
CS W4733 NOTES - Differential Drive Robots

Note: these notes were compiled from Dudek and Jenkin, Computational Principles of Mobile
Robotics.

1 Differential Drive Kinematics

Many mobile robots use a drive mechanism known as differential drive. It consists of 2 drive wheels
mounted on a common axis, and each wheel can independently being driven either forward or back-
ward.

While we can vary the velocity of each wheel, for the robot to perform rolling motion, the robot
must rotate about a point that lies along their common left and right wheel axis. The point that the
robot rotates about is known as the ICC - Instantaneous Center of Curvature (see figure 1).

Figure 1: Differential Drive kinematics (from Dudek and Jenkin, Computational Principles of Mobile
Robotics.

By varying the velocities of the two wheels, we can vary the trajectories that the robot takes.
Because the rate of rotation ω about the ICC must be the same for both wheels, we can write the
following equations:

ω (R + l/2) = Vr (1)
ω (R − l/2) = Vl (2)

where l is the distance between the centers of the two wheels, Vr , Vl are the right and left wheel
velocities along the ground , and R is the signed distance from the ICC to the midpoint between the
wheels. At any instance in time we can solve for R and ω:

1

R =
l

2

Vl + Vr
Vr − Vl

; ω =
Vr − Vl

l
; (3)

There are three interesting cases with these kinds of drives.

1. If Vl = Vr, then we have forward linear motion in a straight line. R becomes infinite, and there
is effectively no rotation - ω is zero.

2. If Vl = − Vr, then R = 0, and we have rotation about the midpoint of the wheel axis - we rotate
in place.

3. If Vl = 0, then we have rotation about the left wheel. In this case R = l
2
. Same is true if

Vr = 0.

Note that a differential drive robot cannot move in the direction along the axis - this is a singularity.
Differential drive vehicles are very sensitive to slight changes in velocity in each of the wheels. Small
errors in the relative velocities between the wheels can affect the robot trajectory. They are also
very sensitive to small variations in the ground plane, and may need extra wheels (castor wheels) for
support.

2 Forward Kinematics for Differential Drive Robots

In figure 1, assume the robot is at some positon (x, y), headed in a direction making an angle θ with
the X axis. We assume the robot is centered at a point midway along the wheel axle. By manipulating
the control parameters Vl , Vr, we can get the robot to move to different positions and orientations.
(note: Vl , Vr) are wheel velocities along the ground).

Knowing velocities Vl, Vr and using equation 3, we can find the ICC location:

ICC = [x − Rsin(θ) , y + Rcos(θ)] (4)

and at time t + δt the robot’s pose will be: x′

y′

θ′

 =

 cos(ωδt) −sin(ωδt) 0
sin(ωδt) cos(ωδt) 0

0 0 1


 x− ICCx
y − ICCy

θ

 +

 ICCx
ICCy
ωδt

 (5)

This equation simply describes the motion of a robot rotating a distance R about its ICC with an
angular velocity of ω.

Refer to figure 2. Another way to understand this is that the motion of the robot is equivalent to
1) translating the ICC to the origin of the coordinate system, 2) rotating about the origin by an angular
amount ω δt, and 3) translating back to the ICC.

2

9/16/2013

1

ICC (2,4)

X (2,1)

Example: Differential Drive Robot. Rotate about ICC 90 degrees.
How do we know where the robot ends up?

Forward Kinematics for Differential Drive Robot
ICC (2,4)

X (0,‐3)

First, Translate ICC to origin

Forward Kinematics for Differential Drive Robot

ICC (2,4)

X (3,0)

Then, Rotate by 90 degrees about Z axis

Forward Kinematics for Differential Drive Robot
ICC (2,4)

X (5,4)

Finally, Translate back to original ICC

Forward Kinematics for Differential Drive Robot

Rotation by wdt
about Z axis

Translate ICC
to origin

Translate ICC
Back to original
location

Transformed
Point X,Y

Figure 2: Forward kinematics for differential robot

3 Inverse Kinematics of a Mobile Robot

In general, we can describe the positon of a robot capable of moving in a particular direction Θ(t) at a
given velocity V (t) as:

x(t) =
∫ t

0
V (t)cos[θ(t)]dt

y(t) =
∫ t

0
V (t)sin[θ(t)]dt

Θ(t) =
∫ t

0
ω(t)dt

For the special case of a differential drive robot such as the GoPiGo, the equations become:

x(t) =
1

2

∫ t

0
[vr(t) + vl(t)]cos[θ(t)]dt

y(t) =
1

2

∫ t

0
[vr(t) + vl(t)]sin[θ(t)]dt

Θ(t) =
1

l

∫ t

0
[vr(t) − vl(t)])dt

A related question is: How can we control the robot to reach a given configuration (x, y, θ) - this
is known as the inverse kinematics problem.

Unfortunately, a differential drive robot imposes what are called non-holonomic constraints on
establishing its position. For example, the robot cannot move laterally along its axle. A similar non-
holonomic constraint is a car that can only turn its front wheels. It cannot move directly sidewise, as
parallel parking a car requires a more complicated set of steering maneuvers. So we cannot simply
specify an arbitrary robot pose (x, y, θ) and find the velocities that will get us there.

4

For the special cases of vl = vr = v (robot movng in a straight line) the motion equations
become:

 x′

y′

θ′

 =

 x+ v cos(θ)δt
y + v sin(θ)δt

θ

 (6)

If vr = −vl = v, then the robot rotates in place and the equations become:

 x′

y′

θ′

 =

 x
y

θ + 2vδt/l

 (7)

This motivates a strategy of moving the robot in a straight line, then rotating for a turn in place,
and then moving straight again as a navigation strategy for differential drive robots.

5

Figure 3: GoPiGo wheel kinematics

4 Understanding GoPiGo Kinematics

The GoPiGo’s kinematics use two parameters: the wheel radius Rwheel (∼ 3.25 cm) and the distance
between the two drive wheels, the AxleLength (∼ 11.55 cm). Each robot has some difference with
these numbers, so you may want to check on them.

The number of encoder counts on each wheel is 18: Measuring 18 pulses of the encoder is one full
revolution of the wheel.

To move forward a certain distance Dforward, we need to find out how many encoder counts map
to the distance needed. Given the two parameters above, we note that each revolution of a wheel moves
the wheel linearly 2πRwheel. If both wheels are moving at the same rate we get forward motion, and
the number of wheel revolutions is is Dforward

2πRwheel
, and the number of encoder counts to move this distance

is just the number of revolutions of the wheels time 18 pulses per revolution:

encoder counts =
Dforward

2πRwheel
· 18

6

Turning: we can turn left by turning only the right wheel, and turn right by turning only the left
wheel. We need to compute how many encoder pulses to use to turn either left or right a certain number
of degrees. First, we need to calcuate the ratio DPR: Degrees Per Pulse for the wheel encoders. To
do this, we note that the GoPiGo wheel radius is 3.25 cm, and the linear distance the wheel travels in
one revolution is 2 · 3.25 π = 20.42 cm. If we only turn one wheel, then the robot makes a circular
motion with the circle’s circumference being 2 · AxleLength · π = 72.57 cm. The number of wheel
revolutions for a left or right complete circle turn is 72.57/20.4 = 3.56, and 3.56 · 18 = 64 encoder
pulses for a full 360 degree turn. Determining the number of encoder pulses for turn less than 360
degrees can be done using just Degrees−to−turn

360
· 64 encoder pulses on the left wheel (turn clockwise) or

right wheel (turn counter-clockwise). The code below is from the Find Hole programs.

from gopigo import *

en_debug=1
360 roation is ˜64 encoder pulses or 5.625 deg/pulse
DPR is the Deg:Pulse Ratio or the # of degrees per
encoder pulse.
DPR = 360.0/64
WHEEL_RAD = 3.25 # Wheels are ˜6.5 cm diameter.

def left_deg(deg=None):
’’’
Turn chassis left by a specified number of degrees.
DPR is the #deg/pulse (Deg:Pulse ratio)
This function sets the encoder to the correct number
of pulses and then invokes left().
’’’
if deg is not None:

pulse= int(deg/DPR)
enc_tgt(1,0,pulse)

left()

def right_deg(deg=None):
’’’
Turn chassis right by a specified number of degrees.
DPR is the #deg/pulse (Deg:Pulse ratio)
This function sets the encoder to the correct number
of pulses and then invokes right().
’’’
if deg is not None:

pulse= int(deg/DPR)
enc_tgt(0,1,pulse)

right()

7

def fwd_cm(dist=None):
’’’
Move chassis fwd by a specified number of cm.
This function sets the encoder to the correct number
of pulses and then invokes fwd().
’’’
if dist is not None:

pulse = int(cm2pulse(dist))
enc_tgt(1,1,pulse)

fwd()

def bwd_cm(dist=None):
’’’
Move chassis bwd by a specified number of cm.
This function sets the encoder to the correct number
of pulses and then invokes bwd().
’’’
if dist is not None:

pulse = int(cm2pulse(dist))
enc_tgt(1,1,pulse)

bwd()

def cm2pulse(dist):
’’’
Calculate the number of pulses to move the chassis dist cm.
pulses = dist * [pulses/revolution]/[dist/revolution]
’’’
wheel_circ = 2*math.pi*WHEEL_RAD # [cm/rev] cm traveled per revolution of wheel
revs = dist/wheel_circ
PPR = 18 # [p/rev] encoder Pulses Per wheel Revolution
pulses = PPR*revs # [p] encoder pulses required to move dist cm.
if en_debug:

print ’WHEEL_RAD’,WHEEL_RAD
print ’revs’,revs
print ’pulses’,pulses

return pulses

8

