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● Frustrated with GUI design

● Use declarative approach

● Want responsive GUIs

Evan Czaplicki
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Pure Functional

● Computation = Functions

● No side effects

How do we get both?
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The main idea

 Everything is a pure expression…
unless you use Signals.
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The main idea

Elm’s Idea: 
1. Pure expressions -> layout of GUI

2. Signals -> react to real-world events

3. lift and foldp -> update layout dynamically



Elm in Action: GUI Layout
content : [Element]
content = [ plainText "Bears, Oh My!"
          , image 200 200 "/yogi.jpg"
          , asText (reverse [1..9]) 
          ]

main : Element
main = flow down content

[9,8,7,6,5,4,3,2,1]



Elm in Action: Signals

import Mouse

resizeableYogi : Int -> Element
resizeableYogi n = image n n "/yogi.jpg"

edgeLength : Signal Int
edgeLength = lift (\(x,y) -> max x y) Mouse.position

main : Signal Element
main = lift resizeableYogi edgeLength



Elm in Action: Mix N’ Match
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Current Compiler http://elm-lang.org/

● Elm-to-Javascript compiler
○ With HTML and CSS too
○ Can generate JS file

● Advantages
○ Complex graphics are possible
○ “unmatched cross-platform support”

● Disadvantages
○ Issues with concurrency
○ Slow program execution

Czaplicki, Evan, and Stephen Chong. 
"Asynchronous Functional Reactive 
Programming for GUIs." Proceedings of the 
34th ACM SIGPLAN Conference on 
Programming Language Design and 
Implementation (2013): 411-22. Print.
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Conclusions

● Elm is pretty awesome!
○ functional
○ web programming scares you

● Still growing!
○ production continues at Prezi
○ time-traveling debugger

Programming Isn't Scary. Digital image. 
Impatient Designer. N.p., n.d. Web. 25 Sept. 2014.
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