
 An Introduction to Applicative Functors

 Bocheng Zhou

What Is an Applicative Functor?

● An Applicative functor is a Monoid in the
category of endofunctors, what's the
problem?

● WAT?!

Functions in Haskell
● Functions in Haskell are first-order citizens
● Functions in Haskell are curried by default

○ f :: a -> b -> c is the curried form of g :: (a, b) -> c
○ f = curry g, g = uncurry f

● One type declaration, multiple interpretations
○ f :: a->b->c
○ f :: a->(b->c)
○ f :: (a->b)->c
○ Use parentheses when necessary:

■ >>= :: Monad m => m a -> (a -> m b) -> m b

Functors
● A functor is a type of mapping between categories,

which is applied in category theory.

● What the heck is category theory?

Category Theory 101
● A category is, in essence, a simple collection. It has three

components:
○ A collection of objects
○ A collection of morphisms
○ A notion of composition of these morphisms

● Objects: X, Y, Z
● Morphisms: f :: X->Y, g :: Y->Z
● Composition: g . f :: X->Z

Category Theory 101
● Category laws:

Functors Revisited
● Recall that a functor is a type of mapping between categories.
● Given categories C and D, a functor F :: C -> D

○ Maps any object A in C to F(A) in D
○ Maps morphisms f :: A -> B in C to F(f) :: F(A) -> F(B) in D

Functors in Haskell
class Functor f where
 fmap :: (a -> b) -> f a -> f b

● Recall that a functor maps morphisms f :: A -> B in C to F(f) :: F(A) -> F(B) in
D

● morphisms ~ functions
● C ~ category of primitive data types like Integer, Char, etc.
● D ~ category of “functorized types” like Maybe Integer, Maybe Chat, etc.
● fmap actually takes as parameter a function(g :: a -> b) , and returns a

function(g’ :: f a -> f b)

Endofunctors
● A functor is a type of mapping between 2 categories.
● What if the 2 categories are the actually the same

category? You got endofunctors
● Functors in Haskell are actually endofunctors

We have a category Hask, which treats ALL Haskell
types as objects and Haskell functions as morphisms
and uses (.) for composition

Applicative Functors
class (Functor f) => Applicative f where
 pure :: a -> f a
 <*> :: f (a -> b) -> f a -> f b

 -- fmap
 <$> :: (a -> b) -> f a -> f b

Function-in-the-box
● Applicative functors are another mechanism for dealing with

programming with effects(values wrapped in a context)
● Applicative functors are more powerful than functors because they

are able to deal with functions in a context
● But how do functions get into a “box” in the first place?

Function-in-the-box
● How do functions get into a context?

○ Just use pure :: a -> f a
○ Use fmap:

fmap (+) [1] or (+) <$> [1]

>> [(+ 1)]

(+) <$> [1, 2] <*> [3, 4]

>> [4, 5, 5, 6]

A Use Case
data User = User { firstName :: Text,
 LastName :: Text,
 Email :: Text}
buildUser :: Profile -> Maybe User
buildUser p = User
 <$> lookup “first_name” p
 <*> lookup “last_name” p
 <*> lookup “email” p

buildUser p = do
 fn <- lookup “first_name” p
 ln <- lookup “last_name” p
 em <- lookup “email” p
 return $ User fn ln em

Why Applicatives?
Q: We already got this Monad dude, who is, like,
super awesome. Why do we need to hire you for this
task?
A: I’m flexible on salary, and I get shit done faster
Q: Okay, what’s your name again?
A: Applicative Functor
Q: Geez, that’s a mouthful!

Applicatives vs. Monads
● Monads are about…

○ Effects
○ Composition
○ Sequence/Dependency

■ parsing context-sensitive grammar
■ branching on previous results

● Applicatives are about…
○ (less severe)Effects
○ Batching and aggregation
○ Concurrency/Independency

■ parsing context-free grammar
■ exploring all branches of computation

Disaster Averted (or Not)
● miffy :: Monad m => m Bool -> m a -> m a -> m a

miffy mb mt me = do

b <- mb

 if b then mt else me

>> miffy (Just True) (Just “Yay!”) Nothing = Just “Yay!”

● iffy :: Applicative f => f Bool -> f a -> f a -> f a

iffy fb ft fe = cond <$> fb <*> ft <*> fe where

cond b t e = if b then t else e

>> iffy (Just True) (Just “Yay!”) Nothing = Nothing

Should It Always Fail Early?
● Monads have this inherent property that they can

branch on the results of previous computations, which
implies they always fail early(short-circuited)

● What if you want to design a signup page for your
website?

● What if you actually don’t really care whether the
computation should fail early or not?

Weaker But Sometimes Better
● Applicatives are weaker than Monads, which also means

they are more common than Monads
● Applicative code is usually cleaner and shorter than its

monadic counterpart, and lends itself to optimization
○ Facebook’s Haxl provides a DSL that expose the

monadic interfaces and converts them to applicatives
when necessary

● Use the least powerful mechanism to get things done
● When there’s no dependency issues or branching, just use

applicatives

Like Father, Like Son
● All monads are applicatives, but not all applicatives are

monads
○ ZipList

● Applicative is actually a superclass of monad
● Fun fact: Actually applicatives were discovered later

than monads
● Due to historical reasons, applicative is NOT a

superclass of monad in Haskell yet (but it soon will be)

Applicative => Monad Proposal (AMP)
● Applicative becomes a superclass of Monad
● Why?

○ lack of unity means there is a lot of duplication of API:
■ liftA :: (Applicative f) => (a -> b) -> f a -> f b
■ liftM :: (Monad m) => (a -> b) -> m a -> m b

○ pure = return, <*> = ap
■ ap mf ma = do

 f <- mf

 a <- ma

 return $ f a

○ Enforce the use of the least restrictive functions

So an Applicative Functor Is...
● A Monoid in the category of endofunctors. That’s it.
● Dammit! What the heck is a Monoid?

○ class Monoid m where
 mempty :: m
 mappend :: m -> m -> m

○ instance Monoid [a] where
 mempty = []

 la mappend lb = (++) <$> la <*> lb

Resources
● http://learnyouahaskell.com/functors-applicative-

functors-and-monoids
● Applicative programming with effects
● Applicative Functors: Hidden in plain view
● Haskell/Category Theory
● Introduction to functional programming
● Beginning Haskell: A Project-Based Approach
● Haskell Ryan Gosling

http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://learnyouahaskell.com/functors-applicative-functors-and-monoids
http://strictlypositive.org/IdiomLite.pdf
http://strictlypositive.org/IdiomLite.pdf
http://vimeo.com/31168331
http://vimeo.com/31168331
http://en.wikibooks.org/wiki/Haskell/Category_theory
http://en.wikibooks.org/wiki/Haskell/Category_theory
https://www.edx.org/course/delftx/delftx-fp101x-introduction-functional-2126#.VGEjIsPAPtA
https://www.edx.org/course/delftx/delftx-fp101x-introduction-functional-2126#.VGEjIsPAPtA
http://www.amazon.com/Beginning-Haskell-A-Project-Based-Approach/dp/1430262508
http://www.amazon.com/Beginning-Haskell-A-Project-Based-Approach/dp/1430262508
http://haskellryangosling.tumblr.com/
http://haskellryangosling.tumblr.com/

