenger [15], GMail video chat [7],
AOL Instant Messenger (AIM) [2], X-Lite [14], eye-
Beam [6], and Tokbox [12] applications. We used the
setup described in Section 4. For all the video chat ap-
plications, we ran the experiment for ten minutes and
repeated it twice. The Tokbox application completely

runs in browser and only depends on the availability of
a Adobe Flash player. In Tokbox, the caller user agent
sends packet over TCP to a Flash server maintained by
Tokbox which forwards these packets to the callee user
agent over TCP and vice versa. With the exception
of Tokbox, the caller user agent sends packets directly
to the callee user agent. Besides Tokbox and Yahoo
Messenger, all the video applications send packets over
UDP. For Skype, the video session was of high quality
(HQ) as indicated by an icon in the received video.

Table 2 shows the results of these video applications.
The reported results include capture-to-display latency
(CDL), standard deviation of CDL, frame-rate, and first
read rate (FRR) measured using vDelay, and bit-rate
and CPU utilization of the caller user agent that en-
codes the video. The results are sorted by capture-to-
display latency. For ease of comparison, we also graph-
ically show these results in Figure 4. As mentioned be-
fore, Tokbox forwards packets from a caller user agent
to a callee user agent through servers which are based
in different geographical locations. The use of a server
in different location impacts the CDL. Therefore, we
report the minimum and maximum observed CDL for
Tokbox which are abbreviated as LL (low latency) and
HL (high latency) in Table 2.

Our results indicate that amongst all video chat ap-
plications, Windows Live Messenger has the best CDL
value. For Tokbox (LL), Tokbox (HL), and AIM, the

198

 !" "!# #!
$

 # % & ' " "# "% ()*+,- *. /0 1*. *0 23456789:8;<=>?
 " # $ % ! & @ '
A "

 # % & ' " "# "%
" $" &" A" "#" "!" "'" #"" #%" #@" $ " $$" $&" $A" %#" B+,- * CDEF78C

56789:8;<=GG
Figure 5: CDL, fps, and FRR for Skype as a function of time when the available bandwidth is
adjusted as a step function.

standard deviation of CDL is more than 50 ms. We
conjecture that Tokbox has a high standard deviation
for CDL due to the packet scheduling at the server re-
laying media packets. For AIM, we attribute the high
standard deviation to the video encoding function.

X-Lite and eyeBeam have the highest achieved frame-
rate per second (fps). Except for Yahoo Messenger and
AIM, the frame-rate of all video chat applications is
above 20 frames per second. As for the CPU utiliza-
tion of the machine running the caller user agent, we
measured that Skype uses 44% CPU, the maximum
amongst all applications. Gtalk tops the bit-rate com-
parison at 1,000 kb/s.

vDelay can be used to measure CDL and frame-rate
of a video chat application under controlled network
conditions. Such use provides a powerful testing mech-
anism for application developers. One instance is shown
in Figure 5, which shows the performance of Skype
when the available bandwidth of a video session is ad-
justed as a step function. The figure shows that Skype
suffers from a high jitter in frame-rate as the available
bandwidth is gradually decreased. With the decrease

in available bandwidth, CDL starts to increase indicat-
ing the impact of network queuing and playout buffer
adjustments. The CDL graph shows large spikes when
available bandwidth is below 400 kb/s. However, the
CDL of Skype is close to its operating mean when the
available bandwidth is above 400 kb/s.

6. RELATED WORK

Existing video latency measurement tools involve the
use of a specialized hardware. OmniView [10] is a tool
that uses a specialized PCI card. Our goal is to mea-
sure video latency without the use of any specialized
hardware.

Yoshimura et al. [18] designed a module for a video
streaming application that for each frame measures the
deviation from the playout time. Their approach does
not calculate capture-to-display latency or frame-rate,
and requires changing the video application. Further,
their approach is targeted towards video streaming ap-
plications.

adelay [1] is a tool that can be used to measure mouth-
to-ear latency.

199

7. CONCLUSIONS AND FUTURE WORK

We have designed vDelay, a tool to measure capture-
to-display latency (CDL) and frame-rate of a video ap-
plication in real-time. vDelay does not require any
change in the source code or executables of video chat
applications. Thus, it can be used to measure CDL and
frame-rate of closed source applications. Further, it is
platform independent and does not require use of any
specialized hardware. We have used vDelay to measure
CDL and frame-rate of popular video chat applications.
Our results indicate that Windows Live Messenger has
the best capture-to-display latency. Together with bit-
rate, the application designer can use CDL and frame-
rate statistics gathered using vDelay to determine if
the measured performance of the video chat application
meets the expected performance under various network
conditions.

In addition to CDL and frame-rate, it is useful to de-
termine if the video chat application synchronizes the
video and audio playout, also known as lip-sync. In-
corporating lip-sync in vDelay is the subject of future
work.

8. REFERENCES

[1] adelay. A tool to measure mouth-to-ear latency.
http://www.cs.columbia.edu/irt/software/adelay/.

[2] AOL Instant Messenger. http://www.aim.com/.
[3] Barcode4J. http://barcode4j.sourceforge.net/.
[4] Dell 1909W flat panel monitor.

http://tinyurl.com/dmpnyn.
[5] EAN barcode.

http://en.wikipedia.org/wiki/European Article Number.
[6] eyeBeam.

http://www.counterpath.com/eyebeam.html.
[7] GMail video chat.

http://mail.google.com/videochat/.
[8] Intel Core Duo Processor.

http://tinyurl.com/y3kl3x.
[9] Logitech Quickcam Pro 9000.

http://www.logitech.com/index.cfm/38/3056.
[10] OmniView.
http://www.omnitek.tv/admin/old support/AVdelay1[1].pdf.

[11] Skype video calls.
http://www.skype.com/allfeatures/videocall/.

[12] Tokbox. http://www.tokbox.com/.
[13] Windows Live Messenger.

http://messenger.live.com/.
[14] X-Lite. http://www.counterpath.net/x-lite.html.
[15] Yahoo Messenger. http://messenger.yahoo.com/.
[16] zing barcode reader.

http://code.google.com/p/zxing/.
[17] H. Kato and K. Tan. First read rate analysis of

2d-barcodes for camera phone applications as a
ubiquitous computing tool. In Proc. of TENCON

– IEEE Region 10 Conference, November 2007.

[18] Y. Yoshimura and M. Masugi. A QoS monitoring
method for video streaming service based on
presentation-timeline detection at user clients. In
Proc. of Joint 10th Asia-Pacific Conference on

Communications and 5th International

Symposium on Multi-Dimensional Mobile

Communications, September 2004.

200

