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Abstract— Deformable objects such as garments are highly
unstructured, making them difficult to recognize and manipu-
late. In this paper, we propose a novel method to teach a two-
arm robot to efficiently track the states of a garment from an
unknown state to a known state by iterative regrasping. The
problem is formulated as a constrained weighted evaluation
metric for evaluating the two desired grasping points during
regrasping, which can also be used for a convergence criterion
The result is then adopted as an estimation to initialize
a regrasping, which is then considered as a new state for
evaluation. The process stops when the predicted thin shell
conclusively agrees with reconstruction. We show experimental
results for regrasping a number of different garments including
sweater, knitwear, pants, and leggings, etc.

I. INTRODUCTION

Robotic manipulation of deformable objects is a diffi-
cult task especially for sequential manipulations such as
unfolding a garment. One particular manipulation task is
how to unfold a garment from a random pose to a desired
configuration [14][3][4]. This is a difficult task because the
states of a deformable object are not easy to track and
predict owing to large-dimensional state spaces. In this paper,
we propose a system to recognize, manipulate, and unfold
a deformable garment into a desired configuration. Key
contributions of our paper are:

- A constrained weighted metric for evaluating grasping
points during regrasping, which can also be used for a
convergence criterion

- A fast, two-stage deformable registration algorithm that
integrates simulated results with online localization and
uses a novel non-rigid registration method to minimize
energy differences between source and target models

- A semantically labeled garment database built with off-
line simulation that contains 37 different garments such
as sweaters, pants, shorts, dresses, scarves, etc.

- A method for analysis of local curvature using IR scan
data for stable grasp

- Experimental results showing that our method applied
on a Baxter robot is able to recognize a garment from
an arbitrary pose, successfully regrasp it to put it into a
known configuration, and place it flat on a table

We are interested in unfolding the garment efficiently
as a part of a pipeline for manipulating deformable gar-
ments. After several steps of regrasping, the robot holds
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Fig. 1. Our application scenario: a Baxter robot picks up a garment (a
sweater here), and a Kinect captures depth images to recognize the pose of
the sweater (left). The final unfolding result is shown on the right.

the garment at two desired positions. Using a sweater as
an example, we defined the optimal grasping positions on
the two sleeves, respectively. The regrasping is built on the
recognition pipeline described in our previous work [10],
which applies a volumetric approach to identify the garment
pose using a 3D reconstructed mesh model. We extend this
previous work by developing a registration-search framework
that looks for an optimal position over the entire mesh model.
This position is then adopted as a regrasping point in 3-
dimensional space and guides the other hand to approach
and regrasp. The complete pipeline of a robot folding a
garment from a random state is shown in Figure 2, where
our work described in this paper spans initial grasping, pose
estimation, regrasping for unfolding, and placing the garment
flat on a table.

II. RELATED WORK

Kita et al. [6][7] have done a series of work on gar-
ment pose recognition by grasping at one or more points
using a shape matching algorithm. The observation used
in this work is just three depth images from top, side,
and front views, which may limit its accuracy on more
complicated garments. The examples shown in the paper
are all relatively rigid garments, lacking further exploration
with different materials where deformation is reasonably
complex. Willimon et al. [18][19] worked on classifying the
clothing through interactive perception using a single robotic
arm. The heavy dependence on the color-based segmentation,
however, makes the method sensitive to the texture variance.



Initial state Initial grasp Pose estimation Place flat Fold

Regrasp

Proper pose

Improper
pose

             Unfold

Regrasp

Unfold

Fig. 2. TOP ROW: The entire pipeline of dexterous manipulation of deformable objects. BOTTOM ROW: If the recognition is not successful, the robot
will regrasp the object and repeat the step of pose estimation (the red rectangle).

Wang et al. [17], and Miller et al. [13] have done work in
clothing recognition by manipulation with a PR2 robot. Their
method achieves good results but may lack accuracy because
of self-occlusion. Our recent work [9] on recognition and
pose estimation of deformable clothes uses a Kinect depth
sensor. The method recognizes garment category and pose
on individual depth images and uses majority voting to get a
comprehensive result. A further work [10] first reconstructs
a 3D model of the object via a Kinect, and then searches a
database of simulated models to predict the pose.

Osawa et al. [14] proposed a method using dual-arm
to unfold a garment from pick up. However, from the
examples in the paper, this method requires a garment with
unique color and a clean background for color-based image
segmentation. The PR2 robot is probably the first robot
that has successfully unfolded deformable objects such as
a towel or a T-shirt [12]. The visual recognition in this
work targets corner-based features, which may not exist in
many soft garments. The subsequent work has improved the
prediction of the state of a garment using a HMM framework
by regrasping at the lowest corner point [3]. However, this
method also requires a clean background, and thus limits the
applicability.

The work that is closest to ours is by Doumanoglou et
al. [4]. This work has impressive results for unfolding of a
number of different garments. They use a dual-arm industrial
robot to unfold a garment guided by a set of depth images
which provide a regrasping point. This method achieves
promising accuracy. A major difference between this work
and ours is our use of simulated predictive thin shell models
for garments to automatically create a large database of
garments and their poses. Their training set is a number
of physical garments that have been grasped at different
grasping points to create feature vectors for learning. Given
the physical nature of this training set, it can be very time-
consuming to create, and may have problems encompassing
a wide range of garments and different fabrics which we can
more easily accommodate in the simulation environment. We
also use an online registration of a reconstructed volumetric

mesh with the simulated model to find regrasping points.
By this method, we can choose arbitrary regrasping points
without having to train the physical model for the occurrence
of the grasping points. This allows us to choose any point
on the garment at any time as the regrasping point. We have
also developed a closed loop tactile feedback algorithm that
allow us to perform a local search at the regrasping point
that alleviates the instability of the grasp during regrasping
as mentioned in [4].

In our method, the regrasping point is located by mapping
the pre-determined point from simulation mesh to the re-
constructed mesh. Therefore, a fast and accurate registration
algorithm plays a key role in our method. Rigid or non-
rigid surface registration is a fundamental tool to find shape
correspondence. A thorough review can be found in [15].
Our registration algorithm builds on previous techniques for
rigid and non-rigid registrations. First, we use an iterative
closest point method [2] to rigidly align the garment. We
use a distance field to accelerate the computation. Next, we
perform a non-rigid registration to improve the matching
by locally deforming the garment. Similar to [8], we find
the correspondence by minimizing an energy function that
describes the deformation and the fitting.

III. PROBLEM FORMULATION

A. Framework

Our objective is to put the garment into a certain con-
figuration[10], such that the garment can be easily placed
flat on a table for the folding process. we formulate it as a
mathematical optimization problem:

max
xL,xR

f(xL,xR). (1)

Here we use two vectors xL,xR ∈ R2 to describe the
configuration, i.e. the grasping points on the UV mapping
of the garment.1 and the function f is an evaluation function
for such a configuration. We seek a principled way to build

1Each garment mesh is defined in a UV 2-dimensional parameter space.
The grasping points are chosen from a particular set of UV parameters.



a feedback loop for garment regrasping, which allows us to
grasp at pre-determined points on the garment.

For example, the candidate garment is a sweater to be
unfold and place flat. A desired configuration is having
(x∗L,x

∗
R) on the elbows of the sleeves. And our goal is to

find a series of regrasping procedures that will converge to
a configuration of (x∗L,x

∗
R).

B. Optimization Objective
We need a quantitative function defined on the configu-

ration to evaluate its quality. While this can be computed
on the continuous surface of the garment, we can also
discretize the garment into a set of anchor points Sg , which
typically contains about 15 points for a garment. After such
quantization, the garment pose recognition can be treated as
a discrete classification problem, which the current robotics
system is able to handle reliably. This also simplifies the
definition of the objective function, which then becomes a
2D score table or a matrix, given our robot has two arms.

Although the configuration variables xL,xR is quantized
for the sake of reliable pose estimation, we use a smooth
probabilistic Gaussian model to describe the objective func-
tion to allow efficient optimization. Specifically, given known
locations of grasping points xL,xR, we treat the left and
right hand of the robot independently and use the product of
the probability of two Gaussians as the objective function:

f(xL,xR) = N
(
xL | x∗L,ΣL

)
· N
(
xR | x∗R,ΣR

)
, (2)

where xL,xR ∈ Sg . Here N (x | x∗,Σ) is a 2D Gaussian
distribution with x∗ as the mean, and Σ as the covariance on
the UV mapping. Typically, x∗L,x

∗
R are the target grasping

points, and Σs control the tolerance and convergence speed
(or number of folding actions to reach the target configura-
tion) of the regrasping process.

In practice, due to the sensor errors of occlusion and
deformation, it is not feasible to get a deterministic noise-free
observation of xL and xR. Instead, our previous work [10]
provides a probabilistic distribution p(xl,xr | y), in which
y is the observed mesh model. p is the probabilistic mea-
surement of the confidence given certain grasping points
xl,xr. Therefore according to the conditional probabilistic
decomposition, the objective can be rewritten as,

f(xL,xR|y) =∑
xl,xr∈Sg

N
(
xl|x∗L,ΣL

)
N
(
xr|x∗R,ΣR

)
p(xl,xr|y). (3)

Intuitively, this objective function measures the closeness of
each grasping point to the optimal grasping points, scaled by
the predicted probability of the current grasping points being
accurate. To avoid numerical problems, we do the optimiza-
tion on ln f(·), and obtain the objective after substituting the
real probabilistic density function of Gaussian:

ln f(xL,xR) =
∑

xl,xr∈Sg

(
− (xl − x∗L)T Σ−1

L (xl − x∗L)

− (xr − x∗R)T Σ−1
R (xr − x∗R) + ln p(xl,xr|y)

)
.

(4)

Experimentally, we use the geodesic distance on the garment
surface to measure the quality of the regrasping. In our
settings, there is no reason to have more weights in one
direction against another. Therefore the covariance matrices
are set as σlI and σrI , resulting in the objective function
which needs to be maximized as,

ln f(xL,xR) =−
∑

xl,xr∈Sg

(
σl‖xl − x∗L‖2

+ σr‖xr − x∗R‖2 − ln p(xl,xr|y)
)
.

(5)

The related parameters in the objective such as σL and σR are
set depending on the desired configuration. For example, for
sweaters, we set x∗L and x∗R on the elbow of the two sleeves.
The Gaussian formulation ensures a smooth decrease from
the expected grasping points, as visualized in Figure 3 as an
example.
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Fig. 3. Visualization of the defined objective used in this paper. (a) shows
a sweater and (b) show a pair of pants. (c) is the visualization of distance
function given a mesh. The color bar on the right shows the normalization
distance.

IV. IMPLEMENTED METHOD

A. Deformable Registration

After obtaining the location of the current grasp point, we
seek to register the reconstructed 3D model to the ground
truth garment mesh to establish point correspondences. The
input to the registration is a canonical reference (“source”)
triangle mesh S that has been computed in advance and
stored in the garment database, and a target triangle mesh
T representing the geometry of the garment grasped by the
robot, as acquired by 3D scans of the grasped garment.

The registration proceeds in three steps. First, we scale the
source mesh S to match its size to the target mesh T . Next,
we apply an iterative closest point (ICP) technique to rigidly
transform the source mesh S (i.e., via only translation and
rotation). Finally, we apply a non-rigid registration technique
to locally deform the source mesh S toward the target T .

Scaling First, we compute a representative size for each
of the source and target meshes. For a given mesh, let ai
and gi be the area and barycenter of the ith triangle. Then
the area-weighted center c of the mesh is

c =

NS∑
i

aigi

/ NS∑
i

ai, (6)

where NS is the number of vertices of the source mesh S.
Given the area-weighted center, the representative size l of



the mesh is given by

l =

NS∑
i

ai‖gi − c‖
/ NS∑

i

ai. (7)

Let the representative sizes of the source and target meshes
be lS and lT , respectively. Then, we scale the source mesh
by a factor of lT /lS .

Computing the rigid transformation We use a variant of
ICP [2] to compute the rigid transformation. ICP iteratively
updates a rigid transformation by (a) finding the closest point
wj on the target mesh T for each of the vertices vj of
the source mesh S, (b) computing the optimal rigid motion
(rotation and translation) that minimizes the distance between
wj and vj , and then (c) updating the vertices vj via this rigid
motion.

To accelerate the closest point query, we prepare a grid
data structure during preprocessing. For each grid point,
we compute the closest point on the target mesh using
fast sweeping [16], and store for runtime using both the
found point and its distance to the grid point as shown in
Figure 3, (c). At runtime, we approximate the closest point
query for vertex vj by searching only among those eight
precomputed closest points corresponding to the eight grid
points surrounding vj , thereby reducing the complexity of
the closest point query to O(1) per vertex.

After establishing point correspondences, we compute
the optimal rotation and translation for registering vj with
wj [2]. We iteratively compute point correspondences and
rigid motions until successive iterations converge to a fixed
rigid motion, yielding a rigidly registrated source mesh S̄.

Non-rigid registration Given a candidate source mesh
S̄ obtained via rigid registration, our non-rigid registration
seeks the vertex positions vj of the source mesh S that
minimize

ES̄,T (S) = Efit(S, T ) + Edef(S, S̄), (8)

where Efit(S, T ) penalizes discrepancies between the source
and target meshes, and Edef(S, S̄) seeks to limit and regular-
ize the deformation of the source mesh away from its rigidly
registrated counterpart S̄. The term

Efit =

NS∑
i=1

(dist(gi))
2
Āi, (9)

penalizes deviation of the source and target meshes. Here gi

is the barycenter of the triangle i, and dist(gi) is the distance
from gi to the closest point on the target mesh. As in the
rigid case, we use the precomputed distance field to query
for the distance.

It might appear that the fitting energy Efit could be trivially
minimized by moving each vertex of mesh S to lie on mesh
T . In practice, however, this does not work because all of the
geometry of the precomputed reference mesh S̄ is discarded;
instead, the geometry of this mesh, which was precomputed
using fabric simulation, should serve as a prior. Thus, we
introduce a second term to retain as much as possible the

geometry of the reference mesh S̄:
The deformation term Edef(S, S̄), derived from a physi-

cally based energy (e.g., see [5]), is a sum of three terms

Edef(S, S̄) = κEarea + βEangle + αEhinge, (10)

where α, β and κ are user-specified coefficients.The term

Earea =

NS∑
i=1

1

2

(
Ai

Āi
− 1

)2

Āi, (11)

penalizes changes to the area of each mesh triangle. Here Ai

is the area of the triangle i, and ·̄ refers to a corresponding
quantity form the undeformed mesh S̄. The term

Eangle =

NS∑
i=1

3∑
k=1

1

6

(
θik
θ̄ik
− 1

)2

Āi, (12)

penalizes shearing of each mesh triangle, where θik is the
kth angle of the triangle i. The term Ehinge [5]

Ehinge =
∑
e

(θe − θ̄e)2‖ē‖/h̄e, (13)

penalizes bending, measured by the angle formed by adjacent
triangles. Here θe is the hinge angle of edge e, i.e., the angle
formed by the normals of the two triangles incident to e; ‖ē‖
is the length of the edge e, and h̄e is a third of the sum of
the heights of the two triangles incident to the edge e.

We used the secant-version of the L-M method[11] to seek
the source mesh S that minimizes the energy Eq.(8). Sample
registration results are shown in Figure 4.

B. Grasping Point Localization

We use a pre-determined anchor point (e.g., elbow on the
sleeve of a sweater) to indicate a possible regrasping point.
The detection of the regrasping point can be summarized in
two steps: global localization and local refinement.

Global localization is achieved by deformable registration.
The registered simulation mesh will provide a 3D regrasping
point from the recognized state which will be then mapped
onto the reconstructed mesh.

In order to improve the regrasping success rate, we pro-
pose a step of local refinement. The point on the actual
garment may be hard to grasp for several reasons. One is
that during the garment manipulation steps, such as rotation,
the curvature over the garment may change. Another reason
is that when considering the width of robot hand gripper,
a ridge curve with proper orientation and width should be
selected for regrasping. We consider the proper orientation
as a direction perpendicular to the opening of the gripper.
Therefore, we propose an efficient 1D blob curvature detec-
tion algorithm that can find a refined position in the local
area over the garment surface via an IR range sensor.

In our experiment, the Baxter robot is equipped with a IR
range sensor close to the gripper as shown in Figure 6 top.
Once the gripper moves to the same height of the predicted
3D regrasping point from registration, it will perform a
horizontal scan search, moving from one side to the other,
so that the IR sensor will scan over the full local curvature.



We then apply a curvature detection algorithm that con-
volves the IR depth signal with a fixed width kernel, where
the width is determined by the opening of the gripper. Here
we use a Laplacian-Gaussian Kernel g′′(x):

g′′(x) = (
x2

σ4
− 1

σ2
)e−

x2

2σ2 (14)

where x is the depth signal, and σ is the width parameter.

C. Convergence

After the regrasping is finished, we evaluate the current
grasping configuration by the objective function f(·). An
f(·) greater than a given ξ means the grasping points are on
the desired positions, and the robot will then stop regrasping
and enter the placing flat mode. The two arms will open to
slightly stretch the garment and place it on a table.

V. EXPERIMENTAL RESULTS

To evaluate our results, we tested our method on several
different garments such as sweater and pants for multiple
trials, as shown in Figure 7 left. A high resolution video
of our experimental results is online at http://www.cs.
columbia.edu/˜yli/ICRA2015.

A. Robot Setup

In our experiments, we use a Baxter research robot, which
is equipped with two arms with seven degrees of freedom.
To improve grasp stability and form a closed loop controller,
we add tactile sensors to each of the grippers as shown in
Figure 6. Each robot hand is equipped with a IR range sensor
which is used for local curvature detection, as described in
section IV-B. A Kinect sensor is mounted on a fixed frame
at a height of 1.2 meters to capture the depth images.

B. Garment Database and Real-time Recognition

Our recognition method consists of two stages, offline
model simulation and online recognition. In the offline model
simulation stage, we use a physics engine [1] to simulate
the stationary state of the mesh models of different types of
garments in different poses. More specifically, we manually
label each garment in the database with the key grasping
points such as sleeve end, elbow, shoulder, chest, and waist,
etc. For each grasping point, we compute the garment layout
by hanging under gravity in the simulator. The simulated
meshes are used as the training data for 3D shape-based
matching and pose recognition [10]. In our experiments, we
assume the category of the garment is known. Therefore, we
start with the garment pose estimation.

Below we summarize the pose recognition method, details
can be found in [10]. We first pick up the garment at a
random point. In the online recognition stage, we use a
Kinect sensor to capture depth images of different views of
the garment while it is being rotated by a robotic arm. The
garment is rotated 360◦ clockwise and then 360◦ counter-
clockwise to obtain about 550 depth images for an accurate
reconstruction. We reconstruct a 3D mesh model from the
depth image segmentation and volumetric fusion. Then with
an efficient 3D feature extraction algorithm, we build up a

Fig. 4. Registration examples. FIRST ROW: A sweater grasped at elbow.
SECOND ROW:A pair of pants grasped near knee. Each row depicts from
left to right: a reconstructed mesh, the predicted mesh from the database,
rigid registration only, and rigid plus non-rigid registration.

binary feature vector and finally match against the offline
database for pose recognition. One of the outputs is a high-
quality reconstructed mesh, which is used for 3D registration
and accurate regrasping point prediction, as described below.

C. Registration

As described in section III, we apply both rigid and
non-rigid registrations. The rigid registration step mainly
focuses on mesh rescaling and alignment, whereas the non-
rigid registration step refines the results and improves the
mapping accuracy. In Figure 4, we compare the difference
between using rigid registration only and using rigid plus
non-rigid registration side by side. We can clearly see that
with non-rigid registration, the two meshes are registered
more accurately. In addition, the location of the designated
grasping points on the sleeves are also closer to the ground
truth points. Note that for the fourth row, after the alignment
by the rigid registration algorithm, the state is evaluated as a
local minimum. Therefore, there is no improvement by the
following non-rigid registration. But as we can see from the
visualization, such a case is still good enough for finding
point correspondence.

D. Search for Best Grasping Point by Local Curvature

Once we choose a potential grasping point, we can per-
form a search to find the best local grasping point for the
gripper. We are trying to a find a fold in the vicinity of the
potential grasping point with a high local curvature tuned to
the gripper width that allows for a stable grasp. The opening
size of the gripper is approximately 8cm and empirically we
set σ = 10 in the equation 14. A plot of its signal, as well as
the convoluted signal, are shown in Figure 6 left and right.
We can clearly see that the response from the filter is at a
minimum where the grasping should take place. The tactile

http://www.cs.columbia.edu/~yli/ICRA2015
http://www.cs.columbia.edu/~yli/ICRA2015


Fig. 5. Examples of each step in our unfolding procedure. For each row from left to right is: a snapshot of initial pick up, a 3D reconstructed mesh, a
predicted mesh from database, the predicted mesh with weighted Gaussian distribution distance, predicted regrasping point on the 3D reconstructed mesh,
a snapshot of regrasping, and finally a snapshot of unfolding. TOP ROW: The Baxter robot unfolds a sweater following pick up. BOTTOM ROW: The
Bater robot unfolds a pair of pants following pick up.

sensors then assure that the gripper has properly closed on
the fabric.

0.35 0.4 0.45 0.5 0.55
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Gripper’s position along robot X−axis

D
is

ta
nc

e 
to

 g
ar

m
en

t s
ur

fa
ce

 

 

IR range scan

0.35 0.4 0.45 0.5 0.55
−4

−2

0

2

4

6

8

10
x 10

−5

Gripper’s position along robot X−axis

C
on

vo
lu

tio
n 

re
su

lts

Fig. 6. IR range sensor scan example. LEFT: Single reading plot from
the IR range sensor. RIGHT: Convoluted result of the sensor reading and a
Laplacian-Gaussian kernel with different kernel size. The lowest point (in
red) is the place the gripper should grasp.

E. Iterative regrasping
Figure 5 shows two examples (sweater and pants) of

iterative regrasping using the Baxter robot. The robot first
picks up a garment at a random grasping point. Once the
arm reaches a pre-defined position, the last joint of the
arm starts to rotate and the Kinect will capture the depth
images as it rotates, and reconstruct the 3D mesh in real-
time. After the rotation, a predicted pose is recognized [10]
as shown in the third image of each row. For each pose,
we have a constrained weighted evaluation metric over the
surface to identify the regrasping point as indicated in the
fourth image. By registration of the reconstructed mesh and
predicted mesh from the database, we can map the desired
regrasping point onto the reconstructed mesh. The robot then
regrasps by moving the other gripper towards it. With our 1D

blob curvature detection method, the gripper can move to the
best curvature on the garment and regrasp, which increases
the success rate. The iterative regrasping stops when the
two grasped points are the designated anchor points on the
garment (e.g., elbows on the sleeves of a sweater).

Figure 7 left shows 7 sample garments in our test, and
the table on the right shows the results. For each garment,
we perform 10 unfolding tests. We have on average an 83%
successful recognition rate for the pose of the objects over
all the garments. We have on average an 87% successful re-
grasping rate for each garments, where regrasping is defined
as a successful grasp of the other arm on the garment. 80%
of the time we are able to successfully unfold the garment,
placing the grippers at the designated grasping points.

Unsuccessful unfolding occurred when either the gripper
lost contact with the garment, or the gripper was unable to
find a regrasping point. Although we did not perform this
experiment, it is possible to restart the method after one of
the grippers loses contact as an error recovery procedure.

For the successful unfolding cases, we also report the av-
erage number of regrasping attempts. The minimum number
of regrasping attempts = 1. This happens when the initial
grasping is at one of the desired positions, and the regrasping
succeeds at the other desired position (i.e., two elbows on
the sleeves for a sweater). In most cases, we are able to
successfully unfold the garments using 1− 2 regraspings.

Among all these garments, jeans, pants, and leggings
achieve high success rate because of their unique layout
when grasping at the leg position. The shorts are difficult
for both recognition and unfolding steps possibly because
its ambiguous appearances in different grasping points. One



Garment # of
Trial

Successful
Recognition

Successful
Regrasping

Successful
Unfolding

Avg. # of
Regrasps

Success Only
Sweatshirt 10 9/10 8/10 8/10 1.6

Sweater 10 8/10 8/10 7/10 1.6
Knitwear 10 9/10 9/10 8/10 1.7

Jeans 10 9/10 9/10 9/10 1.3
Pants 10 8/10 10/10 9/10 1.4

Leggings 10 8/10 9/10 8/10 1.4
Shorts 10 7/10 8/10 7/10 1.9

Average 10 8.3/10 8.7/10 8.0/10 1.6

Fig. 7. LEFT: A picture of our test garments. RIGHT: Results for each unfolding test on the garments. We evaluate the results by recognition, regrasping,
unfolding, and regrasping attempts for each test. The last row shows the average of each evaluation component.

observation is that in a few cases, when the recognition is
not accurate, our registration algorithm was sometimes able
to find a desired regrasping point for unfolding. This is an
artifact of the geometry of pant-like garments where the
designated regrasping points are at the extreme locations on
the garments.

We also show that after grasping at two desired points, the
robot will proceed to place the garment on a table. In our
experiments, we use cardboard to simulate a table area. As
shown in Figure 8, the robot is able to place the garment flat
with a simple move when grasping at a pair of two desired
grasping points. With such a flat configuration, the robot can
begin to fold it, which is part of our future work.

Fig. 8. The Baxter robot places a garment flat on a table. LEFT: The
garment is a sweater and the two desired grasping points are on the sleeves.
RIGHT: The garment is a pair of pants and the two desired grasping points
are on the lower leg parts.

VI. CONCLUSION

In this paper, we propose a novel solution for the prob-
lem of unfolding a garment to a desired configuration via
regrasping. The unfolding procedure contains garment pick
up, pose estimation, regrasping, and placing flat on a table.
We use simulated predictive thin shell models for garments
to automatically create a large database of garments and
their poses, which can be used in a learning algorithm to
find object pose. We also create a real-time 3D volumetric
model from 3D scanning which can be used for registration
with the simulated models. The regrasping point is found
by a fast, two-stage deformable object registration algorithm
that uses a novel non-rigid registration method to minimize
energy differences between source and target mesh models
The unfolding state is determined by a constrained weighted
objective function for the current two grasping points. Ex-
perimental results show that our method is able to unfold a
number of common garments with a high success rate.
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