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Abstract
In this paper, we present an appearance learning approach which is used to detect and track surgical robotic tools in
laparoscopic sequences. By training a robust visual feature descriptor on low-level landmark features, we build a frame-
work for fusing robot kinematics and 3D visual observations to track surgical tools over long periods of time across various
types of environment. We demonstrate 3D tracking on multiple types of tool (with different overall appearances) as well as
multiple tools simultaneously. We present experimental results using the da Vinci® surgical robot using a combination of
both ex-vivo and in-vivo environments.
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1. Introduction

Advancements in minimally invasive surgery have come
about through technological breakthroughs in endoscopic
technology, smarter instruments, and enhanced video
capabilities (Mack, 2001). These achievements have had
a common goal of continuing to reduce the invasiveness
of surgical procedures. Robotic hardware and intelligent
algorithms open the doors to more complex procedures
by enhancing the dexterity of the surgeon’s movements as
well as increasing safety through mechanisms like motion
scaling and stereo imaging.

Intuitive Surgical’s da Vinci® robot (Intuitive Surgical,
1995) is the most prevalent example of such a technol-
ogy, as there are more than 1800 da Vinci® surgical sys-
tems in operating rooms worldwide which performed about
360,000 procedures in 2011. In this system, high-definition
stereo vision delivers a perceptual 3D image to the surgeon
which helps to see the anatomy and interact with the surgi-
cal tools with great clarity. Augmenting the surgeon’s vision
with other relevant information in the form of graphical
overlays can further help the surgeons/patients in a different
dimension. Tool tracking is a manifestation of intelligent
computation which can improve the situational awareness
for a surgeon during a procedure.

Knowledge of the locations of tools in the endoscopic
image can enable a wide spectrum of applications. Accurate
tool localizations can be used as a virtual ruler (Leven et al.,
2005) (see Figure 1(a)), capable of measuring the distances
between various points in the scene, such as the sizes of
anatomical structures. Graphical overlays can indicate the

status of a particular tool, for example in the case of the
firing status of an electro-cautery tool. These indicators can
be placed at the tip of the tool in the visualizer which is
close to the surgeon’s visual center of attention, enhancing
the overall safety of using such tools. It can also be useful
in managing the tools that are off the screen (Malpani et al.,
2011) (see Figure 1(b)), increasing the patient’s safety, or
for visual servoing of motorized cameras.

The joints of a robotic surgical system are typically
equipped with encoders so that the pose of the end effec-
tors can be computed using forward kinematics. In the da
Vinci®, the kinematic chain between the camera and the
tool tip involves 18 joints and more than two meters in
cumulative length, which is challenging to the accuracy of
absolute position sensing and would require arduous and
time-consuming procedures to accurately calibrate. How-
ever, a master–slave robotic system does not require high
absolute accuracy because humans are in the control loop.
As a result, we have observed up to one inch of absolute
error, which is too large for most of the applications that are
mentioned above. Therefore, tracking the tools from images
is a practical and non-invasive way to achieve the accuracy
requirements of the applications.
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Fig. 1. Two applications of tool tracking: in (a), a picture of the measurement tool measuring the circumference and area of a mitral
valve is shown. In (b), an example scenario of a lost tool (e.g. outside the camera’s field of view) is shown, whereby the endoscopic
image (top) shows only two tools, and with corrected kinematics and a graphical display (bottom), we can accurately show the surgeon
where the third tool (out of the bottom left corner) is located and posed so they can safely manipulate the tool back into the field of view.

In this paper we present a tracking system which learns
classes of natural landmarks on articulated tools off-line
by training an efficient multi-class classifier on a discrim-
inative feature descriptor from manually ground-truthed
data. We run the classifier on a new image frame to detect
all extrema representing the location of each feature type,
where confidence values and geometric constraints help to
reject false positives. Next, we stereo match in the corre-
sponding camera to recover 3D point locations on the tool.
By knowing a priori the locations of these landmarks on
the tool part (from the tool’s computer-aided design model),
we can recover the pose of the tool by applying a fusion
algorithm of kinematics and these 3D locations over time
and computing the most stable solution of the configura-
tion. Our tracker is able to deal with multiple tools simul-
taneously by applying a tool association algorithm and is
able to detect features on different types of tool. This work
is an extension of that presented in Reiter et al. (2012a),
where only one tool type is dealt with in a single-tool track-
ing approach. The contributions of the current paper are
to extend the learning system to multiple tool types and
multiple tools tracked simultaneously, as well as demon-
strating the system across various types of surgical data.
More details on each of these steps follow in the remaining
sections.

1.1. Prior work

There has been much progress in the field of tracking surgi-
cal instruments. Typically either color or texture is used, and
in cases where information about the tool is known a pri-
ori, a shape model can be used to confine the search space
(Doignon et al., 2006; Voros et al., 2007; Pezzementi et al.,
2009). A common method is to design a custom marker, as

in Wei et al. (1997a,b) and Groeger et al. (2008), to assist in
tool tracking. Here, the authors argue that geometry is not
reliable enough for tracking, and a color marker is designed
by analyzing the hue/saturation/value (HSV) color space to
determine what color components are not common in typ-
ical surgical imagery. Next, the authors fabricate their own
custom marker to be placed on the tool. A training step cre-
ates a kernel classifier which can then label pixels in the
frame as either foreground (tool) or background. Similarly,
the authors in Zhang and Payandeh (2002) design a marker
with three stripes that traverse the known diameter of the
tool which allows the estimation of depth information of
the tool’s shaft from the camera. An alternative example of
a marker designed as a bar code is described in Zhao et al.
(2009a,b).

Color may be exploited without custom markers, as
in Lee et al. (1994), in which the authors use different color
signatures of organs and instruments to classify individual
pixels by training on a large sample of pixels from endo-
scopic sequences. A Bayesian classifier maximizes the a
posteriori probability of the class assignment in order to dis-
tinguish organ pixels from instrument pixels. Often, simple
assumptions can be made about the environment, such as
determining ‘gray’ regions and labeling them as the instru-
mentation (Doignon et al., 2004, 2005, 2006). The authors
contribute a new definition of color purity component and
attempt to extract boundaries of nearly uniformly gray
regions to develop the idea that the color saturation is the
most discriminating attribute for gray region segmentation,
and in so doing, define a new definition of saturation.

Another technique to aid in tracking is to affix assistive
devices to the imaging instrument itself. In Krupa et al.
(2003), a laser-pointing instrument holder is used to project
laser spots into the laparoscopic imaging frames. This is
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useful for when the tools move out of the field of view of
the camera. The laser pattern projected onto the organ sur-
face provides information about the relative orientation of
the instrument with respect to the organ. Optical markers
are used on the tip of the surgical instruments, and these
markers used in conjunction with the image of the projected
laser pattern allow for measurements of the pointed organ
and the instrument.

Prior information of the surgical tools may be used to
confine the search space for the instrument (Voros et al.,
2007) and detect the shaft from the insertion point. Here, the
authors perform a calibration step to define the 3D insertion
point of the instrument into the abdominal cavity. This gives
shape considerations to confine the search space for the
instrument and helps achieve real-time processing in order
to fit a cylinder to the tool’s shaft. In Wolf et al. (2011), the
abdominal wall is parameterized as a spherical grid using
the known insertion point. A discretized, hexagonal geode
is constructed where each hexagon represents a candidate
pose of the tool through the insertion point and a particle
filter determines the most likely pose as a pan/tilt from the
insertion point.

Off-line learning has been used to combine multiple fea-
tures together into a strong feature framework (Pezzementi
et al., 2009), wherein the authors extract color and tex-
ture features and train off-line on manually labeled training
images. Every pixel is labeled as one of three classes (shaft,
metal, and background) and class-conditional probabilities
are assigned to each pixel. The object configuration is esti-
mated by using a prior geometric model of the object and
maximizing the correlation between the rendering and the
probability map. A similar, more recent, approach (Allan
et al., 2013) used a random-forest classifier with a combi-
nation of different features to label pixels which belong to
surgical tools in order to estimate the pose. Although the
approach is not real-time, the method reinforces the mer-
its of using a classifier over a multi-feature framework to
robustly detect surgical tools.

Previously, we have used on-line learning (Reiter and
Allen, 2010) to combine multiple features into a composite
likelihood framework. In this work, probability maps from
several independent features along with lower-level corner
features are used to learn new parts of the tool as it moves
in the scene. The low-level features grow into the likelihood
maps to discover new parts of the tool. This requires mini-
mal up-front information and can track for long periods of
time by adjusting to the appearance of the tool over time.

Template matching is also a popular technique, as in
Burschka et al. (2004), where a 2D image template is used
to keep track of the da Vinci® tool tip and stereo match-
ing in the corresponding camera to localize a single 3D
point representing the tool’s centroid. Our recent template
matching work was presented in Reiter et al. (2012c), which
created templates on-line using a robotic graphical renderer.
The templates were created using different kinematic con-
figurations of the robot near the current raw kinematics

estimate, and the solution was refined by matching gradient
orientation templates to the real image for a more accurate
kinematic configuration.

2. Methods

In this section we present an overview of our tool tracking
method. Figure 2 shows a visual overview of our detec-
tion and tracking system. Before we begin, we present an
overview of the robotic hardware system as well as informa-
tion on calibration procedures performed prior to the work
presented in this paper.

2.1. System overview

The da Vinci® surgical robot is a tele-operated, master–
slave robotic system. The main surgical console is separated
from the patient: the surgeon sits in a stereo viewing console
and controls the robotic tools with two master tool manipu-
lators (MTMs) while viewing stereoscopic high-definition
video. The patient-side hardware contains three robotic
manipulator arms along with an endoscopic robotic arm
for the stereo laparoscope. A typical robotic arm has seven
total degrees of freedom (DOFs), and articulates at the
wrist. The stereo camera system is calibrated for both intrin-
sics and stereo extrinsics using standard camera calibration
techniques (Zhang, 2000), and all images are rectified for
lens distortion when processed with the methods in this
paper. The cameras on the robot have the ability to adjust
focus, yielding non-constant camera calibration configura-
tions. To deal with this, we perform camera calibration at
several different discrete focus settings off-line (once), and
then linearly interpolate the calibration parameters based on
any given focus setting on-line to provide stereo calibration
parameters at all times during a procedure.

2.2. Scene labeling

We begin with the method described in Pezzementi et al.
(2009) to label every pixel in the image as one of three
classes: metal, shaft, or background (listed as module A
in the algorithm overview of Figure 2). A Gaussian mix-
ture model (GMM) (Duda et al., 2001) of several color and
texture features is learned off-line for each of these three
classes. Subsequently, we can assign a class-conditional
probability for each of the classes to every pixel and assign
a label. Figure 3 shows an example result of this pixel label-
ing routine, with the original image from an in-vivo porcine
sequence on the upper left, the metal class on the upper
right, the shaft class on the lower left, and the background
class on the lower right. The metal class represents all pix-
els located at the distal tip of the tool, from the clevis to the
grippers. These are where all of the features which we wish
to detect are located. Additionally, we will describe later on
how the shaft class is used to fit a cylinder to the tool’s shaft,
whenever possible.
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Fig. 2. Algorithm overview of the tracking system. A: The scene labeling module applies a multi-feature training algorithm to label all
pixels in the image as one of three classes: metal, shaft, and background, producing binary masks for each. B: The feature classification
module uses a classifier on feature descriptors to localize known landmarks on the tool tips. C: The shaft extraction uses the shaft mask
from module A to fit cylinders to the shaft pixels in the image for all visible tools, whenever possible. D: The patient-side manipulator
association module uses class-labeled feature detections output from module B to determine which feature is associated with which
tool in the image. E: The fusion and tracking module takes outputs from both C and D to fuse visual observations with raw kinematics
and track the articulated tools over time.

Fig. 3. Example likelihood images from class-conditional pixel
labeling as described in Section 2.2. Upper left: the original image
from an in-vivo sequence of two robotic tools performing a sutur-
ing procedure. Upper right: metal likelihood (e.g. tool tip, clevis).
Lower left: tool shaft likelihood. Lower right: background class
likelihood.

Typically, surgeries performed with the da Vinci® are
quite zoomed in, and so the shaft is not usually visible
enough to fit a cylinder (the typical approach to many tool

tracking algorithms; Voros et al., 2007). However, at times
the camera is zoomed out and so this scene pixel labeling
routine allows the algorithm to estimate the 6-DOF pose of
the shaft as additional information (Section 2.5). By esti-
mating the approximate distance of the tool from the cam-
era using stereo matching of sparse corner features on the
tool’s tip, we can estimate if the shaft is visible enough to
attempt to fit a cylinder. When the camera is zoomed out,
although the shaft is visible the features on the tool tip are
not so easily detected. Therefore, we can pick and choose
between shaft features, tool-tip features, and a hybrid in
between depending on the distance of the tool from the
camera. These pixel labelings help to assist in both feature
detection and shaft detection, as described further in the
following text.

2.3. Feature classification

Our feature classification (module B in Figure 2) works
by analyzing only the pixels which were labeled as metal,
using the method previously described in Section 2.2. This
reduces both the false positive rate as well as the computa-
tion time, helping us to avoid analyzing pixels which are not
likely to be one of our features of interest (because we know
beforehand they are all located on the tool tip). We train a
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Fig. 4. Ground truth guide for the feature classes we detect on
the large needle driver tool. We concentrate on seven different
naturally occurring landmarks.

multi-class classifier using a discriminative feature descrip-
tor and then localize class-labeled features in the image.
Next, we stereo match and triangulate these candidate fea-
ture detections to localize as 3D coordinates. These feature
detection candidates are analyzed further using known geo-
metric constraints (described in Section 2.4.2) to remove
outliers and then are fed into the fusion and tracking stage
of the algorithm. We begin with a detailed description of
each of these feature classification steps.

2.3.1. Training data collection We begin by collecting
data for the purposes of training our classifier. We use nine
different video sequences which span various in-vivo exper-
iments to best cover a range of appearance and lighting
scenarios. For training, we use only the large needle driver
(LND) tool, however, as we will show later on this will
extend well to other types of tool, such as the Maryland
bipolar forceps (MBF) and round tip scissors (RTS). Seven
naturally occurring landmarks are manually selected and
shown in Figure 4 overlaid on an image of the LND. The
features chosen are of the pins that hold the distal clevis
together, the IS logo in the center, and the wheel and wheel
pin. For purposes of this paper, from time to time we may
refer to this combination of landmarks as a marker pattern,
Mi. We also add known invariant locations on the mid-line
of the shaft axis (described in Section 2.5) to this marker
pattern to be used in the fusion module.

For each frame in the ground truth procedure, we manu-
ally drag the best encompassing bounding box around each
feature of interest, as we want to avoid contamination from
pixels which do not belong to the tool. To obtain as large a
dataset as possible with reasonable effort, we coast through
small temporal spaces using Lucas–Kanade (KLT) opti-
cal flow (Lucas and Kanade, 1981) to predict ground truth
locations between user clicks as follows:

1. The user drags a bounding box around a feature of
interest.

2. The software uses KLT optical flow to track this feature
from frame to frame (keeping the same dimensions for
the box).

3. As the user inspects each frame, if either the track gets
lost or the size changes, the user drags a new bounding
box and starts again until the video sequence ends.

This allows for faster ground truth data collection while
still manually inspecting for accurate data. Overall, we
use ∼ 20, 000 total training samples across the seven fea-
ture classes. Before we describe the classifier algorithm,
we first discuss the feature descriptor which is used to
best discriminate these feature landmarks from each other
robustly.

2.3.2. Feature descriptor We require a discriminative and
robust region descriptor to describe the feature classes
because each feature is fairly small (17–25 pixels wide,
or ∼ 2% of the image). We choose the region covari-
ance descriptor (Tuzel et al., 2006), where the symmetric
square covariance matrix of d features in a small image
region serves as the feature descriptor (see Figure 5). Given
an image I of size [W × H], we extract d = 11 features,
resulting in a [W × H × d] feature image:

F =
[

x y Hue Sat Val Ix Iy Ixx Iyy

√
I2
x + I2

y arctan

(
Iy

Ix

)]
(1)

where x, y are the pixel locations; Hue, Sat, Val are the
hue, saturation, and luminance values from the HSV color
transformation at pixel location ( x, y); Ix, Iy are the first-
order spatial derivatives; Ixx, Iyy are the second-order spa-
tial derivatives; and the latter two features are the gradient
magnitude and orientation, respectively. The first two pixel
location features are useful because their correlation with
the other features are present in the off-diagonal entries
in the covariance matrix (Tuzel et al., 2006). The [d × d]
covariance matrix CR of any arbitrary rectangular region R
within the feature image F (described in equation (1)) then
becomes our feature descriptor.

Each CR can be computed efficiently using integral
images (Viola and Jones, 2004). We compute the sum of
each feature dimension as well as the sum of the multipli-
cation of every two feature dimensions. Given these first-
and second-order integral image tensors, it can be shown
that the covariance matrix of any rectangular region can
be extracted in O( d2) time (Tuzel et al., 2006). Using the
ground truth data from Section 2.3.1, we extract covariance
descriptors of each training feature and store the associ-
ated feature label for training a classifier. However, the d-
dimensional nonsingular covariance matrix descriptors can-
not be used as is to perform classification tasks directly
because they do not lie on a vector space, but rather on
a connected Riemannian manifold, and so the descriptors
must be post-processed.
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Fig. 5. Several independent features are combined compactly into a single feature descriptor: we use 11 features overall (shown in
the red dashed box), specifically the (x,y) locations, HSV color measurements, first- and second-order image gradients, and gradient
magnitude and orientation. A rectangular region (green box shown zoomed from the original image at the top) of the image is described
by using the covariance matrix of these 11 features within that region, yielding an 11 × 11 symmetric matrix. In order to use this matrix
as a descriptor with typical linear mathematical operations, we must map this matrix from its natural Riemannian space to a vector space
using Lie algebra techniques (top right), yielding a 66-dimensional vector-space descriptor, described in more details in Sections 2.3.2
and 2.3.3.

2.3.3. Post-processing the covariance descriptors An in-
depth mathematical derivation for how to post-process the
covariance descriptors to a vector space is shown in Tuzel
et al. (2007). Here we briefly summarize the procedure
using the same notation. Symmetric positive definite matri-
ces, to which our nonsingular covariance matrices belong,
can be formulated as a connected Riemannian manifold
(Pennec et al., 2006). A manifold is locally similar to a
Euclidean space, and so every point on the manifold has
a neighborhood in which a homeomorphism can be defined
to map to a tangent vector space.

Our goal is to map our [d × d] dimensional matrices to
a tangent space at some point on the manifold, which will
transform the descriptors to a Euclidean multi-dimensional
vector space for use within our classifier. Given a matrix X,
we define the manifold-specific exponential mapping at the
point Y as

expX( Y) = X
1
2 exp

(
X− 1

2 YX− 1
2

)
X

1
2 (2)

and similarly for the logarithmic mapping:

logX( Y) = X
1
2 log

(
X− 1

2 YX− 1
2

)
X

1
2 (3)

In these formulations, exp and log are the ordinary matrix
exponential and logarithmic operations. Finally, we define

an orthogonal coordinate system at a tangent space with
the vector operation. To obtain the vector-space coordi-
nates at X for manifold point Y, we perform the following
operation:

vecX( Y) = upper
(

X− 1
2 YX− 1

2

)
(4)

where upper extracts the vector form of the upper triangular
part of the matrix. In the end, we are left with a vector space
with dimensionality q = d( d + 1)/2.

The manifold point at which we construct a Euclidean
tangent space is the mean covariance matrix of the train-
ing data. If we consider {Xi}i=1...N to be the set of points
on a Riemannian manifold M, then to compute the mean
matrix μCR in the Riemannian space, we minimize the sum
of squared distances:

μCR = argmin
Y∈M

N∑
i=1

d2( Xi, Y) (5)

This can be computed using the following update rule in a
gradient descent procedure:

μt+1
CR

= expμt
CR

[
1

N

N∑
i=1

logμt ( Xi)

]
(6)
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We use the logarithmic mapping of Y at μCR to obtain our
final vectors as in Tuzel et al. (2007). The training covari-
ance matrix descriptors are mapped to this Euclidean space
and are used to train the multi-class classifier, described
next.

2.3.4. Randomized tree classification There are many
multi-class classifiers which may suit this problem, how-
ever, runtime is an important factor in our choice of learning
algorithm. To this end, we adapt a method called random-
ized trees (RTs) (Lepetit and Fua, 2006) to perform our
multi-class classification. In addition to providing feature
labels, we would like to retrieve confidence values for the
classification task which will be used to construct class-
conditional likelihood images for each class. We previously
performed a study of different feature descriptors (e.g.
scale-invariant feature transforms (SIFT) (Lowe, 2004), his-
tograms of oriented gradients (HoGs) (Dalal and Triggs,
2005), and the covariance descriptors previously described)
paired with various classification algorithms (e.g. sup-
port vector machines (SVMs) (Cortes and Vapnik, 1995)
and two variants on RTs, described next) in Reiter et al.
(2012b). In this work, we determined that using the covari-
ance descriptor as the feature descriptor for our chosen
landmarks paired with our adaptation of the RT classifier
achieves a sufficient level of accuracy and speed for our tool
tracking task.

RTs naturally handle multi-class problems very effi-
ciently while retaining an easy training procedure. The RT
classifier � is made up of a series of L randomly gener-
ated trees � = [γ1, . . . , γL], each of depth m. Each tree γi,
for i ∈ 1, . . . , L, is a fully balanced binary tree made up of
internal nodes, each of which contains a simple, randomly
generated test that splits the space of data to be classi-
fied, and leaf nodes which contain estimates of the posterior
distributions of the feature classes.

To train the tree, the training features are dropped down
the tree, performing binary tests at each internal node until
a leaf node is reached. Each leaf node contains a histogram
of length equal to the number of feature classes B, which
in our problem is seven (for each of the manually chosen
landmarks shown in Figure 4). The histogram at each leaf
counts the number of times a feature with each class label
reaches that node. At the end of the training session, the his-
togram counts are turned into probabilities by normalizing
the counts at a particular node by the total number of hits at
that node. A feature is then classified by dropping it down
the trained tree, again until a leaf node is reached. At this
point, the feature is assigned the probabilities of belonging
to a feature class depending on the posterior distribution
stored at the leaf from training.

Because it is computationally infeasible to perform all
possible tests of the feature, L and m should be chosen so
as to cover the search space sufficiently and to best avoid
random behavior. In this work, we used L = 60 trees each
of depth m = 11. Although this approach has been shown

to be very successful for matching image patches (Lep-
etit and Fua, 2006), traditionally the internal node tests are
performed on a small patch of the luminance image by ran-
domly selecting two pixel locations and performing a binary
operation (less than, greater than) to determine which path
to take to a child. In our problem, we are using feature
descriptor vectors rather than image patches, and so we
must adapt the node tests to suit our problem.

To this end, we use a similar approach to Bosch et al.
(2007) in creating node tests for feature descriptor vec-
tors. In our case, for each internal tree node we construct
a random linear classifier hi to feature vector x to split the
data,

hi =
{

nTx + z ≤ 0 go to right child
otherwise go to left child

(7)

where n is a randomly generated vector of the same length
as feature x with random values in the range [−1, 1], and
z ∈ [−1, 1] is also randomly generated. This test allows for
robust splitting of the data and is efficiently utilized as it is
only a dot product, an addition, and a binary comparison per
tree node. In this way, we train the tree with vectorized ver-
sions of the covariance descriptors and build up probability
distributions at the leaf nodes. The resulting RT classifier �

is our final multi-class classifier. The results from each tree
γi are averaged across all L trees. However, we choose rel-
atively small values for L and m for computation purposes,
but the search space is still quite large given the appreciable
number of choices for randomly created linear dot prod-
ucts at the internal tree nodes, and this leaves the training
approach susceptible to randomness. To alleviate this, we
modify the approach further.

2.3.5. Best weighted RTs We developed a method (Reiter
et al., 2012b) which is able to improve on the standard RT
approach, which we call best weighted RTs. The modifica-
tion lies in two observations:

1. Each tree γi is essentially a weak classifier, but some
may work better than others, and we can weight them
according to how well they behave on the training data.

2. Because of the inherent randomness of the algorithm
and the large search space to be considered, we can
show improvement by initially creating an RT bag �

of size E � L. This allows us to initially consider a
larger space of trees, but we then evaluate each tree in
� on the training data in order to select the best L trees
for inclusion in the final classifier according to an error
metric.

The latter point allows us to consider more of the param-
eter space when constructing the trees while retaining the
computational efficiency of RTs by only selecting the best
performers. In order to evaluate a particular tree on the
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training data, we look at the posterior probability distri-
butions at the leaf nodes. First, we split the training data
into training and validation sets (we typically use ∼ 70%
to train and the rest to validate). Next, all trees from the
training set in � are trained as usual. Given a candidate
trained tree γ̃i ∈ �, we drop each training sample from
the validation set through γ̃i until a leaf node is reached.
Given training feature Xj and feature classes 1, . . . , B, the
posterior distribution at the leaf node contains b conditional
probabilities pγ̃i ( y|Xj) where y ∈ 1, . . . , B. To evaluate the
goodness of tree γ̃i on Xj, we compare pγ̃i ( yj|Xj) to the
desired probability 1 of label yj, and accumulate the root-
mean squared (RMS) error of all training features Xj across
all validation trees in �. The top L trees (according to the
lowest RMS errors) are selected for the final classifier �.
Our initial bag size for this work was E = 125, 000 candi-
date tree classifiers, cut down to L = 60 trained trees for the
final classifier.

In addition to selecting the best trees in the bag, we use
the error terms as weights on the trees. Rather than allowing
each tree to contribute equally to the final averaged result,
we weight each tree as one over RMS so that trees that label
the validation training data better have a larger say in the
final result than those which label the validation data worse.
As such, for each γi ∈ � we compute an associated weight
wi such that

wi = 1

rmsi
(8)

where rmsi is the accumulated RMS error of tree γi on the
validation data. At the end, all weights wi for i ∈ 1, . . . , L
are normalized to sum to one and the final classifier result
is a weighted average using these weights.

2.3.6. Feature class labeling Given our trained classifier
�, we detect features for each class label on a test image by
computing dense covariance descriptors CR (at many loca-
tions in the image) using the integral image approach for
efficient extraction. Each CR is mapped to a vector space
using the mean covariance μCR of the training data as previ-
ously described, producing a Euclidean feature cj. We drop
each cj through the trees γi and average the probabilities at
the obtained leaf nodes to get a final probability distribu-
tion pb, representing the probability of cj belonging to each
of the B feature classes. This results in B class-probability
images. To get the pixel locations, we perform non-maximal
suppression in each class-probability image.

The reason we use the probabilities instead of the classifi-
cation labels is that a classification of label b arises because
its confidence is greater than all other B − 1 classes in
the classifier, however, a confidence of 95% for one pixel
location means more than a confidence of 51% for that
same labeling at a different location. In this case, we would
choose the pixel with the higher probability (even given
they both have the same label), and for this reason we detect
in probability space rather than in labeling space.

2.3.7. Stereo matching Now that we have candidate pixel
locations for each feature class, we stereo match the fea-
ture detections in the corresponding stereo camera using
normalized cross-correlation checks along the epipolar line
and triangulate the features to retrieve 3D locations. Using
integral images of summations and squared-summations we
can efficiently compute correlation windows along these
epipoles. However, at this point we only have 3D point loca-
tions (in the camera’s coordinate system) and associated
feature labels, but we do not know with which tool each
feature is associated. Next we describe the tool association
procedure.

2.4. Patient-side manipulator association

At this point, we have class-labeled 3D feature locations,
but with multiple tools in the scene it is unclear which fea-
ture is associated with which tool. Typically, the da Vinci®

has three patient-side manipulators (PSMs), only two of
which are visible in the camera frame at any time. We
label each manipulator as PSM0, PSM1, and PSM2. For the
purposes of this work we only consider two tools simultane-
ously, PSM0 and PSM1, and our goal is to associate feature
detections with PSMs (module D in Figure 2).

2.4.1. Pre-processing the marker patterns Each PSM has
a marker pattern, M0 and M1 respectively, each in their zero-
coordinate frame (i.e. the coordinate system before any
kinematics are applied to the marker). Using the forward
kinematics estimate from each PSM, we rotate the marker
patterns to achieve the estimated orientations of each PSM.
Note that we do not apply the full rigid-body transform from
the forward kinematics because most of the error is in the
position, and although the rotation is not fully correct, it is
typically close enough to provide the geometric constraints
we require. This leaves us with

M̃0 = Rot0( M0) (9)

M̃1 = Rot1( M1) (10)

where Rot0 and Rot1 are the 3 × 3 rotation matrices from
the full rigid-body transformations representing the forward
kinematics for PSM0 and PSM1, respectively. Given M̃0 and
M̃1, we compute 3D unit vectors between each of the rotated
point locations within each marker. This yields 7×7 3D unit
vectors in a 7 × 7 × 3 matrix for each rotated marker pat-
tern. Additionally, we compute a 7 × 7 distance matrix Dm

between each marker location in its zero-coordinate frame.

2.4.2. Applying the marker geometry constraints Next,
given all N detected feature observations in the image frame
using the classification method described in Section 2.3
(potentially present on all visible tools as well as any poten-
tial false positives in the scene), we compute (1) an N × N
distance matrix, where each distance matrix element ( i, j)
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Fig. 6. By extracting the boundary lines of the shaft (red and blue
lines), the mid-line axis (green lines), and then the intersection
location between the tool’s shaft and the clevis (green dot), we can
add shaft observations along with the feature observations to the
fusion stage of the tracking system.

specifies the 3D Euclidean distance between feature obser-
vation i and feature observation j, and (2) an N × N × 3
matrix of unit vectors, similar to those computed for the
marker patterns using the kinematics estimates from the
robot. To create the latter matrix, we compute the 3D unit
direction vector between feature observation i and feature
observation j.

We use these two matrices to reject any feature obser-
vations which do not adhere to one of the pre-processed
marker distance and rotation configurations according to the
PSMs. Using empirically determined distance (e.g. ∼ 3–5
mm) and orientation (e.g. ∼ 10◦–20◦) thresholds, we are
able to determine which feature observation is associated
with each PSM instrument, by rejecting those distance and
unit vector observation entries which are inconsistent with
an expected marker pattern, allowing only one assignment
per feature class to each PSM instrument.

2.5. Shaft extraction

As mentioned earlier, it is not guaranteed that there are
enough shaft pixels visible to compute valid cylinder esti-
mates, and so we use stereo vision to estimate the distance
of the tool tip from the camera. If the algorithm determines
that the tools are situated far enough away from the cam-
era that the shaft is sufficiently visible (based on a distance
in the z-dimension along the optical axis from the camera
which is empirically determined), we use the shaft likeli-
hood mask (from Section 2.2) to collect pixels in the image
(potentially) belonging to one of the two tools’ shafts (mod-
ule C in Figure 2). Assuming that each tool shaft is rep-
resented as a large, rectangular blob (see Figure 3, lower
left, for an example), using connected components and 2D
statistical measures (e.g. aspect ratios, total pixel areas) we
eliminate those areas of the image which are not likely to
be one of the tool shafts.

Next, we fit 2D boundary lines to each candidate shaft
blob, as shown with the blue and red lines in Figure 6. Using

projective geometry (Hartley and Zisserman, 2003) we fit a
3D cylinder to each pair of 2D lines, representing a single
tool’s shaft. Then, we locate the intersection point in the
2D image where the tool shaft meets the proximal clevis by
moving along the cylinder axis mid-line from the bound-
ary of the image and locating the largest jump in gray-scale
luminance values, representing where the black shaft meets
the metal clevis (the green circles in Figure 6). We then
project a 3D ray from the image (e.g. using the camera’s
intrinsics parameters producing a 3D ray from the 2D pixel
location) through this 2D shaft/clevis pixel to intersect with
the 3D cylinder and localize on the surface of the tool’s
shaft. Finally, we project this 3D surface location onto the
axis mid-line of the shaft, representing a rotationally invari-
ant 3D feature on the shaft. This shaft feature is associated
with its known marker location and is added to the fusion
stage along with the feature classification detections (from
Section 2.3).

The green lines in Figure 6 represent the axis mid-lines of
each tool shaft’s cylinder representation, which are obtained
by taking the average mid-line between the extracted shaft
boundaries for each tool. The intersection location between
the black shaft and the metal clevis is used because this
natural contrast will provide a very large jump in pixel
value which is more reliably detected in most lighting situ-
ations. The green dots along the green lines represent these
shaft/clevis intersection locations, and each is projected to
the associated 3D cylinder axis mid-lines, each of which
has a known, prior location on the shaft (and is invariant to
the roll of the shaft) to be used as an additional input to the
fusion stage, described next.

2.6. Fusion and tracking

Because we cannot ensure that the features that we chose to
detect are always visible on any given frame, we combine
the robot kinematics with the vision estimates to provide
our final articulated pose across time (module E in Fig-
ure 2). The kinematics joint angles are typically available
at a very high update rate, although they may not be very
accurate due to the error accumulation at each joint.

For surgical robots like the da Vinci®, it is important
to keep the instrument insertion point (also termed remote
center) stationary. This means that one part of the robotic
arm holding the instrument does not move during the
surgery (i.e. it is passive). The error of the end effector
pose comes from both the error in zero calibration of the
potentiometers at the joints and the error in the kinemat-
ics chain due to the link lengths. These are mostly static
because the errors from the passive setup joints (SJUs) have
more influence on the overall error as they are further up
in the kinematic chain and have longer link lengths than
the active joints. Therefore, if we can solve for this con-
stant error bias, we can apply this to the raw kinematics
of the active joints and end up with fairly accurate over-
all joint angle estimates. This bias essentially amounts to
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a rigid-body pose adjustment at the stationary remote cen-
ter. Although there is also error for the robotic arm holding
the camera, when it does not move it is not necessary to
include this in the error contributions. However, the errors
observed in the arm holding the camera are similar to those
which hold the tool manipulators (up to one inch of absolute
error).

To perform these adjustments on-line, we use an
extended Kalman filter (EKF). Before we describe the equa-
tions, we will first define some coordinate systems used in
the notation below.

1. True remote-center coordinate system (RCS): the
true remote-center coordinate system corresponding to
the coordinate system which is attached to the true
remote center. It is fully determined by the SJUs of the
robot and is the virtual base for all active joints.

2. Kinematics remote-center coordinate system (KCS):
this corresponds to the remote center pose as derived by
the kinematics. It absorbs all of the errors in the SJUs
into an error in its pose (6 DOFs).

3. True instrument joint coordinate system (ICS): there
is one coordinate system attached to each rigid segment
of the robotic arm.

2.6.1. Process model The state variables contain the offset
of the remote center pose. In particular, it is represented as
the true pose of the remote center in the coordinate system
of the remote center derived from the kinematics (the KCS).
The true remote location in the KCS is cK

R = [cx, cy, cz]T,
and the rotation in the form of a unit quaternion vector
is qK

R = [q0, qx.qy, qz]T. The vector to be estimated is
xt = [q0, qx.qy, qz, cx, cy, cz]T. We assume that it is either
fixed or slowly changing, and therefore we model it as a
constant process. The process noise can be tuned to find a
balance of responsiveness and stability. Equation 11 below
shows a simple static process model, where I7 represents a
7×7 identity matrix and wt−1 represents the expected noise
between time stamps of the measurements:

xt = I7xt−1 + wt−1 (11)

2.6.2. Observation models The observation model comes
from our 3D point locations of our feature classes, trans-
formed into the KCS. We need at least three non-collinear
points for the system to be fully observable. The measure-
ment vector is

y3 = [x1, y1, z1, . . . , xn, yn, zn]T (12)

The observation function which transforms state variables
to observations is not linear, and so we need to provide the
following Jacobians:

J1 = ∂pK

∂qK
I

(13)

J2 = ∂pK

∂cK
I

(14)

where pK is a 3D point location in the KCS, qK
I is a unit

quaternion rotation between the ICS and the KCS, and cK
I is

the remote center location in the KCS. For more details, we
refer the interested reader to Zhao et al. (2009c). In practice,
we found that the parameters of the EKF did not need to be
finely tuned as long as we used reasonable estimates for the
expected noise in the position and orientation of the remote
center pose offset.

2.6.3. Handling outliers It is unlikely that any realistic
solution to a computer vision problem does not contain
outliers. We are mostly concerned with the image analysis
as it is input to the fusion and tracking module (E in Fig-
ure 2). To deal with this, we add an initial RANSAC phase
to gather a sufficient number of observations and perform
a parametric fitting of the rigid transformation for the pose
offset of the remote center. This is used to initialize the EKF
and updates on-line as more temporal information is accu-
mulated. We require a minimum of ∼ 30 total inliers for
a sufficient solution to begin the filtering procedure. The
rigid-body transformation offset is computed using the 3D
correspondences between the class-labeled feature observa-
tions, done separately for each PSM after the PSM associ-
ation stage described in Section 2.4, and the corresponding
marker patterns after applying the forward kinematics esti-
mates to the zero-coordinate frame locations for each tool.
Because the remote center should not change over time, this
pose offset will remain constant across the frames, and so
by accumulating these point correspondences temporally,
we are able to achieve a stable solution.

3. Experiments

We experimented on two types of datasets, both collected
previously on a da Vinci® surgical robot: (1) porcine data
(in vivo), and (2) pork data (ex vivo). The data which was
used to test was specifically not included in the training
collection procedure described in Section 2.3.1. After we
collected and trained the seven feature classes using the
∼ 20, 000 training samples with our best weighted RTs
approach (from Section 2.3.5), we applied the PSM asso-
ciation and geometric constraints method from Section 2.4
and finally the fusion and tracking stage from Section 2.6.
To best account for appearance variabilities of the land-
marks, we made sure to include training samples of each
landmark under many different conditions, including var-
ious scene illuminations, in-plane and out-of-plane rota-
tions, and intermittent specularities. In this way, different
variations of the appearance of each feature are captured in
the classifier and invariance is achieved through the use of
many different instances of each feature type.

Overall, we experimented on six different video
sequences, totaling 6876 frames (i.e. 458 s worth of video).
Each video frame had two tools visible at all times. Across
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Fig. 7. Images of the three types of tool dealt with successfully in this paper. We train only on the LND (left), and are able to track on
all three, including the MBF (middle) and RTS (right).

these video sequences, we experimented on three different
types of da Vinci® tools, shown in Figure 7. To demon-
strate the strength of our system, we trained only on the
LND, shown on the left in Figure 7, and tested on that same
LND tool in addition to the MBF (middle) and RTS (right).
The method works on these other tools because there are
many shared parts across the tools, including the pins used
to hold the clevis together and the IS logo in the center of
the clevis. Even though the overall appearance of each tool
is quite different, our results show that the method extends
very well to different tools given that the lower-level fea-
tures are consistent. However, if newer tools are introduced
which do not share these parts in common, more training
data and feature classes must be considered and included in
training the classifier discussed in Section 2.3.

We show 10 sample results in Figure 8 from various test
sequences. Rows 1–4 show ex-vivo pork results with dif-
ferent combinations of the LND, MBF, and RTS tools. Row
5 shows a porcine in-vivo sequence with an MBF on the
left and an LND on the right. In Row 4 on the right side,
one tool is completely occluding the other tool’s tip, how-
ever, the EKF from the fusion stage assists in predicting the
correct configuration. In general, this is the typical behav-
ior observed for partially visible or occluded tools only if
the features were previously detected and accumulated over
time. The reason for this is that the remote center for the
robot arm is reasonably static, and so once the pose off-
set at the insertion point is accurately corrected, we can
use the EKF to predict forward the remaining active joints,
even when the features are not completely visible. The
feature detections are important for reducing the drift of
the arm at the remote center, however, for small periods
of time using joint predictions from the EKF suffices for
accurate overall tracking, and is a strength of our approach
since it is inevitable that tools periodically exit the video
frame. For each, the red lines portray the raw kinematics
estimates as given by the robot. The blue lines show the
corrected kinematics after running our detection and track-
ing system. We show full video sequences for each of these
as follows:

• Row 1 (‘Seq. 1’), MBF (left) and LND (right):
http://www.youtube.com/watch?v=EWWQd-3zIT4;

• Row 2 (‘Seq. 2’), RTS (left) and MBF (right):
http://www.youtube.com/watch?v=fT1wILqpY6w;

• Row 3 (‘Seq. 3’), LND (left) and RTS (right):
http://www.youtube.com/watch?v=DD6ucZv5l2o;

• Row 4 (‘Seq. 4’), MBF (left) and MBF (right):
http://www.youtube.com/watch?v=aGXR3BytGRs;

• Row 5 (‘Seq. 5’), MBF (left) and LND (right):
http://www.youtube.com/watch?v=cNV12l_559g.

One additional video result (‘Seq. 6’) is shown
at http://www.youtube.com/watch?v=TKiFQ3fKouM. In
these sequences, again the red lines represent the raw kine-
matics estimates from the robot, projected onto the image
frames. Notice the significant errors, where in some images
the estimates are not visible at all, motivating the need
for the algorithms presented in this paper. The blue lines
represent the corrected kinematics resulting from our track-
ing system. A visual inspection yields a fairly accurate
correction of the kinematics overlaid on the tools.

Because joint-level ground truth for articulated tools is
very difficult to collect accurately and on a large dataset,
we evaluated the accuracy of our tracking system in the
2D image space. The left image in Figure 9 describes our
evaluation scheme for our kinematics estimates. The dotted
blue lines define an acceptable boundary for the camera-
projection of the kinematics, where the green line is a per-
fect result. The right image in Figure 9 shows an example of
an incorrect track on the rightmost tool. Using this scheme,
we manually inspect each frame of the test sequences,
resulting in a 97.81% accuracy rate over the entire dataset.

Table 1 shows a more detailed breakdown of our eval-
uation. Overall, we tested against six sequences, including
both ex-vivo and in-vivo environments and all had two tools
in the scene. The table shows the test sequence name in
the first (leftmost) column, the number of tracks labeled as
correct in the second column, the total possible number of
detections in that sequence in the third column, and the final
percentage correct in the last (rightmost) column. Note that
in any given frame, there may be one or two tools visible,
and this is how we compute the numbers in the third column
for the total potential number of tracks in that sequence.
Finally, the last row shows the total number of correct tracks
detected as 13,315 out of a total possible of 13,613, yield-
ing our final accuracy of 97.81% correct. Also note that the
accuracy was very similar across the sequences, showing
the consistency of the algorithm. Although the accuracy
was evaluated in the 2D image space, we note that this
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Fig. 8. Ten sample results from various test sequences. Rows 1–4 show different combinations of the three tools in Figure 7 on the
ex-vivo pork sequence. The last row shows a porcine in-vivo sequence. For each, the red lines show the raw kinematics estimates from
the robot and the blue lines show the corrected kinematics after running our tracking algorithm. Row 1: MBF (left) and LND (right);
Row 2: RTS (left) and MBF (right); Row 3: LND (left) and RTS (right); Row 4: MBF (left) and MBF (right); Row 5: MBF (left) and
LND (right). The right side of Row 4 shows one tool occluding the other, however, the EKF helps to predict through that.

does not completely represent the overall 3D accuracy as
errors in depth may not be reflected in the perspective image
projections.

The full tracking system runs at approximately 1.0–1.5
s/frame using full-sized stereo images (960 × 540 pixels).
The stereo matching, PSM association, and fusion/EKF
updates are negligible compared to the feature classifica-
tion and detection, which takes up most of the processing
time. This is dependent on the following factors: number
of trees in �, depth of each tree γi, number of features
used in the region covariance descriptor CR (we use 11, but

fewer could be used), and the quality of the initial segmen-
tation providing the mask prior. However, by half-sizing the
images we can achieve a faster frame-rate (0.6–0.8 s/frame,
an example of which is shown in Seq. 5) while achieving
similar accuracy. Also, because we are solving for a remote-
center bias offset which remains constant over time, we can
afford to process the frames at a slower rate without affect-
ing the overall accuracy of the tracking system. Finally,
many stages of the classification are parallelizable, and we
are currently looking at implementing both the covariance
descriptor and RTs on a GPU processor. Preliminary results
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Fig. 9. Left: to evaluate our kinematics estimates, we evaluate in the image space because of the difficulty in collecting ground truth.
The projected overlays must fall within the boundaries labeled as dotted blue lines here, and the green is a perfect detection. Right: an
example of an incorrect track on the rightmost tool.

Table 1. Tracking accuracy breakdowns.

Sequence # Correct Potential % Correct

Seq. 1 1890 1946 97.12%
Seq. 2 2114 2182 96.88%
Seq. 3 1447 1476 98.04%
Seq. 4 1611 1648 97.75%
Seq. 5 4376 4431 98.76%
Seq. 6 1877 1930 97.25%
TOTAL 13,315 13,613 97.81%

on the covariance processing reduces the processing time of
the feature tensors (equation (1)) from ∼ 700 ms to ∼ 100
ms, and we believe we can reduce this further. We save for
future work the GPU parallelization of the descriptor and
classification procedures.

4. Discussions

4.1. Descriptor window size

There are many important choices to be made when imple-
menting this tracking system. One such decision is the size
of the window to use when extracting covariance descrip-
tors for classification throughout the image. The reason is
that, during training, we use the best encompassing bound-
ing box around each feature, and the descriptors are well
tuned to representing the entire feature. When applying
the classifier, if the window is too small or too large, the
descriptors will not capture the features well. To alleviate
this, we use prior knowledge of the 3D sizes of the features
to guide computation of the optimal window size. Using the
stereo vision approach which determines if the shaft is visi-
ble enough to extract (from Section 2.2) and estimating that
the features are ∼ 3 × 3 mm in size, we can automatically
determine the optimal window size in the image dynami-
cally on each frame. To further reduce errors, at every pixel
location that we evaluate, we extract a bounding box which
is both full- and half-sized according to this automatically
determined window size to account for the smaller features
(e.g. the pins). This improves the overall feature detection
system.

4.2. Kinematics latency

Upon further inspection of the errors encountered during
evaluation on the test sequences, we found that most of the
incorrect fixed/tracked kinematic configurations are due to
a latency in the raw kinematics which causes the video and
raw kinematics to be out of sync from time to time. This sit-
uation is shown more precisely in Figure 10. We determined
this by noticing that, for the individual frames which had
incorrect projections (according to our scheme described
in Section 3), the result would jump immediately to a cor-
rect configuration instead of getting lost completely, and the
previous incorrect projection was in the location and con-
figuration that the upcoming projection would eventually
reach. Therefore, by logging the test data more precisely
so that the video and kinematics are more in sync with each
other, we would expect our accuracy to increase even fur-
ther. However, in practice on a live system this kinematic
latency does not exist, and future in-vivo live experiments
should demonstrate this.

4.3. Other error sources

In addition to the errors due to the kinematics/video syn-
chronization, the remaining errors that we observed were
due to incorrect feature assignments. This error presented in
one of two forms: either assigning a particular feature to the
wrong tool (given that more than one is visible), or accept-
ing the wrong location for a particular feature class on the
correct tool. For these types of errors, we use geometric
constraints of distances and orientations between the feature
candidates to reject geometrically inconsistent detections.
However, occasionally too many incorrect detections are
assigned to the wrong tool, causing the tool’s pose to be
off. Over time, as more features are correctly assigned, this
error tends to correct itself.

4.4. Hybrid approach

Finally, we wish to mention that the majority of tool track-
ing approaches in the literature work by estimating the
cylinder of the shaft which is visible in the scene (Doignon
et al., 2006; Voros et al., 2007). However, as we previously
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Fig. 10. Example of kinematic latency (right tool): often the kinematics and video get out of sync with each other. Most of our errors
are due to this fact, manifesting in the situation shown here. In (a), both tools are tracked well. Then, in (b) and (c), the kinematics and
video become out of sync and the right tool becomes inaccurately tracked. However, in (d), the tools are tracked successfully again.
The blue configuration in (c), which is essentially the same as the correct one immediately following in (d), suggests this latency is the
source of our errors. These four frames are consecutive to each other in order.

discussed, surgeons tend to work quite zoomed in, making
this cylinder-fitting procedure very difficult, if not impossi-
ble, due to the limited number of visible shaft pixels. The
remaining minority approaches work by analyzing the tip
of the tool using features (Burschka et al., 2004; Reiter and
Allen, 2010), however, these will fail when the tool tip is
too far away to be seen well by the camera. Our approach is
advantageous in that it dynamically decides which of these
two approaches is optimal at any given time, and often uses
both simultaneously to best the track the tool over longer
periods of time. Also, by using the pixel-labeling method
described in Section 2.2, we are able to tell more accurately
when parts of the tool are occluded. For example, if the
metal tool tip is occluded then the pixel labeling will not
label the incorrect pixels from the occluder as metal, and
we will avoid fewer false positives, and similarly for the
shaft.

4.5. Other tooling

Although the contents of this paper have been exclusively
proven on the da Vinci® robot, the method is generic
enough to be applicable to other types of laparoscopic tool,
either manually or robotically controlled. The algorithm
requires the presence of some kinds of fiducials, either nat-
urally occurring or manually placed. The advantages shown
were in the ability to detect very small features robustly,
and so even structures which are naturally occurring such as
pins and miniature ridges within the tool’s tip can be used
as features. This decreases the reliance on carefully placed
markers, which are challenging to manufacture accurately.
Many existing surgical tools do in fact have such features,
and so our approach could be applied to these tools as well.

5. Conclusions

This paper has presented a tool detection and tracking
framework which is capable of tracking multiple types of
tools and multiple tools simultaneously. The algorithm was
demonstrated on the da Vinci® surgical robot, however,
it may be extended to other types of surgical robot. We
showed high accuracy and long tracking times across differ-
ent kinds of environment (ex vivo and in vivo). By learning
low-level features using a multi-class classifier, we showed
how different degrees of visibility for each feature can be
overcome. We also showed that a hybrid approach of using
both the shaft and features on the tool tip is advantageous
over either of these methods alone. Using knowledge of
the distance of the tool we can dynamically adapt to differ-
ent levels of information into a common fusion framework.
Finally, by fusing vision and kinematics, we can account for
missed observations over time.
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