
R
esearch in robotic grasping has flourished in the last 25 years. A recent survey by
Bicchi [1] covered over 140 papers, and many more than that have been published.
Stemming from our desire to implement some of the work in grasp analysis for
particular hand designs, we created an interactive grasping simulator that can
import a wide variety of hand and object models and can evaluate the grasps

formed by these hands. This system, dubbed “GraspIt!,” has since expanded in scope to the
point where we feel it could serve as a useful tool for other researchers in the field. To that
end, we are making the system publicly available (GraspIt! is available for download for a
variety of platforms from http://www.cs.columbia.edu/ ~amiller/graspit).

Some of the features of this system include:
◆ a robot library that includes several hand models, a Puma arm, and a simplified

mobile base
◆ a flexible robot definition that makes it possible to import new robot designs

BY ANDREW T. MILLER AND PETER K. ALLEN

©
20

01
 IM

A
G

E
S

TA
T

E

1070-9932/04/$20.00©2004 IEEEIEEE Robotics & Automation Magazine DECEMBER 2004110

DECEMBER 2004 IEEE Robotics & Automation Magazine 111

◆ the ability to connect robots to build a manipulation
platform

◆ the ability to import obstacle models to build a com-
plete working environment for the robots

◆ an intuitive interactive interface, as well as an external
interface to MATLAB

◆ a fast collision detection and contact determination
system

◆ grasp analysis routines that evaluate the quality of a
grasp on the fly

◆ visualization methods that can show the weak point of a
grasp and create projections of the grasp wrench space

◆ a dynamics engine that computes robot and object
motions under the influence of external forces and
contacts

◆ a simple trajectory generator and control algorithms
that compute the joint forces necessary to follow the
trajectory.

GraspIt! is an ideal environment for grasp analysis and planning,
and it can serve as a test bed for new grasp evaluation, grasp
synthesis, and manipulation planning algorithms. It is possible
to test these algorithms much more quickly and for more hand
designs than would be possible in the lab using an actual robot.
Ultimately, the planning for an actual grasping task can be per-
formed in simulation and then carried out on a physical system.
The early Handey [2] worked in a similar way by combining
approach, grasp, and regrasp planning for a Puma arm with a
parallel jaw gripper within a simple simulated environment.
The plan generated could then be executed on the real robot.
In our own research, we are using GraspIt! to plan the grasps
for a service robot equipped with a Barrett hand, and initial
results [3] showed that by using a real-time vision system to rec-
oncile the virtual world with the physical world, it is possible to
plan and execute grasps with the real robot.

Designers of robotic hands could also benefit from such a
simulation and analysis system. Currently, designing a robotic
hand is a difficult task with many considerations, such as task
requirements, mechanism complexity, and physical size and

weight. Often, a physical prototype is necessary to truly test a
hand’s ability to perform tasks, but this can be quite costly and
design changes are not easy to make. By using a simulation
system, the designer can quickly see how different choices of
kinematic parameters and link geometries affect the hand’s
ability to grasp different objects.

Of course, there are already several commercial robotics
simulators available, including Delmia’s IGRIP, Flow Software
Technologies’ Workspace5, MCS.Software’s ADAMS, and the
Easy-Rob system, as well as past and present research projects
in robot simulation, including GRASP (an early robot arm
simulator) [4], IRODESS [5], the Robotics Toolbox for
MATLAB [6], RoboSiM [7], and Simpact [8], but none of
these focus on the grasping problem. Chan and Liu presented
a dynamic simulation system for a five-fingered robot hand
[9], but they focus on dynamic manipulation and only allow
fingertip contacts.

The following presents the various components of GraspIt!
We begin by discussing the different types of world elements
and our general robot definition, and we also present the
robot library. Next we briefly describe the user interface of
GraspIt! and present the collision detection and contact deter-
mination system. Subsequently, we present the grasp analysis
and visualization methods that allow a user to evaluate a grasp
and compute optimal grasping forces. We provide a brief
overview of our dynamic simulation system, and finally we
present our plans for future research.

World Elements
The simulation world in GraspIt! is made up of world ele-
ments that are either rigid bodies or robots, which impose
constraints on how some of these bodies can move with
respect to others. The following describes the different types
of bodies defined within the system, and describes our flexible
definition for robots. This definition has allowed us to model
a number of complex articulated robots, which are a part of
our robot library, and allows the construction of robotic plat-
forms made up of multiple robots.

Figure 1. (a) The body types defined within GraspIt! and their associated data. Sub-classes inherit the properties of the type
above them. (b) The robot class definition and its associated data types. This definition can handle a wide variety of robots, but if
a particular robot has special features or its own methods, it can be defined as a subclass of a robot or a hand.

Contact List
Transform

Body
Geometry
Material

Link Graspable Body

Dynamic Body
Inertia TensorMass

Revolute
Joint

Prismatic
Joint

Robot Kinematic Chain

DH
Parameters

DOF
Value
Joint List

DOF
Relation

Joint
Base Link
DOF List

Kinematic
Chains

HandPuma560

Barrett

Attached
Robots

Joint List
Base
Transform

Link List

Robot Owner

Grasp

Limits Transform

State (q, v)Center of
Mass

(a) (b)

IEEE Robotics & Automation Magazine DECEMBER 2004112

Body Types
Figure 1(a) summarizes the different types of bodies defined
within the system. A basic body consists of a pointer to its
geometry, a material specification, a list of contacts, and a
transform that specifies the body’s pose relative to the world
coordinate system. The body geometry is defined as an
Inventor scene graph, and it is read from an Inventor model
file that has essentially the same format as VRML 1.0. The
material is one of a set of predefined material types and is used
when computing the coefficient of friction between two con-
tacting bodies. Currently, a body can only have one material,
but in the future it will be possible to define the surface mate-
rial for different parts of a body.

A dynamic body inherits all of the properties of a body and
defines the mass of the body, the location of its center of mass
relative to the body frame, and its inertia tensor. It also includes
the body’s dynamic state parameters, q and v, which specify the
pose and velocity of a body frame located at the center of mass
relative to the world coordinate system. The two types of
dynamic bodies are links, which are elements of a robot, and
graspable bodies, which are not. Graspable bodies are partially
transparent and show the position of any contacts as well as any
dynamic contact forces. The reason for distinguishing between
bodies and dynamic bodies is that some bodies are simply con-
sidered obstacles, and while they are elements of the collision
detection system and can provide contacts on other bodies,
they are not part of the dynamics computations and remain sta-
tic. This makes it possible to create a complex world full of
obstacles without making the dynamics intractable to compute.

Robots
We have tried to make the definition of a robot as general as
possible to allow a wide variety of robot designs to be import-

ed. Figure 1(b) summarizes the defini-
tion of a robot. A robot consists of a
base link, any number of kinematic
chains, and a list of its degrees of free-
dom (DOF). Each kinematic chain con-
tains a list of its links, a list of its joints,
and a transform locating its base frame
with respect to the robot’s base frame.
Each joint must be either prismatic or
revolute and contains limits on its possi-
ble position as well as a Denavit-Harten-
berg (DH) transform locating its frame
relative to the previous joint in the list.
This transform is computed from the
four DH parameters associated with the
joint. We define DOF separately from
joints because it is common in many
hand designs to have coupled joints that
are passively controlled by other joints.
Therefore, a single DOF has a current
value and list of joints that it is connect-
ed to, and the free parameter of each of
these joints can be related to the DOF

value with a linear function. When a user imports a robot
into the world, the system reads a configuration file specifying
all of these parameters and imports each of the link bodies
setting their positions based on the initial DOF values.

A hand is a special type of robot that can form grasps of
objects, and these grasps will be analyzed by the system. It
also includes an auto-grasp method, which closes the joints of
the hand at preset velocities. Each joint stops when it has
reached its limit or when a link that follows it in the kinemat-
ic chain contacts an object or another finger link. Individual
types of robots can be defined as subclasses of the general
robot or hand classes. These are only necessary if the robot
has special features such as the breakaway feature of the Barrett
hand (described in the following) or if the user wishes to
specify an analytic solution for the inverse kinematics of the
robot, which can be solved much faster than relying on an
iterative routine.

The Robot Library
The ability to easily add new robot designs is a key benefit of
our system. It is a relatively simple process of specifying the
parameters required by the configuration file, creating the link
geometry files, and in most cases takes less than an hour or
two to set up. We have already created models of a parallel jaw
gripper, a Puma 560 arm, and a simplified Nomadics
XR4000 mobile robot. Additionally, through collaboration
with other research sites, we have obtained computer aided
design (CAD) models and kinematic descriptions of four dif-
ferent articulated hand designs (Figure 2). Unfortunately, we
do not yet have accurate mass parameters for any of these
hands, and we are currently using an approximate mass and
computing the inertia tensor of each link assuming a uniform
mass distribution.

Figure 2. Robot models: (a) a parallel jaw gripper, (b) the Barrett hand, (c) a DLR
hand, (d) thke Robonaut hand, (e) the Rutgers hand, (f) the Puma 560 arm, and (g)
the Nomadics XR4000 mobile robot.

(a) (b) (c) (d)

(g)(f)(e)

DECEMBER 2004 IEEE Robotics & Automation Magazine 113

A Parallel Jaw Gripper
Our gripper model has the approximate dimensions of an
actual Lord gripper. For ease of use, we changed the kinemat-
ics of our gripper so that each plate can be independently
controlled. When only one coupled DOF is used to grip an
object in a static setting, the gripper must be centered over
the object exactly for both plates to come in contact. Besides
the kinematics, we also specified the surface material of the
palm as metal and the plates as rubber. In the grasp example
presented later, we have used a larger version of this gripper.
To make this change is a simple matter of changing the joint
limits in the kinematic description and modifying the palm
geometry file.

The Barrett Hand
The Barrett hand, produced by Barrett Technology, is an
eight-axis, three-fingered, mechanical hand with each finger
having two joints. One finger is stationary and the other two
can spread synchronously up to 180 degrees about the palm
(finger 3 is stationary and fingers 1 and 2 rotate about the
palm). Although there are eight axes, the hand is controlled
by four motors. Each of the three fingers has one actuated
proximal link, and a coupled distal link that moves at a fixed
rate with the proximal link. A novel clutch mechanism allows
the distal link to continue to move if the proximal link’s
motion is obstructed (referred to as breakaway). An additional
motor controls the synchronous spread of the two fingers
about the palm. This gives the Barrett hand only four internal
degrees of freedom: one for the spread angle of the fingers,
and three for the angles of the proximal links. The links are
constructed of high density plastic.

The DLR Hand
The DLR hand [10], developed at the German Aerospace
Center, is a four-fingered, articulated, robotic hand, and,
unlike the Barrett hand, the placement of the fingers resem-
bles the human hand structure. However, because the joint
motors are all internally contained, the hand is about one and
one-half times the size of an average human hand. The fingers
are identical, and each consists of three links with two joints at
the base, one joint between the proximal and medial links,
and one joint between the medial and distal links. This last
joint is coupled in a fixed ratio to the previous joint in the
chain. The DLR hand has a total of 12 internal degrees of
freedom, since there are three independently controllable
joints in each of the four fingers. The materials of the palm
and links are metal except for the fingertips, which are
rubber.

The Robonaut Hand
Next, we examine the Robonaut hand [11], which was
developed at NASA’s Johnson Space Center. This hand has
five fingers and a total of 14 internal degrees of freedom, and
it is equivalent in size to a 95th percentile human male hand.
The index and middle fingers along with the thumb are con-
sidered the primary manipulation fingers and are capable of

abduction and adduction. The ring and pinkie are mounted
on a squeezing palm joint, which makes them good grasping
fingers capable of wrapping around a tool or other object.
Although the link geometry only specifies the metal structure
of the hand, we assumed rubber contact surfaces to facilitate
stronger grasps.

The Rutgers Hand
The Rutgers Hand [12] is being developed at the Mechanical
and Aerospace Engineering Department at Rutgers Universi-
ty. While this hand is also a five-fingered anthropomorphic
design, its most novel aspect is the use of shape memory alloys
to actuate the joints. Shape memory alloys are very compact
and lightweight and provide a method of actuation similar to
human muscle fibers, which contract when excited. Although
one prototype finger has been built, the hand is still in the
design phase, and the research team is using GraspIt! to exam-
ine how changes in the kinematic structure of the hand affect
the hand’s ability to apply the contact forces necessary for dif-
ferent tasks. The four fingers each have three links and the
thumb has two; the base of each finger is connected to the
palm with a ball and socket joint that has two independently
controllable degrees of freedom, but is modeled as two revo-
lute joints. The simulation model allows each joint to be indi-
vidually controlled, even though the final model will likely
have fewer degrees of freedom. This makes for a total of 19
degrees of freedom: four for each of the four fingers and three
for the thumb.

The Puma560 Arm
The Unimate Puma560 arm is an industrial six-degree of
freedom, spherical-wrist robot used at many research sites. We
have modeled the geometry of the links using approximate
dimensions, and we have used the mass parameters found in
the Robotics Toolbox for MATLAB [6].

The Nomadics XR4000 Mobile Robot
The Nomadics XR4000 mobile robot has four-wheels, a
holonomic drive system, and enough load capacity to support
a Puma arm mounted on top of it. Again, we modeled the
geometry of this robot using rough measurements. Although
the wheels could be modeled as individual kinematic chains
within the robot class definition, we have chosen to model
the robot as having a fixed base point with two prismatic
joints controlling its x and y position and a revolute joint
aligned with its center z axis. In this way, we avoid having to
simulate the drive system and can simply consider it as a
three-degree of freedom robot.

Robot Platforms
Another feature of GraspIt! is the ability to attach multiple
robots to create robotic platforms. The system allows the defi-
nition of a tree of robots, where any number of robots can be
attached to the last link of a kinematic chain of another robot,
each with a particular offset transform. Then, if the base link
of a robot in the tree is moved, the system checks that the

IEEE Robotics & Automation Magazine DECEMBER 2004114

move is allowed by the inverse kinematics of the parent chain.
If the move is possible, the robot is moved along with all
robots below it in the tree, and the parent chain is moved to
maintain the fixed attachment. This feature has allowed us to
model Obelix, the mobile manipulation platform at the Cen-
ter for Autonomous Systems at the Royal Institute of Technol-
ogy in Stockholm, Sweden. It consists of an XR4000 mobile
base, a Puma 560 arm, and a Barrett Hand. Having these addi-

tional robots allows us to test reach ability con-
straints for the platform. In addition, we have
modeled the real obstacles within a livingroom at
CAS, which serves as a test setting for this service
robot (Figure 3). Together, the full platform and
world model provide us with an environment
where we can plan and test our entire grasping
task so that we can avoid planning grasps that will
conflict with these obstacles.

User Interface
One of the design goals we believe we achieved
was to make the user interface as intuitive and
transparent as possible. When a user starts a new
session, he is presented with an empty world into
which he can import new obstacles, graspable
bodies, or robots, and at any point, the current
state of the world can be saved to be loaded again
later in another session. The primary element of
the main window is a standard Inventor viewer,
which displays, at the user’s choice, a perspective
or orthographic projection of a three-dimen-
sional (3-D) world in a two-dimensional (2-D)
window. The virtual camera can be rotated,
panned, or zoomed, and a seek tool allows close
up inspection of a particular detail in the scene.

Obstacles, graspable bodies, and robots may be
translated and rotated in 3-D using an appropriate
manipulator that appears upon clicking on the
object. Manipulating the individual degrees of free-
dom of a robot is equally intuitive. Clicking on a
kinematic chain of the robot brings up an interac-
tive manipulator for each actively controllable
joint in the chain. Revolute joints are controlled
by dragging a disc whose axis of rotation is coin-
cident with the joint axis (Figure 4), and prismat-
ic joints are controlled by dragging an arrow, which
is aligned with the joint axis. These manipulators
obey the joint limits defined in the robot configu-
ration file and prevent the user from moving
beyond them. Passive joints also move in response
to changes in the joints they are coupled with.

Various menus and dialog boxes allow the user
to change a variety of simulation parameters, and
these are implemented with the Qt library, which
allows the code to be easily ported to different
operating systems. Currently, both Linux and
Windows versions of the system are available.

In addition to direct user interaction, other programs may
communicate with GraspIt! using a TCP connection and a sim-
ple text protocol. We have created a preliminary Matlab inter-
face, using mex-files that send queries and commands to
GraspIt! This provides an easy way to write dynamic control
algorithms because contact forces and body accelerations can be
read into Matlab arrays and computed joint torques can be sent
back to GraspIt! to control the motion of the robot.

Figure 3. A robot or robotic platform can operate within a user defined
world. In this case, it is the manipulation platform and living room environ-
ment at the Center for Autonomous Systems.

Figure 4. The angle of a revolute joint can be changed by dragging a disc
manipulator located at the joint. The passive distal joint moves in a fixed
relationship with the medial joint.

DECEMBER 2004 IEEE Robotics & Automation Magazine 115

Contacts

Collision Detection
To prevent bodies from passing through
each other while they are being manipu-
lated by the user, the system performs
real-time collision detection using a sys-
tem based on the Proximity Query Pack-
age [13]. When a body is loaded into the
simulator, it is faceted by the Inventor ren-
derer, and its collection of triangles is
passed to the collision detection system,
where they become the leaves of a hierar-
chical tree of bounding volumes. At the
top of the tree, the set of triangles that
make up the body is bounded with an axis
aligned bounding box, and it is split with a
plane perpendicular to the set’s longest axis. The two sub-
groups become the children of the root tree node, and they
are each recursively bounded and subdivided until the indi-
vidual triangles are reached and cannot be divided further.
Fast recursive algorithms can determine if any of the triangles
of one body intersect any of the triangles of another body, or
can provide a minimum distance between the two bodies.

If a collision is detected [Figure 5(a)], the motion of the
bodies must be reversed back to the point when the contact
first occurs. To find this instant, GraspIt! begins by moving
the objects to their previous locations before the collision and
determines the minimum distance between them. Since body
transforms must be represented with fixed precision floating
point numbers, it is impossible to find the instant of exact
contact between two bodies. Thus, we define a thin contact
region around the surface of each body, and if the distance
between two bodies is less than this threshold (currently set at
0.1mm) then they are considered to be in contact. We use a
binary search technique to move two bodies to within this
distance after they have collided [Figure 5(b)]. When the two
bodies interpenetrate, the minimum distance query returns
zero rather than an interpenetration distance, which is difficult
to define for nonconvex objects. It is possible to use a more
efficient search algorithm, since we are provided with more

than just binary information when the objects are not inter-
penetrating, but in practice, the binary search only needs a
few iterations to reach the contact threshold distance.

Contact Determination
After the bodies have been moved to within the contact dis-
tance, the system must determine the regions of contact
between the two bodies. The process begins by searching for
pairs of triangles that are separated by a distance less than the
contact threshold. For each pair found, the system must deter-
mine the region of overlap between them. To do this, it
examines which pair of topological features produced the
minimum distance between the triangles (Figure 6). The con-
tact region for vertex-vertex, vertex-edge, and edge-edge
contacts is a single point, and on each triangle, it is defined by
the closest point to the other triangle. All other topological
pairs include a face, and in these cases, the vertices of the
other triangle are orthographically projected onto the plane
containing the face. The projected triangle is then used to
intersect the first triangle, and vertices of the resulting region
are projected back up to the other triangle. Of those points
that are projected back, only the ones closest to the face plane
are kept. A vertex-face contact will only have one closest
point, but a face-face contact could have a contact region

Figure 6. Some of the possible contact regions between a pair of triangles that
do not actually touch but are within the contact threshold distance of each other.
(a) An edge-edge contact is located using the closest points on the two triangles.
(b) A vertex-face contact is defined by the closest vertex on one triangle and its
projected point on the face of the other triangle. (c) A face-face contact will have
between three and six contact points (in this case four). They are found by pro-
jecting one triangle onto the other and finding the intersection points.

Figure 5. The collision detection and contact location process: (a) The collision of a link of the Barrett hand with the side of the
phone is detected. (b) A search is conducted to find the joint angle that will cause the link to be within 0.1 mm of the surface. (c) The
geometry of the contact is determined and friction cones are placed at the vertices bounding the contact region (in this case a line).

IEEE Robotics & Automation Magazine DECEMBER 2004116

bounded by as many as six vertices, all equidistant from the
face plane. Each of these vertices is considered a separate
point contact and is added along with its corresponding point
on the other surface to the set of contact points between the
two bodies. This set grows as more triangle pairs are exam-
ined, but it keeps only those contacts that are unique (the
position on the first body or the contact normal differ), since
adjacent triangles on one surface will often have identical
contact points with a triangle on the other surface. Unfortu-
nately, this is not always the case, as shown in Figure 7, so we
must verify that any contact involving an edge or vertex is
matched by contacts on the triangles sharing the edge or ver-
tex. If not, the contact is discarded.

After the traversal is complete, the system divides the set of
contacts up into subsets that have the same contact normal. If
there are more than two contact points in a subset, the system
checks to see if the points are all colinear (as in an edge-face
contact), and if so, it removes all contacts but the endpoints of
the line. If they are not colinear (as in a face-face contact), it
finds the planar convex hull of the contact set and removes
any interior contact points. These interior contact points do
not affect the mechanics of the grasp, because for any contact
with a distribution of forces along a line or an area, the
wrench applied at the contact can be represented as a single
resultant wrench, and this can be specified as a convex sum of
forces acting at points on the boundary of the contact region.
Once the final set of contacts between the two bodies has
been determined, the system draws a red friction cone at each
contact point, which serves to visually mark the position of
the contact and its normal [Figure 5(c)]. The width of this
cone identifies how large any frictional forces can be with
respect to a force applied along the contact normal. As each
new contact is formed or broken, the system performs the
grasp analysis routines described in the following and displays
the results.

Grasp Analysis
Grasp analysis is used to assess the quality of a grasp by exam-
ining its properties. Much of the research in this field has con-
centrated on the placement of contacts on the grasped object,

but other types of analysis are possible, including grasp force
optimization, which is discussed later. Unfortunately, we can-
not provide a complete introduction to grasp analysis theory,
so we refer the reader to Murry et al.’s textbook [14] for rele-
vant background.

Contacts and Friction
When two objects touch, it is possible for each of them to
transmit forces through the regions of contact. Besides the
forces transmitted along the contact normal, any contact can
also support some amount of friction. We use the Coulomb
model to determine the magnitude of forces acting in the tan-
gent plane of the contact that can be resisted by friction. This
law states: ‖ f t‖ ≤ µf⊥, where f t is the tangential component
of the contact force, µ is the coefficient of friction between
the two contacting materials, and f⊥ is the normal component
of the contact force. This means that the forces that may be
applied at the contact lay within a cone aligned with the con-
tact normal, commonly known as a friction cone. The half
angle of this cone is tan−1µ. To determine µ, we index a table
of the coefficient values using the two contacting material
types. Currently, we have five possible materials: glass, metal,
plastic, wood, and rubber, and the user can change the µ val-
ues for any pair of materials from the preset values. In the
future, we will support more complex friction models that add
a relationship between torsional and tangential friction limits.

Figure 7. Here triangles 1 and 2 lie in a plane, and triangle 3 is
in a perpendicular plane. The edge-edge contact between tri-
angles 2 and 3 cannot be matched with an edge-edge contact
between triangles 1 and 3, which have a face-vertex contact,
so the edge-edge contact is discarded.

1

2

3

Figure 8. (a) Frictional forces in the tangent plane have a max-
imum magnitude of µf⊥. To prevent slippage, the total con-
tact force, f, must lie within a cone of possible directions. (b)
During grasp analysis, the friction cone is approximated with
an m sided pyramid. f is represented as a convex combination
of m force vectors around the boundary of the cone.

(b)(a)

f1
f8

f
f7

f2
f3

tan−1µ

ff

DECEMBER 2004 IEEE Robotics & Automation Magazine 117

Building the Grasp Wrench Space
The space of wrenches that can be applied to an object by a
grasp given limits on the contact normal forces is called the
grasp wrench space (GWS). In order to construct this space, it
is necessary to approximate a friction cone with a finite num-
ber m of force vectors equally spaced around the boundary of
the cone (Figure 8). Initially we use m = 8, but the user can
change this value.

Ferrari and Canny [15] describe two methods of con-
structing a GWS. In both cases, a convex hull bounds the
space, but in one, the sum magnitude of the contact normal
forces is bounded, and in the other, the maximum magnitude
of the normal forces is bounded. They denote the first space
as WL 1 and the second as WL ∞ . For the purposes of the qual-
ity measures described later, GraspIt! creates unit grasp
wrench spaces.

Given the space of forces that can be applied at contact
point i, assuming a unit contact normal force, we must deter-
mine the corresponding space of wrenches that can be exert-
ed on the object by that contact. To accomplish this, we
require a torque multiplier λ that relates units of torque to
units of force. In this work, we have chosen to enforce
‖τ‖ ≤ ‖ f ‖ by choosing λ = 1

r , where r is the maximum
radius of the object from the torque origin, often chosen as
the center of gravity of the object. This will ensure that the
quality of a grasp is independent of object scale. Each of the m
force vectors representing the boundary of the friction cone is
translated to the wrench space origin by computing the cor-
responding object torque such that

w i, j =
[

f i, j

λ(d i × f i, j)

]
(1)

where f i, j is one the m force vectors on the boundary of the
friction cone at contact i, and d i is the vector from the torque
origin to the ith point of contact. These wrenches form the
boundary of the wrenches that can be applied at that contact
point, given a unit normal force. To compute the WL 1 space,
we simply take the convex hull over the union of each set of
contact boundary wrenches:

WL 1 = ConvexHull

(
n⋃

i=1

(w i,1, . . . , w i,m)

)
(2)

where n is the number of contacts. In the case of WL ∞ , we
must compute the convex hull over the Minkowski sum of
each set of contact boundary wrenches.

WL ∞ = ConvexHull

(
n⊕

i=1

(w i,1, . . . , w i,m)

)
. (3)

These six-dimensional (6-D), convex hull operations are
performed quickly using the qhull library [20]. However, the

first space is computed using only mn points, whereas the sec-
ond space is computed with mn points, so the WL ∞ space is
only feasible for small numbers of contacts or crude approxi-
mations of the friction cone. In either case, if the wrench space
origin is contained with the GWS, the grasp is considered to
have force-closure, and the grasp can resist any disturbance
wrench, assuming sufficiently large contact normal forces.

Quality Measures
In order to rate a grasp, we must first consider the properties
of a good grasp. In general, a grasp exists to perform some
task, which can be described by the space of wrenches that
must be applied to an object to carry out that task. This space
could be simply the wrench with a force component in the
upward direction and no torque component, which would be
required to suspend an object against the force of gravity, or it
could be a complicated space of wrenches required in some
manipulation task. This space is called the task wrench space.
If the task wrench space is a subspace of the grasp wrench
space, then the grasp is valid for that task. However, it is not
necessarily the most efficient grasp that can accomplish the
task, meaning that the internal forces on the object may be
much larger than necessary. Thus, one method of defining
grasp quality is the ratio of the magnitude of the task wrench-
es to the magnitude of the contact forces.

The most general quality measures assume nothing is
known about the task wrench space. If we assume that dis-
turbance wrenches could come from any direction, the task
wrench space will be a 6-D ball. Thus, the maximum magni-
tude of any task wrench within this ball is equal to its radius.
Since grasp quality is defined as a ratio of magnitudes, which
scales linearly, we can rephrase our definition of grasp quality
so that it is the radius of the largest wrench space ball, cen-
tered at the origin, that can just fit within the unit grasp
wrench space. This radius, ε, will be the same as the magni-
tude of the shortest vector, wmin, from the wrench space ori-
gin to the outer boundary of the hull. We define the
minimum radius of the L 1 unit grasp wrench space as ε1.

Examining the definition of ε1 more closely, we find a few
of its intuitive characteristics. If an adversary, who knows the
shape of the grasp wrench space, WL 1 , applies a worst-case dis-
turbance wrench to the object, the sum magnitude of the nor-
mal contact forces would have to be 1/ε1 times the magnitude
of the disturbance wrench. This means that the closer ε1 is to 1,
the more efficient the grasp is. The ε1 quality measures can be
computed by simply finding the smallest offset value among the
hyper planes making up the facets of the convex hull.

Unfortunately, these measures are not invariant to the
choice of torque origin, so the volume of the unit grasp
wrench space can be used as an invariant average case quality
measure for the grasp. We denote the next quality measure,
v1, as the volume of WL 1 . The value of this measure is
reported directly by qhull when it computes the convex
hull. Example grasps that were evaluated using the ε1 and
v1, measures are presented later, and further examples can be
found in [16].

IEEE Robotics & Automation Magazine DECEMBER 2004118

Wrench Space Visualization
While the numerical quality measures provide
some information about the efficiency of the
grasp, graphical feedback can provide even more
information. One reason 3-D examples are often
avoided throughout the grasp-quality literature is
because of the difficulty of visualizing the results.
A 2-D planar object will have a 3-D wrench
space, but to display the 6-D convex hull result-
ing from a 3-D object, we must project it into 3-
D space by fixing three of the wrench
coordinates. The GraspIt! system allows a user to
chose which coordinates should be fixed and at
what value. Although some choices for the fixed
coordinates may be useful for particular types of
grasps, there are two projections that are of gener-
al use for most grasps. If we fix the torque coordi-
nates of the wrench space to 0, the resulting
projection shows the space of forces that can be
applied by the grasp without imparting a net
torque to the object, and if we fix the force coor-
dinates to 0, we can visualize the space of torques
that can be applied to the object without a net
force acting on it.

In order to construct a 3-D hull, we first pro-
ject each of the 6-D hyper planes into 3-D. Then
we use qhull to determine the vertices of the
intersections of these half spaces, and construct
the hull bodies, which are presented in the fol-
lowing examples. In addition to the projections,
GraspIt! also shows the components of the worst-
case disturbance wrench, −wmin, as a pair of pur-
ple indicators emanating from the object’s frame
of reference. These help to show where the grasp
is the weakest.

In the example shown in Figures 9 and 10,
the Barrett hand is closed around the outside of
a mug. The purple indicators show that the
grasp is weakest when a disturbance force is
applied in the upward direction (with relation to
the upright position of the mug), and a torque is
applied along an axis between the thumb and
fingers. From the wrench space projection into
3-D force space (upper projection window), we
see that while the grasp can apply a variety of
forces in a horizontal plane, it cannot apply large
forces in the vertical direction. This is because
the contacts are arranged around the outer
perimeter of the mug and there are no contacts
on the top or bottom of the mug. Thus, the
grasp must rely on frictional forces only to resist
a disturbance force in the vertical direction. We
also see from the torque space projection (lower
projection window) that this grasp cannot apply
large moments to the mug without a net force.
This is because the contact normals all point in

Figure 9. A completed force-closure grasp of the mug (top view). The ε1
and v1 values that were computed for this grasp are displayed in the lower
left portion as the values e and v. The pair of purple indicators shows the
force and torque components of the worst-case disturbance wrench. In
the upper left is a projection of the GWS that shows the space of forces
that can be applied to the mug without creating a moment, and in the
lower left is a projection that shows the space of torques that can be
applied without a net force acting on the object.

Figure 10. A force-closure grasp of the mug (side view).

DECEMBER 2004 IEEE Robotics & Automation Magazine 119

the general direction of the center of mass. Fig-
ure 11 shows the same grasp as before, but now
the finger surface material has been changed
from plastic to rubber. Since the coefficient of
friction at the contacts is much higher, larger
frictional forces can be supported by this grasp,
and the quality of the grasp is dramatically
increased. Note the size of the force and torque
spaces has also increased greatly.

Comparing the Grasps of an Object Using
Three Different Hands
Since GraspIt! provides objective measures of the
quality of a grasp, it allows a user to compare dif-
ferent grasps of an object using the same or differ-
ent robotic hands. It also allows the possibility of
automatic grasp selection algorithms, which auto-
matically evaluate a number of test grasps looking
for the best one.

In these examples, the object to be grasped
is the coffee mug, seen previously. It is fairly
large, having a maximum diameter of 104 mm,
and it is grasped from the side in each case. The
Barrett hand is able to wrap around the mug, as
shown in Figure 11, and contact occurs on two
of the inner links for additional stability. The
fingers of the DLR hand are longer and able to
wrap further around the mug (Figure 12), and
the additional finger is able to provide some
vertical support underneath the mug handle.
Even using the palm, the parallel jaw gripper
(Figure 13) can only contact the rounded mug
in three places, resulting in a lower quality
grasp. As is typical with parallel jaw grips of a
rounded object, the weak point of the grasp is a
torque about the axis connecting the two small,
opposing contact regions.

Dynamics
The analyses discussed previously are all per-
formed on a static grasp. They take into account
the types and positions of the contacts, but they
do not tell us how to form the grasp or even
whether such an acquisition is possible. In order
to answer these questions, we must consider how
the hand and object move over time under the
influence of gravity, inertial forces, and in
response to collisions.

To compute the motion of each dynamic body in the
world, we use a numerical integration scheme that com-
putes the change in velocity of each body over a small finite
time step given a set of forces acting on the body. Beyond
the external forces acting on the bodies, such as gravity and
motor forces, these forces must be solved for. This is done
using two types of constraints on body motions: equality
constraints are used to prevent bodies connected by a joint

from separating, and inequality constraints are used to pre-
vent other bodies from interpenetrating. These constraints
can be formulated as part of a linear complementarity prob-
lem and solved with Lemke’s algorithm, a pivoting method
similar to the simplex method. The solution is the set of
body velocities and impulses that satisfy the constraints (the
details of our implementation and further references can be
found in [17]). After each iteration of the dynamics is

Figure 11. A force-closure grasp of the mug using rubber finger surfaces
instead of plastic.

Figure 12. A force-closure grasp of the mug using the DLR hand, which
has a metal palm, inner link surfaces, and rubber fingertips.

IEEE Robotics & Automation Magazine DECEMBER 2004120

completed, the system can draw the contact forces at each
contact point, and at any time, the dynamics may be paused
to examine the state of the system or to change the current
simulation parameters.

Joint Control
Without the application of external motor forces on the links
of a robot, they would fall limply under the influence of grav-
ity. So, in every iteration of the dynamics, a control routine is
called for each robot. This routine can be written by the user,
but we have provided some default routines. If given a new
desired position for a robot, a trajectory generator creates a
linear path in Cartesian space that has a continuous velocity
and acceleration profile. The inverse kinematics of the parent
robot are then computed for each sample along this path, and
the joint trajectories are recorded. Or, if given a new set of
joint positions, the trajectory generator creates the smooth
joint trajectories individually.

We are currently using simple PD controllers to control
the motor forces of each joint. Given a joint position set point
from the trajectory, the controller for that joint determines
the current error from that position and computes a joint
force using gains defined within the robot configuration file.
The problem with using only PD control is that the actual
position never matches the desired position exactly, so in the
future we plan to add a feed-forward component that would
compute the inverse dynamics of the system using the recur-
sive Newton-Euler formulation.

Simulating Grasp Formation
With the dynamics in place, it is possible to study the tem-
poral formation of grasps. In this example, the Barrett

hand is positioned above a wine glass, which
rests on its side on the table. The PD joint con-
trollers of the Puma robot hold the wrist in
place, and the desired final position of the hand
joints is set to fully closed. Figure 14 shows the
initial setup and five different time slices during
the simulation. The default time step is 2.5 ms,
but smaller steps may occur due to contact
events. Because there is very little fr iction
between the plastic and glass surfaces, and
because the glass is tapered, the hand squeezes
the glass out of its grasp. As the simulation con-
tinues, the wine glass slides and rolls off the
table, hitting the Puma robot on its way down
to the floor. The full movie of this experiment
can be viewed at http://www.cs.columbia.edu/
~amiller/graspit/movies.html.

Future Directions
We have presented a robotic grasping simulator
that we believe could be a versatile tool for the
grasping community. In its current state, GraspIt!
is useful in a variety of applications, but there are
still several features we would like to add.

◆ The focus of our grasp analysis has been on force-clo-
sure grasps, which are useful for pick and place type
tasks. When a task involves manipulation of the object,
it is necessary to plan a manipulable grasp where arbi-
trary velocities can be imparted to the object. By incor-
porating manipulability and dexterity metrics, these
types of grasps could be analyzed as well.

◆ Currently, the force-closure quality metrics assume
nothing is known about the space of external forces
that might be applied to a grasped object during the
execution of the task. If certain task forces were more
likely to occur than others, it would be useful to pro-
vide an interface for the operator to specify this task
wrench space. Then the quality metrics would more
accurately reflect the quality of the grasp for the given
task. One possible method, involving the use of wrench
space ellipsoids, is described in [18], but in an interac-
tive setting, there may be other possible approaches.

◆ The current trajectory generator is quite simplistic and
does not avoid singularities or joint force limits. We
would like to implement a more sophisticated trajectory
generation scheme as well as a path planner that could
plan an approach that avoids obstacles given a desired
grasp and a starting point.

◆ We would like to move beyond rigid bodies and examine
deformable models. Deformable fingertips is a key advan-
tage in human grasping because it provides a larger contact
surface area, and many robots are mimicking this feature by
using rubber coated fingertips. To accurately compute the
reaction forces will involve using finite element methods
that would break up a finger link into discrete deformable
mass elements connected to a rigid skeletal structure.

Figure 13. A force-closure grasp of the mug using a parallel jaw gripper.

DECEMBER 2004 IEEE Robotics & Automation Magazine 121

Figure 14. The Barrett hand attempts a grasp of the wine glass, but due the low degree of friction at the contacts and the taper
of the glass, the glass is squeezed out of the grasp. (a) shows the initial setup, and following from (b) to (f), snapshots are taken
at 0.5103, 0.5425, 0.6148, 0.6586, 0.6956 seconds of simulation time. The full movie is available online at
http://www.cs.columbia.edu/~amiller/ graspit/movies.html..

(a) (b)

(c) (d)

(e) (f)

IEEE Robotics & Automation Magazine DECEMBER 2004122

◆ The last, and perhaps most exciting, area is automatic
grasp selection. This is an extremely difficult problem
given the large dimensionality of the search space of
possible grasps, and although it has been studied exten-
sively, little progress has been made for general grasps
using complex articulated hands. We have implemented
a grasp planner for the Barrett hand that uses a simplified
version of an object built out of shape primitives, such as
cubes, spheres, and cylinders, and uses heuristic grasp
strategies defined for these shapes to generate a set of
possible grasping configurations [19]. Each of these
grasping configurations is tested rapidly within the simu-
lator, and if the grasp is feasible (there is no conflict with
the arm kinematics and the hand or arm is not blocked
by an obstacle), it is evaluated. In this way, a few hun-
dred grasps can be tested in under a minute and the best
grasps can be presented to the user. We would like to try
to generalize this system so that it could be applied to
other hands as well, and we are currently examining a
variety of machine learning techniques that would fur-
ther optimize the grasps found with the current planner.

Acknowledgments
We gratefully acknowledge the support and guidance of Prof.
Henrik Christensen at the Royal Institute of Technology.
We would also like to thank Prof. Gerd Hirzinger and Dr.
Max Fischer from the German Aerospace Center (DLR) for
providing us with models of their robotic hand, Dr. Myron
Diftler of NASA’s Johnson Space Center for the Robonaut
hand model, and Prof. Mavroidis from Rutgers University
for his group’s hand model. Finally, we would like to thank
Prof. Jeffrey Trinkle for his helpful advice regarding grasp
force optimization and dynamic simulation. This work was
also supported in part by an ONR/DARPA MURI award
(ONR N00014-95-1-0601) and an NSF ITR award
(0312271).

Keywords
Grasping, grasp analysis, simulation, robot hands.

References
[1] A. Bicchi, “Hands for dextrous manipulation and robust grasping: A dif-

ficult road towards simplicity,” IEEE Trans. Robot. Automat., vol. 8,
no. 5, pp. 560–572, 2000.

[2] T. Lozano-Pérez, J. Jones, E. Mazer, P. O’Donnell, and W. Grimson,
“Handey: A robot system that recognizes, plans, and manipulates,” in
Proc. 1987 IEEE Int. Conf. Robot. Automat., 1987, pp. 843–849.

[3] D. Kragić, A. Miller, and P. Allen, “Real-time tracking meets online
grasp planning,” in Proc. 2001 IEEE Int. Conf. Robotics Automation,
2001, pp. 2460–2465.

[4] S. Derby, “Simulating motion elements of general-purpose robot arms,”
Int. J. Robot. Res., vol. 2, no. 1, pp. 3–12, 1983.

[5] S. Thomopoulos, Y. Papelis, and R. Tam, “IRODESS: Integrated robot
design and simulation system,” in Proc. IEEE Control Systems Soc. Work-
shop Computer-Aided Control Systems Design, 1989, pp. 117–122.

[6] P. Corke, “A robotics toolbox for MATLAB,” IEEE Robot. Automat.
Mag., vol. 3, no. 1, pp. 24–32, 1996.

[7] A. Speck and H. Klaeren, “RoboSiM: Java 3D robot visualization,” in
IECON ‘99 Proc., 1999, pp. 821–826.

[8] D. Ruspini and O. Khatib, “Collision/contact models for the dynamic
simulation and haptic interaction,” in Proc. 9th Int. Symp. Robotics
Research ISRR’99, pp. 185–194.

[9] J. Chan and Y. Liu, “Dynamic simulation of multi-fingered robot hands
based on a unified model,” Robot. Autonomous Syst., vol. 32,
pp. 185–201, 2000.

[10] J. Butterfass, G. Hirzinger, S. Knoch, and H. Liu, “DLR’s multisensory
articulated hand, part I: Hard- and software architecture,” in Proc. 1998
IEEE Int. Conf. Robotics and Automation, 1998, pp. 2081–2086.

[11] C. Lovchik and M. Diftler, “The Robonaut hand: A dexterous robot
hand for space,” in Proc. 1999 IEEE Int. Conf. Robotics Automation,
1999, pp. 907–912.

[12] K. DeLaurentis, C. Pfeiffer, and C. Mavroidis, “Development of a
shape memory alloy actuated hand,” in Proc. 7th Int. Conf. New
Actuators, 2000, pp. 281–284.

[13] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Dept. of Computer Science,
UNC, Chapel Hill, NC, Tech. Rep. TR99-018, 1999.

[14] R. Murray, Z. Li, and S. Sastry, A Mathematical Introduction to Robotic
Manipulation. Boca Raton, FL: CRC Press, 1994.

[15] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc. 1992 IEEE
Int. Conf. Robotics and Automation, 1992, pp. 2290–2295.

[16] A. Miller and P. Allen, “Examples of 3D grasp quality computations,” in
Proc. 1999 IEEE Int. Conf. Robotics and Automation, 1999, pp. 1240–1246.

[17] A. Miller and H. Christensen, “Implementation of multi-rigid-body
dynamics within a robotic grasping simulator,” in Proc. 2003 IEEE Int.
Conf. Robotics and Automation, 2003, pp. 2262–2268.

[18] Z. Li, P. Hsu, and S. Sastry, “Grasping and coordinated manipulation
by a multifingered robot hand,” Int. J. Robot. Res., vol. 8, no. 4,
pp. 33–50, 1989.

[19] A. Miller, S. Knoop, P. Allen, and H. Christensen, “Automatic grasp
planning using shape primitives,” in Proc. 2003 IEEE Int. Conf. Robotics
and Automation, 2003, pp. 1824–1829.

[20] C.B. Barber, D.B. Dobkin, and H. Huhdanpaa, “The (Q)uickhull
algorithm for convex hulls,” ACM Trans. Mathematical Software, vol. 22,
no. 4, pp. 469–483, Dec. 1996.

[21] R. Pelossof, A. Miller, P. Allen, and T. Jerba, “An SVM learning
approach to robotic grasping,” in Proc. IEEE Int. Conf. on Robotics and
Automation, 2004, pp. 3215–3218.

Andrew T. Miller is a research scientist in the Computer
Science Department at Columbia University where he earned
his Ph.D. in 2001. After graduating, he spent one year work-
ing with Henrik Christensen at the Royal Institute of Tech-
nology in Stockholm, Sweden. He received his B.A. in
computer science from Hamilton College in 1995. His
research interests include robotic simulation, grasp analysis,
computational geometry, and computer vision. He is current-
ly working on a collaborative project to develop a biome-
chanically realistic model of the human hand.

Peter K. Allen is a professor of computer science at Columbia
University. His current research interests include 3-D modeling,
real-time computer vision, robotic hand-eye coordination, and
model-based sensor planning. He received the A.B. degree from
Brown University in mathematics-economics, the M.S. degree in
computer science from the University of Oregon, and the Ph.D.
in computer science from the University of Pennsylvania.

Address for Correspondence: Andrew T. Miller, Dept. of Com-
puter Science, Columbia University, New York, NY 10027-
7003 USA. E-mail: amiller@cs.columbia.edu.

	footer1:

