
The Elm Programming Language
Richard Townsend

Advanced Topics in Programming Languages and Compilers

Where did Elm come from?

Evan Czaplicki

Where did Elm come from?

● Frustrated with GUI design

Evan Czaplicki

Where did Elm come from?

● Frustrated with GUI design

● Use declarative approach

Evan Czaplicki

Where did Elm come from?

● Frustrated with GUI design

● Use declarative approach

● Want responsive GUIs

Evan Czaplicki

Functional Reactive Programming

Functional Reactive Programming

ReactivePure Functional

Functional Reactive Programming

ReactivePure Functional

● Computation = Functions

● No side effects

Functional Reactive Programming

Reactive

● Computation = Data flows

● Side effects run the program

Pure Functional

● Computation = Functions

● No side effects

Functional Reactive Programming

Reactive

● Computation = Data flows

● Side effects run the program

Pure Functional

● Computation = Functions

● No side effects

How do we get both?

Signals: Time-Varying Values

Signals: Time-Varying Values

Signals: Time-Varying Values

Signals: Time-Varying Values

The main idea

 Everything is a pure expression…
unless you use Signals.

The main idea

Elm’s Idea:
1. Pure expressions -> layout of GUI

The main idea

Elm’s Idea:
1. Pure expressions -> layout of GUI

2. Signals -> react to real-world events

The main idea

Elm’s Idea:
1. Pure expressions -> layout of GUI

2. Signals -> react to real-world events

3. lift and foldp -> update layout dynamically

Elm in Action: GUI Layout
content : [Element]
content = [plainText "Bears, Oh My!"
 , image 200 200 "/yogi.jpg"
 , asText (reverse [1..9])
]

main : Element
main = flow down content

[9,8,7,6,5,4,3,2,1]

Elm in Action: Signals

import Mouse

resizeableYogi : Int -> Element
resizeableYogi n = image n n "/yogi.jpg"

edgeLength : Signal Int
edgeLength = lift (\(x,y) -> max x y) Mouse.position

main : Signal Element
main = lift resizeableYogi edgeLength

Elm in Action: Mix N’ Match

Current Compiler http://elm-lang.org/

● Elm-to-Javascript compiler
○ With HTML and CSS too
○ Can generate JS file

Current Compiler http://elm-lang.org/

● Elm-to-Javascript compiler
○ With HTML and CSS too
○ Can generate JS file

● Advantages
○ Complex graphics are possible
○ “unmatched cross-platform support”

Czaplicki, Evan, and Stephen Chong.
"Asynchronous Functional Reactive
Programming for GUIs." Proceedings of the
34th ACM SIGPLAN Conference on
Programming Language Design and
Implementation (2013): 411-22. Print.

Current Compiler http://elm-lang.org/

● Elm-to-Javascript compiler
○ With HTML and CSS too
○ Can generate JS file

● Advantages
○ Complex graphics are possible
○ “unmatched cross-platform support”

● Disadvantages
○ Issues with concurrency
○ Slow program execution

Czaplicki, Evan, and Stephen Chong.
"Asynchronous Functional Reactive
Programming for GUIs." Proceedings of the
34th ACM SIGPLAN Conference on
Programming Language Design and
Implementation (2013): 411-22. Print.

Conclusions

● Elm is pretty awesome!
○ functional
○ web programming scares you

Programming Isn't Scary. Digital image.
Impatient Designer. N.p., n.d. Web. 25 Sept. 2014.

Conclusions

● Elm is pretty awesome!
○ functional
○ web programming scares you

● Still growing!
○ production continues at Prezi
○ time-traveling debugger

Programming Isn't Scary. Digital image.
Impatient Designer. N.p., n.d. Web. 25 Sept. 2014.

References
Czaplicki, Evan, and Stephen Chong. "Asynchronous Functional Reactive Programming for GUIs."
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (2013): 411-22. Print.

Czaplicki, Evan. "Elm." Elm. N.p., n.d. Web. 28 Sept. 2014. <http://elm-lang.org>.

Czaplicki, Evan. "Functional Reactive Programming in Elm." Strange Loop. 5 Nov. 2013. InfoQ. Web.
28 Sept. 2014.

http://elm-lang.org

