
Data-Driven Grasping with Partial Sensor Data

Corey Goldfeder, Matei Ciocarlie, Jaime Peretzman, Hao Dang and Peter K. Allen

Abstract— To grasp a novel object, we can index it into a
database of known 3D models and use precomputed grasp data
for those models to suggest a new grasp. We refer to this idea
as data-driven grasping, and we have previously introduced
the Columbia Grasp Database for this purpose. In this paper
we demonstrate a data-driven grasp planner that requires only
partial 3D data of an object in order to grasp it. To achieve
this, we introduce a new shape descriptor for partial 3D range
data, along with an alignment method that can rigidly register
partial 3D models to models that are globally similar but not
identical. Our method uses SIFT features of depth images, and
encapsulates “nearby” views of an object in a compact shape
descriptor.

I. INTRODUCTION

An important body of recent work in dexterous grasp-
ing has focused on empirical approaches, such as sim-
ulation [23], [24], [12], demonstration [1] and stochastic
optimization [5], rather than anayltical solutions. A number
of researchers have investigated data-driven grasp strategies.
Bowers and Lumia [3] collected grasps for a small number
of planar objects and used fuzzy logic to extrapolate grasping
rules. Morales et al. [24] used our GraspIt! tool [22] to
compute offline grasps for a small database of CAD ob-
jects, and successfully executed those grasps on the real
versions of those objects. Saxena et al. [31] generated 2D
renderings of a large set of example objects, and learned a
model-free mapping from images to graspable features. They
also considered the problem of finding grasp points from
partial shape information [32]. Glover et al. learned robust
probabilistic models to recognize several classes of graspable
objects from example images [11]. Noel and Jing [6] created
a small database of example objects with grasps planned in
GraspIt! and used simple object features to select pre-grasps.
Li and Pollard [19] collected a database of 17 hand poses,
and used shape matching to match poses to objects, rather
than matching new objects to known objects. An advantage
of our approach is that we can plan grasps on occluded parts
of a model, if similar models are present in the database,
while an advantage of their approach is that it always
plans grasps on known geometry. In addition, building their
pose database required significant manual annotation, which
may be difficult to scale to larger datasets. Finally, several
data-driven grasping algorithms have been targeted at grasp
animation rather than grasp synthesis [7], [2], [34].

We have previously introduced the Columbia Grasp
Database (CGDB) [13], a freely available collection of

All authors are with the Dept. of Computer Science, Columbia Univer-
sity, NY, USA. Email: {coreyg, cmatei, allen}@cs.columbia.edu, {jp2642,
hd2181}@columbia.edu. This work was funded in part by NIH BRP grant
1RO1 NS 050256-01A2, and by a Google research grant.

238,737 form closure grasps on the 1,814 models of the
Princeton Shape Benchmark (PSB) [33], at 4 discrete scales
using several robotic hands. We have also shown how this
database can be used to synthesize grasps for novel objects.
Our starting assumption is that geometrically similar models
can be grasped in similar ways. Based on this, our algorithm
for data-driven grasping is to match an object against the
Columbia Grasp Database, using some measure of shape
similarity, and to reuse known good grasps from similar
models. Our previous work required a full 3D model as input,
which limited its applicability in unstructured environments.
In this paper we extend our data-driven grasp planning
algorithm to function on partial shape information that can
be realistically collected by a robot’s sensors.

Switching to partial sensor data poses several new chal-
lenges. In [13] we used 3D Zernike descriptors [25] to
match an object against the models in the database, and
the Principal Axes Transform to globally align all models
to a canonical coordinate system. However, matching and
aligning partial 3D models is a much more difficult problem.

After choosing similar models from the CGDB and align-
ing their coordinate systems with the object to be grasped, we
can transfer the known good grasps from the neighbors to the
object being grasped. A single model in the CGDB may have
as many as 15 known good grasps, and so we need a ranking
function to determine which grasp to actually output. When a
full 3D model was available, we were able to simulate all of
the candidate grasps on the object’s own geometry, allowing
us to unambiguously select the best candidate. However,
without access to the full object geometry we must look for
an alternative ranking algorithm.

This paper makes the following contributions:
• a shape similarity measure for matching partial sensor

scans to 3D models,
• a new alignment method to transform partial sensor

scans into the coordinate systems of 3D models, and
• a new method of ranking grasps by how well they are

expected to generalize to other models
We note that the first two contributions are not specific to
grasping, and may find applications in other domains.

II. MATCHING WITH PARTIAL SENSOR DATA

Our goal in this work is to demonstrate data-driven grasp
planning using only partial sensor data. Specifically, we
are interested in range sensor data collected from a small
number of viewpoints that don’t cover the entire surface of
the object. We do not assume any particular range sensor, and
in principle our method can be applied to scan data from a
variety of sources, such as lidar, structured light, or stereo

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1278

reconstruction. We assume that the robot has some degree of
mobility, and can move its sensor to a few nearby viewpoints.
We formalize what we mean by “nearby” below. Figure
1 shows an example of our full pipeline, from matching
through alignment and grasping, for an object acquired with
a NextEngine laser scanner. We will refer to this figure as
each step is explained.

Finding 3D models in range data is a well-studied prob-
lem [16], [9]. However, it is usually formulated as a recogni-
tion task rather than as a matching task. In a recognition task
we are looking to recognize an instance of a known object,
and perhaps recover pose and scale. In a matching task we as-
sume that the object in the scan is not previously known, and
we are interested in detecting similarities to known objects.
These two tasks necessitate somewhat different techniques.
In particular, in the shape matching case, meaningful local
correspondences between features in the query model and
the nearest match in the database may not exist.

A. Shape Matching with Depth Images

Our approach builds on work on 3D shape matching for
triangle soups. Although a large number of shape matching
algorithms have been presented based on 3D features [25],
[17], [28], in recent years the most successful attempts
have been based on 2D silhouette images rendered from
viewpoints sampled on a sphere and looking in the direction
of the model’s center of mass [4]. Ohbuchi et al. [27]
rendered synthetic depth images of a 3D model from multiple
viewpoints. They computed SIFT features [20] and clus-
tered them into a representative codebook. Each model was
described by a bag-of-feature that drew features from all
viewpoints. The dissimilarity between models was taken as
the Kullback-Leibler divergence [18] of their histograms.

When working with range sensor data there are significant
advantages to operating in the depth image space rather than
using reconstructed point clouds. Although different range
sensors have different noise profiles, we have observed across
a variety of sensors that depth gradients are more consistent
than the actual depth values. The SIFT descriptor encodes
gradients rather than depths, potentially allowing it to adapt
to sensor noise. Additionally, depth images contain more
scene information than point clouds, since they distinguish
between known empty space and unseen space.

B. Extension to Partial Sensor Data

The key innovation of [27] was to describe a 3D model
using a single bag-of-features, encoding features drawn from
many views of the model in the same histogram. Although
they used views from all directions in their descriptor, in
principle, one could construct a bag-of-features using any
subset of views, with the caveat that the bag would describe
only those parts of the model that could be seen from those
views. Suppose that instead of collecting images from all
around an object’s enclosing sphere, we collected images
only from a circular portion of the sphere; that is, from a
spherical cap. (The “image” from a given viewpoint may be
a simulated depth image rendered on a computer, or may be

a sensed image of a real object.) We can identify a spherical
cap by its center point v on the sphere and by the solid angle
Ω that it subtends. If we collect features from viewpoints
chosen on the cap, we can combine them into a single bag-
of-features histogram. We use the notation CapΩ(v) to refer
to the histogram of codebook features drawn from viewpoints
on the spherical cap centered on v and subtending the solid
angle Ω. We define the “CapSetΩ descriptor” of a model as
the set {CapΩ(v) ∀ v}.A complete sphere subtends 4π stera-
dians, and so the CapSet4π descriptor contains only a single
histogram that incorporates features from all viewpoints. For
notational convenience, we refer to the histogram of a single
depth image - that is, the features collected from a single
view v, as Cap0(v). The first line of Figure 1 shows how a
set of depth images from viewpoints within a spherical cap
can be used to construct a Cap descriptor. If we take v to
be the initial location of a robot’s movable sensor, and the
spherical cap to represent nearby positions that the sensor can
be moved to, then we can think of CapSetΩ(v) as encoding
the portion of the object that the robot is able to see. If
Ω = 4π the sensor can be moved anywhere around the object,
whereas if Ω = 0 the sensor is fixed and cannot be moved
at all. As expected, what a robot can see is a function of the
initial position of its sensor and the distance the sensor can
be moved.

There are an infinite number of points on a sphere, and so
CapSetΩ ,Ω < 4π is an infinite set as well. Suppose that we
have computed feature histograms for a set of viewpoints
V which are distributed (approximately) uniformly on the
sphere. Given a viewpoint v∈V and a solid angle Ω, we can
approximate CapΩ(v) by simply adding the histograms of
all sampled views that are within the cap of size Ω centered
on v. The number of possible Cap descriptors - that is, an
approximation of the CapSet - is just |V |. The number of
useful values of Ω is also a function of sampling density
|V |, since the difference between the Cap descriptors for two
different values of Ω is only distinguishable if the difference
in cap size is large enough to include at least one additional
sampled viewpoint. For the remainder of this paper we will
use the CapΩ(v) and CapSetΩ notations to refer to these
sampled approximations.

Given a distance D(a,b) between Cap descriptors, we can
define the distance between a CapSet A and a Cap b as the
minimum distance between b and any a ∈ A

D(A,b) = min D(a,b) a ∈ A (1)

and a distance between CapSet descriptors A and B as the
minimum distance between any pair of their Cap descriptors

D(A,B) = min D(a,b) a ∈ A,b ∈ B. (2)

C. Implementation and Matching Results

For each model of the CGDB we rendered 60 grayscale
depth images, using linearly spaced w-buffer values rather
than exponentially spaced z-buffer values, from viewpoints
placed at the vertices of an enclosing truncated icosahedron.
We computed SIFT descriptors on each image, finding an

1279

A Cap descriptor of a 3D object captures how the object appears to the depth sensor from a particular viewpoint.
The Cap is a function of the object, the initial viewpoint, and the range of motion available to the depth sensor.
SIFT features from nearby views are aggregated into a single binary vector that partially describes the object.

These CGDB models had Cap descriptors similar to that of the sensed model.

Using a combination of Cap matching and ICP, we can closely align the CGDB models with the sensed model.
Although we show the alignments using the full 3D geometry of the sensed model, the transformations were
actually computed using only the partial geometry seen by the sensor from its limited viewpoints.

We can transfer pre-grasps from the neighbor objects to the sensed object. Here we show the candidate
from each neighbor with highest grasp quality transferred to the sensed object. Four of the
transferred grasps result in form closure and one does not.

Fig. 1. Our full pipeline, for a real example using depth data acquired with a NextEngine scanner.

1280

1

CapSet 4π

CapSet 2π

0.8 CapSet π

CapSet π/3

CapSet 0

0.6

CapSet 0

Zernike

si
on

0.4

Pr
ec
i

0.2

00

0 0.2 0.4 0.6 0.8 1
Recall

Fig. 2. Precision/Recall plots for CapSet descriptors with 5 values of Ω,
as compared to Zernike descriptors.

average of 24 features per image. For 1,814 models with
60 images apiece this gave us 2.6 million individual SIFT
features. To create the bag-of-features codebook, we down-
sampled this set to 234,081 features by using only features
rendered from the 6 sides of the bounding box. For each
feature we found the distance to its 500 nearest neighbors,
creating a sparse distance matrix which we fed into affinity
propagation [8] to find 1496 clusters. We chose the mean of
the features in each cluster as a codebook entry1.

For each depth image we find the codebook entries which
best approximate its SIFT features. Unlike [27] we use a
binary bag of features rather than a histogram, using the
simple absence/presence rule that was shown to perform well
in [26]. This is an intentional choice, as we argue that the
repetition of features between closely space viewpoints is
to be expected, and may be considered a sampling artifact
rather than a feature of the model. With binary bags we can
also use the Jaccard distance [15]

Jδ (A,B) =
|A∪B|− |A∩B|

|A∪B|
(3)

as a distance between Cap descriptors, avoiding the need
for normalizing empty bins associated with Kullback-Leibler
divergence.

Figure 2 shows the precision/recall values for CapSet
descriptors with 5 distinguishable Ω values, ranging from 0
(features drawn from a single image) to 4π (features drawn
from the full sphere). The values are averaged over the “test”
classes of the Princeton Shape Benchmark. For comparison,
we provide the plot for the Zernike descriptors [25] we
have previously used [13]. What is most interesting is that
the plots for Ω ≥ π are nearly indistinguishable, with 94%
precision for the first recalled match. This means that the

1As per [26] we were striving for 1500 clusters, but affinity propagation
makes it difficult to control the final number of clusters exactly. We built
the codebook using features from both the “test” and “train” collections of
the PSB, as our goal was to build a good codebook for matching unknown
objects against the entire CGDB.

CapSet descriptors work essentially as well using only the
minimums between π steradians as they do using the entire
sphere. Even dropping to CapSetπ/3 - using Cap descriptors
representing approximately a single steradian - results in a
descriptor that substantially outperforms the Zernike descrip-
tors and only slightly lags the descriptor for the full sphere.
At Ω = 0, using descriptors based on only single depth views,
the initial precision is still a respectable 66%. The second
line of Figure 1 shows matching results from the PSB, using
a Capπ descriptor representing the portion of the object seen
from the spherical cap shown on the first line of the figure.

Since we take the minimum distance between Cap de-
scriptors in a CapSet as the overall distance, these plots can
be thought of as partial matching results using the “most
descriptive” viewpoint for each model. One could, in theory,
construct a model that is featureless on one hemisphere,
which would make matching based on views from that
hemisphere difficult. Still, while the choice of viewpoint is
indeed important for small values of Ω, as Ω increases it
becomes less so, since more of the model is seen from any
starting viewpoint. In practice we have found that for Ω≥ π

nearly all viewpoints are “good enough” and the choice of
v does not significantly impact the resulting matches.

III. GRASPING WITH PARTIAL SENSOR DATA

To grasp an object, we collect range scans of it from a
number of viewpoints. These scans are processed for SIFT
features, and are used to form a single CapΩ(v), where v is
the most central viewpoint for which we have data, and Ω is
an estimate of the solid angle that we have collected data for.
(Collecting more images will improve the matching results,
but as we showed in Section II-C the method will gracefully
degrade with less data, even down to a single depth image.)
We can compare this sensed Cap to the CapSetΩ descriptors
of the database models, using Equations (3) and (1), and
choose k neighboring models.

A. Aligning Partial Data to Neighbor Models

Once we have selected neighbors we must align their
coordinate systems with the sensed partial 3D model. There
is a good deal of literature on range scan registration [10],
[30], but our problem is significantly more difficult, as we
are attempting to align a partial scan of one model with the
geometry of a different, neighboring model, rather than with
an overlapping scan of the same model from a different view-
point. Many researchers have proposed alignment methods
that find correspondences between local features [14], [16].
We prefer to avoid methods that build upon local feature
correspondences since globally similar models may have few
local correspondences suitable for alignment. Makadia et
al. [21] correlated Extended Gaussian Images of two point
clouds using spherical harmonics, and achieved excellent re-
sults but recommended a minimum of 45% overlap between
the models, which we cannot reasonably assume.

As is customary, we break alignment into a rough stage
and a fine stage, with the fine stage consisting of the
Iterative Closest Point (ICP) [29] algorithm. The challenge

1281

is choosing a rough alignment as input for the ICP stage. We
can use the Cap descriptors themselves to produce a good
initial transformation. We first align the center of mass of the
sensed point cloud with the center of mass of the 3D model.
Given a Cap c representing the partial data and a CapSet M
representing the database model, we can find the viewpoint
v that minimizes their distance as

v = argmax |c∩m|, m ∈ M (4)

where c is held fixed. We assume that c and v represent the
same part of their respective objects, and so we rotate the
models so that the center viewpoints of both the c and v
lie along the same ray from the origin. The ambiguous roll
about the view vector is resolved by taking silhouettes of
both models from the shared view direction and template-
matching the rotations to find the best overlap. The output
of this stage is an initial alignment which can be refined
by ICP. The third line of Figure 1 shows how our method
aligns the sensed object with its neighbors, using only the
partial 3D data seen from the limited set of viewpoints.
Our work on partial model alignment represents ongoing
research. Our alignment results appear qualitatively good
to human observers, but we have not yet benchmarked our
method against other alignment methods for partial data.

B. Candidate Selection

Each model in the CGDB has previously been annotated
with between 5 and 15 form closure grasps derived from
stochastic search [13]. For each grasp, we also know the
pre-grasp position, which can be thought of as “pure” grasp
information untainted by contact with an actual object. Once
we have chosen k neighbors for our object, and aligned the
coordinate system of the object with those of the neighbors,
we can borrow any of those pre-grasps as a candidate for
grasping the new object. However, not all of the grasps in the
CGDB generalize well to neighboring models. Some grasps
rely on very specific features of a model and would not work
on even a very close neighbor if those features were removed
or changed. Ideally we would like some way to detect this
situation, so that we can output only “generalizable” grasps
that are likely to work on the new object.

Given a set of candidate pre-grasps drawn from neighbors,
how can we know how generalizable they are? If a full 3D
model were available we could simulate all of the candidates
on the model and measure this directly, but absent such
a model we need an indirect way to predict which grasps
to output. Our solution is to “cross-test” grasps between
neighbors. Although we don’t have a full 3D model of the
sensed object, we do have full models for its neighbors from
the CGDB. Given the set of neighbors, N = {n1 . . .nk}, we
simulate the candidate pre-grasps from neighbor ni on the
other k−1 neighbors. We can then rank the candidate grasps
by the number of neighbors for which the pre-grasp resulted
in form closure. Within each rank, we can further order the
grasps by the average Ferrari-Canny ε-quality of the form
closure grasps (including the quality on the model itself). A
grasp that is highly generalizable can be expected to work

well on the other neighbors of the sensed object, and so by
ranking grasps in this fashion we increase the likelihood of
choosing a good candidate grasp.

IV. EXPERIMENTAL RESULTS

We tested our pipeline using a simulated Barrett hand
in GraspIt! [22]. As in [13] we report aggregate results
over the 1,814 scale 1.0 models of the CGDB. For each
model, we constructed 6 Capπ descriptors, each centered on
a viewpoint perpendicular to a face of the oriented bounding
box. This was done so as to demonstrate the robustness of
the method to the choice of views. While we do have full 3D
models of each CGDB object, our matching and alignment
methods were only given the partial geometry visible from
the viewpoints of the input Cap.

For each of the 6 Cap descriptors we found 3 nearest
neighbors2 from among the other models of the CGDB. We
cross-tested the grasps from each neighbor model on the
other neighbor models, and ranked the grasps as described in
the preceding section. We then simulated the highest ranked
grasps on the full 3D geometry of the object.

We evaluated the candidate grasps in two ways. We first
performed “static” analysis of the grasp by placing the hand
in the pre-grasp position and closing the fingers until they
contacted the object. If this resulted in a form closed grasp
we reported success; if not, we reported failure. Static analy-
sis is overly conservative, often failing on grasps that appear
visually correct, as it does not allow the object to move
within the hand as grasp forces are applied. For this reason,
we also employed “dynamic” analysis. We used a time-
stepping numerical integration to compute the movements of
all bodies in the system, including robot links and the object
being grasped, based on the actuator forces applied at the
joints of the hand. For details on our simulation methodology
we refer the reader to [22]. This allowed us to evaluate
the grasp taking into account friction and joint constraints,
inertial effects, and movement due to grasp forces. We are
interested only in the intrinsic quality of the grasp, and so
we do not simulate the surface that the object lies on or
other environment-specific properties of the system. In a real
robotic application we expect the path planning module to
decide if a grasp is unreachable due to the table or other
obstacles and if so to choose the next best grasp; as such the
grasp planner can always assume that the grasp it proposes
is obstacle-free. Nevertheless, we emphasize that this is a
dynamic grasp analysis rather than a physically realistic
simulation.

The models in the CGDB come from the Princeton Shape
Benchmark, which is one of the only freely usable 3d model
collections of nontrivial size. However, the PSB models
were not chosen with an eye towards graspability, and
many of the models, such as insects and plants, have sharp
features that are hard to grasp even when rescaled to “toy”

2As described in [13], each neighbor could actually represent 2 models,
since we have 4 scaled versions of each CGDB model and we use both the
smallest version larger than the test object and the largest version smaller
than the test object, if both are available.

1282

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

%
 F
or
ce
 C
lo
su
re

nth Selected Grasp

Dynamic Average

Static Average

Fig. 3. Static and dynamic grasp analyses, averaged over grasps planned
on the 1,814 models in the CGDB. We found candidate pre-grasps using
partial data from 6 sets of nearby views, and ordered them by their “cross
testing” score. We report the percentage of form closure grasps within the
first 5 ordered candidates, averaged over the 6 sets of view. The error bars
show the standard deviation between the views, which we note is very small.

size. Additionally, approximately 15% of the models exhibit
problematic topology, such as inconsistent normals or jagged
unclosed edges. These models could not be analyzed by the
dynamic method, and so while static results were averaged
over the entire database, dynamic results were only averaged
over the 85% we could process. The broken models were
distributed fairly evenly throughout the database.

Figure 3 shows the results for static and dynamic analysis
of the grasps chosen using each of the 6 sets of views.
We report the percentage of models that were successfully
grasped within the first n selected grasps as ranked by our
cross-testing approach, averaged over the 6 sets of views we
tested. It is apparent from the very small standard deviations
that the choice of view does not materially affect the like-
lihood of finding a form closure grasp. The static analysis
suggests that 77% of the models in the CGDB were grasped
successfully by either the highest or second-highest ranked
pre-grasp, while the dynamic analysis raises this number to
83%. Both analyses report that 90% of the models were
successfully grasped by one of the top 4 candidate grasps.
Given that 3 neighbors from the CGDB can mean as many
as 90 candidate grasps, these numbers imply that our cross-
testing algorithm is intelligently ranking the candidates.

V. CONCLUSIONS AND FUTURE WORK

We have presented a grasp planner that works on partial
3D scans of an object, along with tools for matching and
aligning such data. We showed results for the models in the
CGDB at scale 1.0, using both static and dynamic analyses.
We also perfomed initial experiments with real data from a
NextEngine laser scanner, as shown in Figure 1. In future
work we will experiment further with real robotic hands.

REFERENCES

[1] J. Aleotti and S. Caselli. Robot grasp synthesis from virtual demon-
stration and topology-preserving environment reconstruction. In IROS,
2007.

[2] Y. Aydin and M. Nakajima. Database guided computer animation of
human grasping using forward and inverse kinematics. Computers and
Graphics, 23, 1999.

[3] D. L. Bowers and R. Lumia. Manipulation of unmodeled objects using
intelligent grasping schemes. Transactions on Fuzzy Systems, 11(3),
2003.

[4] D.Y. Chen, X.P. Tian, Y.T. Shen, and M. Ouhyoung. On visual
similarity based 3d model retrieval. Computer Graphics Forum, 22,
2003.

[5] M. Ciocarlie, C. Goldfeder, and P. K. Allen. Dimensionality reduction
for hand-independent dexterous robotic grasping. In IROS, 2007.

[6] N. Curtis and J. Xiao. Efficient and effective grasping of novel objects
through learning and adapting with a knowledge base. In IROS, 2008.

[7] G. ElKoura and K. Singh. Handrix: Animating the human hand. In
Symposium on Computer Animation, 2003.

[8] B. J. Frey and D. Dueck. Clustering by passing messages between
data points. Science, 315, 2007.

[9] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik. Recognizing
objects in range data using regional point descriptors. In ECCV, 2004.

[10] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann. Robust global
registration. In Symposium on Geometry Processing, 2005.

[11] J. Glover, D. Rus, and N. Roy. Probabilistic models of object geometry
for grasp planning. In RSS, 2008.

[12] C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof. Grasp planning
via decomposition trees. In ICRA, 2007.

[13] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen. The Columbia
Grasp Database. In ICRA, 2009.

[14] D. F. Huber and M. Hebert. Fully automatic registration of multiple
3D data sets. Image and Vision Computing, 21(7), 2003.

[15] P. Jaccard. Étude comparative de la distribution florale dans une
portion des alpes et des jura. Bulletin del la Société Vaudoise des
Sciences Naturelles, 37, 1901.

[16] A. E. Johnson and M. Hebert. Surface registration by matching
oriented points. In 3DIM, 1997.

[17] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant
spherical harmonic representation of 3D shape descriptors. In Sympo-
sium on Geometry Processing, 2003.

[18] S. Kullback and R. A. Leibler. On information and sufficiency. Annals
of Mathematical Statistics, 22, 1951.

[19] Y. Li, J. L. Fu, and N. S. Pollard. Data-driven grasp synthesis using
shape matching and task-based pruning. Transactions on Visualization
and Computer Graphics, 13(4), 2007.

[20] D. G. Lowe. Object recognition from local scale-invariant features. In
ICCV, 1999.

[21] A. Makadia, A. Patterson, and K. Daniilidis. Fully automatic regis-
tration of 3D point clouds. In CVPR, 2006.

[22] A. Miller, P. K. Allen, V. Santos, and F. Valero-Cuevas. From robot
hands to human hands: A visualization and simulation engine for
grasping research. Industrial Robot, 32(1), 2005.

[23] A. Miller, S. Knoop, H. I. Christensen, and P. K. Allen. Automatic
grasp planning using shape primitives. In ICRA, 2003.

[24] A. Morales, T. Asfour, P. Azad, S. Knoop, and R. Dillmann. Integrated
grasp planning and visual object localization for a humanoid robot with
five-fingered hands. In IROS, 2006.

[25] M. Novotni and R. Klein. 3D Zernike descriptors for content based
shape retrieval. In Solid Modeling and Applications, 2003.

[26] E. Nowak, F. Jurie, and B. Triggs. Sampling strategies for bag-of-
features image classification. In ECCV, 2006.

[27] R. Ohbuchi, K. Osada, T. Furuya, and T. Banno. Salient local visual
featuers for shape-based 3D model retrieval. In SMI, 2008.

[28] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape
distributions. Transactions on Graphics, 21(4), 2002.

[29] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm.
In 3DIM, 2001.

[30] J. Salvi, C. Matabosch, D. Fofi, and J. Forest. A review of recent
range image registration methods with accuracy evaluation. Image
and Vision Computing Archive, 25(5), 2007.

[31] A. Saxena, J. Driemeyer, and A. Ng. Robotic grasping of novel objects
using vision. International Journal of Robotics Research, 27(2), 2008.

[32] A. Saxena, L. L. S. Wong, and A. Y. Ng. Learning grasp strategies
with partial shape information. In AAAI, 2008.

[33] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The Princeton
Shape Benchmark. In Shape Modeling and Applications, 2004.

[34] K. Yamane, J. Kuffner, and J.K. Hodgins. Synthesizing animations of
human manipulation tasks. Transactions on Graphics, 23(3), 2004.

1283

